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Abstract

As modern networks have been proven to be unprotected
from adversarial attacks and are applied in safety-critical
applications, defense against them is very crucial. Many
works were dedicated to this topic, but randomized smooth-
ing has been recently proven to be an effective approach for
the certified defense of deep neural networks and getting
robust classifiers. Some prior results were obtained utiliz-
ing the techniques of adding extra parameters to extend the
limits of the certification regions. In this way, sample-wise
optimization was proposed to maximize the certification ra-
dius per input. The idea was further extended with the gen-
eralized anisotropic counterparts of ℓ1 and ℓ2 certificates
which allow achieving larger certified region volume avoid-
ing worst-case certification near potentially larger safe re-
gions. However, anisotropic certification is limited by the
aligned axis lacking the freedom to extend in any direction.
To mitigate this constraint, in this work, we (i) revisit the
anisotropic certification, provide an analysis of its non-axis
aligned counterpart and propose its rotation-free extension,
(ii) conduct experiments on the CIFAR-10 dataset to report
the improved performance.

1. Introduction

Deep Neural Networks (DNNs) for image classification
have been shown to perform well in a variety of different
fields, even outperforming humans in some medical im-
agery tasks [20]. However, they are also known to be vul-
nerable to adversarial attacks - small, imperceptible pertur-
bations at the input level that lead to misclassification of
the image [10]. This is particularly problematic in safety-
critical applications of DNNs, such as autonomous driv-
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Figure 1. Going beyond axis-aligned certification. Example of
the ℓ2 certification regions presented on the 2D dataset, where the
blue and red pixels correspond to different data classes. Ellipsoids
represent certification regions. Orange: Data dependent isotropic
region [1], Blue: Anisotropic (ANCER) region [9], Pink: region
obtained with our proposed solution - RANCER.

ing [3], where guarantees are required before deployment.
This motivates the need for certifiably robust classifiers, i.e.,
classifiers that are provably robust over a certain input re-
gion. Therefore, many approaches were proposed to build
the truly robust models [5, 29]. However, a lot of the cur-
rent certification techniques have a scalability (verification
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based methods [8, 27]) or computation (conservative certi-
fication [28, 12]) issues making them unlikely to be used in
production pipelines.

Randomized smoothing is a recent approach that allows
one to obtain such classifiers in a scalable manner [17, 5].
While several works in this field have introduced a variety
of ℓp certificates [17, 5, 18, 7, 1], most of them have focused
on isotropic certificates, i.e., certificates that have perfect
radial symmetry with respect to the input. As mentioned
by Eiras et al. in [9], this is sub-optimal, as it considers
only worst-case perturbations, ignoring other safe regions
around the point. To tackle this inefficiency, in [9] the au-
thors introduce the first anisotropic randomized smoothing
framework for generalized ℓp norm certificates - ANCER.
However, the data-dependent regions obtained by the proce-
dure outlined in the paper are limited to axis-aligned ones,
which can severely hinder the safe regions obtained, as mo-
tivated by the 2D images in Figure 1. In some specific cases
when the input data distribution is concentrated along fixed
axis direction, ANCER may show good results. Nonethe-
less, when the data is rotated, the performance is expected
to drop by the axis constraint in the design. In this work,
we extend the ANCER framework to the non-axis aligned
setting, allowing for robust accuracy gains and a better char-
acterization of the safe regions of the classifier.

Contributions can be summarized as follows:

• We provide a general analysis of non-axis aligned
anisotropic certification, while preserving previous ap-
proaches as special cases.

• We conduct experiments on the CIFAR-10 dataset to
validate out approach and show that our generalized
framework outperforms existing approaches in terms
of ℓ2 certified accuracy.

Paper Structure. In Section 2, you will find the general
overview of the different techniques for the defense against
adversarial attacks. Later, Section 3 is dedicated to the de-
tailed description of the proposed approach - RANCER.
Then, in Section 4, we report the conducted experiments
and show the improved performance of our algorithm com-
paring to previous SOTA, analyze time and initialization.
Finally, in Sections 5 and 6 we discuss the limitations and
sum up the key takeaways of our work respectively.

2. Related Work
Empirical Defenses. In 2015 Goodfellow et al. [10]

showed the way to attack DNNs and presented adversarial
training. With the help of the fast gradient sign method, ad-
versarial examples can be quickly generated during training
making it possible to apply in practice. They trained the
network on adversarial examples making the model more
robust to adversarial attacks on MNIST dataset [16]. Then

Kurakin et al. [14] in 2017 showed how to apply the explicit
model training on the adversarial examples on a big scale.
The authors applied adversarial training on ImageNet [6]
and wrote the exact recommendations for how to success-
fully scale adversarial training to large models and datasets.
One year later Madry et al. [19] started to think about fully
resistant NNs which can be robust to a wide range of ad-
versarial attacks. They discussed how to find more power-
ful attacks during training but it was shown later that such
models were robust to only specific kinds of attacks and
were successfully broken by stronger adversaries. Carlini
and Wagner [4] surveyed ten recent robustness methods and
showed that all previous attacks can be defeated by care-
fully constructing new loss as well as new adversaries are
harder to defeat. In that way, new attacks were breaking
previously robust models and then new defenses were pro-
posed. For example, Athalye et al. [2] analyzed that ob-
fuscated gradients were a common occurrence, with 7 of
9 defenses relying on obfuscated gradients in ICLR 2018.
The authors showed that their new attacks successfully cir-
cumvent 6 completely, and 1 partially, in the original threat
model each paper (out of 7) considers. As a result, there
was less trust in empirical defenses, and interest increased
in the defenses with formal guarantees.

Certified Defenses. As Cohen et al. [5] defined a clas-
sifier is certifiably robust if, for any input x, one can eas-
ily obtain a guarantee that the classifier’s prediction is con-
stant within some set around x, often ℓ1, ℓ2 or ℓ∞ ball.
The certification works for both: generically trained NNs
and robustly trained ones. For example, Wong and Kolter
[8] proposed the method to learn deep ReLU-based classi-
fiers that are provably robust against norm-bounded adver-
sarial perturbations on the training data. There were some
works proposing exact certification: take a smoothed clas-
sifier g, and check if there exists a perturbation with a norm
lower than some r. The classifier is certifiably robust if the
output corresponding to the perturbed input is the same as
the output for the original input. For example, Ehlers [27]
presented an approach for the verification of feed-forward
neural networks in which all nodes have a piece-wise lin-
ear activation function. The problem with these methods
is the lack of possibility to scale to large NNs. Tjeng et al.
[27] formulated verification as a mixed-integer program and
were able to speed up computations and certify networks
with over 100 000 ReLUs to determine the exact adver-
sarial accuracy on MNIST to perturbations with bounded
ℓ∞ norm ϵ = 0.1. But even this and some other recent
achievements do not scale to the SOTA networks working
with CIFAR10 [13] or ImageNet [6]. Then conservative
certification methods come here which are usually utilizing
the global or local Lipshitz constants of the network and are
more scalable but they are computationally hard for modern
networks. Tsuzuku et al. [28] presented an efficient calcula-
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tion technique to lower-bound the size of adversarial pertur-
bations that can deceive networks from the relationship be-
tween the Lipschitz constants and prediction margins. Hein
and Andriushchenko [12] gave formal guarantees on the ro-
bustness of a classifier with instance-specific lower bounds
on the norm of the input manipulation required to change
the classifier decision and proposed the Cross-Lipschitz reg-
ularization functional, but calculations were still expensive.

Randomized Smoothing. In 2019 Lecuyer et al. [17]
proposed the first certified defense based on differential pri-
vacy techniques and called it PixelDP. It scales to large net-
works and datasets (such as Google’s Inception network
[25] for ImageNet [6]) and applies broadly to arbitrary
model types. In this work, the result was proved to be
constant with average classifier prediction under Laplacian
noise perturbations for ℓ1 certification. These ideas were
later improved for the ℓ2 certification by Cohen et al. [5]
for smoothing with Gaussian noise. They showed how to
turn any classifier that classifies well under Gaussian noise
into a new classifier that is certifiably robust to adversar-
ial perturbations under the ℓ2 norm. Later there were some
other papers that showed the proofs for ℓ1 (Teng et al. [26]),
ℓ0 (Levine and Feizi [18]), and even ℓp norm (Dvijotham et
al, [7]). Those methods were proven to find near-optimal
certification regions under different norms, but the certifi-
cation was still very small. To resolve this, Mohapatra et
al. [21] proposed higher-order certification with a method
to calculate the certified safety region using zeroth-order
and first-order information for Gaussian-smoothed classi-
fiers, but did not provide a closed-form solution. In contrast
to Cohen et al. [5] where the parameters of the model were
set as a global hyperparameter, Alfarra et al. [1] showed that
the variance of the Gaussian distribution can be optimized at
each input so as to maximize the certification radius for the
construction of the smooth classifier. With such technique
they achieved 9% and 6% improvement over the certified
accuracy of the strongest baseline for a radius of 0.5 on CI-
FAR10 and ImageNet respectively. Later Eiras et al. [9]
extend the isotropic randomized smoothing ℓ1 and ℓ2 cer-
tificates to their generalized anisotropic counterparts. The
proposed framework called the ANCER achieves SOTA ℓ1
and ℓ2 performance on the CIFAR-10 and ImageNet uti-
lizing the previous ideas of data dependent smoothing [1].
Previous approaches’ certification regions were limited by
the worst-case adversaries because of isotropic properties,
but other (potentially large) areas can exist and be discov-
ered by anisotropic counterparts. However the described
anisotropic case is limited by the axis alignment and can
extend only in a predefined set of direction, so we over-
come this and propose an extended version that will not be
aligned and can find larger safe regions in any direction.

3. RANCER: Non-Axis Aligned Anisotropic
Certification

We extend ANCER [9] to provide a practical approach
for certifying non-axis aligned anisotropic region. We dub
our approach as RANCER, where the first “R” denotes ro-
tation, i.e. certified regions rotated beyond the canonical
basis. We first provide a theoretical intuition based on the
general certification results of ANCER towards certifying
non-axis aligned regions for a given fixed orthogonal trans-
formation. However, since the learning of such orthogonal
transformation is expensive as it is of the dimensionality
of the input, we show one efficient approach for designing
such a transformation. The detailed pipeline algorithm is
proposed in Algorithm 1.

Recall that the early work of Cohen et al. [5] smooths a
base classifier f : Rn → P(Y) where P(Y)1 is a proba-
bility simplex over classes Y with isotropic Gaussian dis-
tribution. In particular, the smooth classifier is given as
gσ(x) = Eϵ[f(x + ϵ)] where ϵ ∼ N (0, σ2I). The resul-
tant smooth classifier thereafter enjoys an isotropic certified
region parameterized by σ and the top two predictions of
gσ . ANCER [9] then proposed a general extension where
when one smooths the base classifier f with a general pos-
itive definite covariance matrix A, that is to say the smooth
classifier is given as gAANCER(x) = Eϵ[f(x + ϵ)] where
ϵ ∼ N (0,A). However, the works limits A to be a diagonal
matrix, i.e. AANCER = Σ where Σ is a positive diagonal.
This gives rise to certified regions that are anisotropic but
axis aligned. In this work, we are interested in the certified
regions that arise when using full dense covariance matrix
A, as well as approaches towards selecting A. Note that
this is of interest as it is a generalization to both Cohen et
al [5] and ANCER [9]. First, we note that a proper covari-
ance matrix is symmetric and therefore can be orthogonally
diagonalzied, i.e. A = UΣ̂U⊤, where U and Σ̂ are the set
eigenvectors and eigenvalues, respectively. To that end, we
consider the following smooth classifier instead:

gA(x) = Eϵ∼N (0,A) [f(x+ ϵ)] . (1)

For a given set of eigenvectors U defining an orthogo-
nal transformation, we introduce the following parameteri-
zation. Let ϵ′ = Uϵ where ϵ ∼ N (0, Σ̂). Then, we have
that ϵ′ ∼ N (0,UΣ̂U⊤) which is ϵ′ ∼ N (0,A). There-
fore, our smooth classifier in Equation (1) can equivalently
be written as:

gΣ̂(x) = Eϵ∼N (0,Σ̂) [f(x+Uϵ)] . (2)

We observe that our new proposed smooth classifier is al-
most identical to that of ANCER where the smoothing dis-
tribution is with a diagonal covariance. The only exception

1We use here the soft smooth version for convenience following [24].
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Algorithm 1 Non-Axis Aligned Anisotropic Certification
Input: base classifier fθ, input point x, learning rate α, ini-

tial sigma Σ̂0, number of noise samples m, number
of iterations k, loss function L, minimum and max-
imum clipping difference thresholds γ1, γ2

Result: Optimized sigmas Σ̂k for input point x
H = Hessian(L);
U,Λ = EigenDecomposition(H);
for i = 0 . . . k do

sample ϵ̂1, . . . ϵ̂m ∼ N (0, Σ̂i)
ψ = 1

m

∑n
j=1 f(x+Uϵ̂j)

EA = maxc ψ
c; yA = argmaxcψ

c

EB = maxc ̸=yA
ψc

R(Σ̂) = 1/2 n

√∏n
j=1 Σ̂jj

(
Φ−1(EA)− Φ−1(EB)

)
Σ̂i+1

jj ← Σ̂i
jj + α∇Σi

jj
R(Σ̂i)

Σ̂i+1
jj ← min

(
max

(
Σ̂i+1

jj , σ0(1− γ1)
)
, σ0(1 + γ2)

)
end
return Σ̂k

is with the rotated noise with U. In the 2D case, i.e. x ∈ R2,
we can view Uϵ as a rotation to the sampling distribution of
the ellipsoid with scale governed by Σ̂. To that end, one
can directly apply the certification result of ANCER which
states that gΣ̂(x) = gΣ̂(x+ δ) for all δ satisfying:√

δ⊤Σ̂−1δ ≤ 1

2

(
Φ−1(gc1

Σ̂
(x))− Φ−1(gc2

Σ̂
(x))

)
, (3)

where c1 and c2 are the top two predictions of gΣ̂ (from [9]).
A natural question arises here: how can one efficiently
select U? One potential approach is to directly optimize
over symmetric positive definite matrices to learn U for ev-
ery input x. This is in a similar spirit to Alfarra et al [1] who
optimized directly for a scalar σ for every input x followed
with a post-processing memory based certification. How-
ever, optimizing over U is generally very expensive, note
that if x ∈ Rn then U is of size n× n. Instead, we propose
to directly estimate the local curvature by investigating the
hessian of the loss function.

Moosavi-Dezfooli et al. [22] showed a connection be-
tween adversarial robustness and the loss of the curvature
locally. In particular, under certain quadratic approxima-
tion of the loss function locally, they show that the higher
curvature, measured as the maximum eigenvalue of the loss
function at a point x, the less robust the classifier is around
x. That is to say, if L is a suitable loss function for a given
classifier, then locally around a point xRn the loss function
can be approximated as:

L(x+ ϵ) ≈ L(x) + ϵ⊤∇L(x) + 1

2
ϵ⊤Hϵ, (4)

where H is denotes the Hessian of size n × n. Moosavi-

Dezfooli et al [22] show that classifiers with larger λmax(H),
where λmax denotes the largest eigenvalues, have a larger
curvature resulting a less robust classifier. In particular, the
classifier at x is less robust particularly along the eigenvec-
tor of H corresponding to the largest eigenvalue. This mo-
tives our approach towards selecting the transformation U
when smoothing the base classifier f . Note that the eigen-
vector space of the hessian of the loss function H indicates
the space where the base classifier f is robust and not ro-
bust. To that end, we seek to perform more smoothing, i.e.
larger diagonal Σ̂ along the eigencevector directions where
the hessian have high eigenvalues. This implies that we are
performing more “smoothing” to the non robust region and
thereafter will will be robust, i.e. will require larger per-
turbation along those direction to flip the prediction of the
smooth classifier. To that end, instead of learning U we set
U = V where H = VΛV⊤. That is to say, we fix the
orthogonal transformation for the smoothing locally from
the eigenvector space of the hessian of the loss function.
We then following ANCER [9] optimize directly for Σ̂, i.e.
finding the the diagonal smoothing distribution under the
predetermined transformed coordinates that is aligned with
the non-robust directions.

As a summary, our approach can be summarized as fol-
lows: (1) compute the Hessian H of the loss at point to be
certified x; (2) perform eigendecomposition of Hessian and
set matrix U to be eigenvectors of theH , i.e. V; (3) sample
noise from the new non-axis aligned distribution and opti-
mize directly following ANCER [9] the diagonal elements
Σ̂ that maximize the volume of the certified region. Note
that in step (3), we sample the noise exactly the same as in
ANCER, and then transform it by pre-multiplying it by U,
i.e. rotating it. Algorithm 1 summarizes our approach.
Certification. Our proposed smooth classifier in Equation
(2) enjoys a certified radius as given in Equation 3 as shown
by Eiras et al. However, one key limitations of input de-
pendent smooth classifiers is that for every input x, we con-
struct a new a classifier with a different smoothing distribu-
tion with covariance A. Note that this is since A depends
both on the eigenvectors of the hessian on the loss function
at x and that we optimize for the eigenvalues A for every
x. To that end, still need to assure that the two classifiers at
x1 and x2, i.e. gA1

and gA2
each with a certification region

S1 and S2 centered at x1 and x2 are consistent. That is to
say, that there exists no intersection of regions S1 ∩S2 = ϕ
for any pair of smooth classifiers with two different predic-
tions for x1 and x2. To that end, and following the works
of [1] and [9], we extend memory based certification for the
general non-axis aligned anisotropic regions.

Memory-Based Certification. To perform memory-
based certification for RANCER, we can directly apply Al-
gorithm (1) of Eiras et al with changes relating to the the
computation of Intersect. This function returns TRUE
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if two axis aligned ellipsoids intersect and FALSE other-
wise. As was mentioned previously the test on intersecting
ellipsoids is a computationally hard problem. In ANCER
the authors were able to simplify the computation signifi-
cantly as the ellipsoids were axis-aligned, i.e. the smooth-
ing distribution defining an ellipse A is diagonal. However,
we are interested in solving the general test problem of in-
tersecting arbitrary ellipsoids. In particular, given two el-
lipsoids SQ = {x ∈ Rn : (x − q)⊤Q(x − q) ≤ 1} and
SR = {x ∈ Rn : (x− r)⊤R(x− r) ≤ 1} where Q and R
are general symmetric positive definite matrices, the prob-
lem of testing if two ellipsoids intersect reduces to checking
whether there exists a t ∈ (0, 1) where:

K(t) = 1− (r − q)⊤
(

1
1−t

R−1 + 1
t
Q−1

)−1

(r − q) < 0.

(5)
Moreover, K(t) was shown earlier by [23] to be convex in
t and thus the problem can be easily solved by any con-
vex optimization solver solving t∗ = argmintK(t) and
checking whether K(t∗) < 0. Moreover, another change
to the memory-based certification is the one concerning
LargestOutSubset from Algorithm (1) in Eiras et al.
This function should, given two general ellipsoids described
above that do intersect, find the the largest isotropic ball of
one ellipsoid such that it does not intersect with the other el-
lipsoid. In particular, consider the problem of reducing SR
to the smallest ℓ2 ball that does not intersect with the ellip-
soids SQ. To that end, we solve the more general problem
of solving the following scalar non-linear Equation:

(r − q)⊤(2λQ+ I)−⊤Q(2λQ+ I)−1(r − q) = 1. (6)

This is as opposed to solving the simplified problem
where Q and R are diagonal resulting in a reduced more
efficient algorithm as proposed by Eiras et al [9].

4. Experiments
We evaluate RANCER and show that it outperforms the

previous state-of-the-art ANCER [9] on CIFAR-10 dataset
for ℓ2 and ℓΣ2 in certified robustness. The following subsec-
tions are dedicated to the detailed information about exper-
imental setup, evaluation metrics discussion, and obtained
final certification results.

Experimental Setup. Following the previous evaluation
procedures for robust classifiers which were established in
previous works, we used CIFAR-10 dataset [13] and pre-
trained ResNet-18 architecture proposed in 2015 by He et al.
[11] (the weight were taken from [9] repository). We also
use isotropic σ as initialization for optimization similarly to
ANCER. An important factor in the success of the defenses
against adversarial attacks is the scalability to deep models
and large datasets. Therefore such data and model choice
was made to prove the advantage against verification-based

methods. Our experimental setup matches those of prior
art for a fair comparison. Specifically, we compare our
work against fixed σ, DDS [1] and ANCER following Co-
hen et al. [5] and [9] for isotropic and anisotropic certifi-
cation, respectively. We compare all methods by reporting
the certified accuracy at multiple radii, the average certi-
fied radius proposed by MACER [30], and the proxy radius
for anisotropic regions. Additionally, we propose two new
metrics to track the exact certified radius and proxy radius
improvement comparing to ANCER.

4.1. Evaluation Metrics

Certified Accuracy. A classifier f is said to be ℓp certi-
fiably accurate with radius r at x if the classifier predicts x
correctly and the prediction is constant for all perturbations
δ in an ℓp ball of radius r. That is to say, argmaxc f

c(x) =
argmaxc f

c(x + δ) = y ∀∥δ∥p ≤ r, where f c is the cth

element of f . We compute the certified accuracy as the por-
tion of the test set correctly classified by gΣ̂ and has an ℓp
(p = 2 in our case) certified radius at least r.

Anisotropic Certified Accuracy. We use the definition
of the anisotropic certified accuracy from the specialization
of Definition 1 from [9]. Following that, our ellipsoid cer-
tified region R2 is ”superior certificate” to the isotropic re-
gion R1 (ℓ2-ball). To compare the regions we can com-
pute the volumes, which in our case will be V (R2) =
rn2
√
πn/Γ(n/2 + 1)

∏n
i=1 Σ̂ii [15]. Instead of calculat-

ing volume directly, we compute proxy radius for R2 as

R̃ = r2
n

√∏n
i Σ̂ii, because larger R̃ will give regions with

larger volumes. Based on this, the anisotropic certified ac-
curacy is computed as the portion of the correctly classified
samples with an ℓΣ2 proxy radius that is at least R̃.

Average Certified (Proxy) Radius. Following the
previous evaluation baselines, we also report two more
metrics proposed by Zhai et al. [30], also extended by
ANCER [9] for anisotropic regions, namely ACR =
E(x,y)∼Dt

[
Rx1(gΣ̂(x) = y)

]
, Average Certified Radius,

and ACR̃ = E(x,y)∼Dt

[
R̃x1(gΣ̂(x) = y)

]
, Average Cer-

tified Proxy Radius, where Rx and R̃x are the radius and
proxy radius at sample x, respectively, with corresponding
ground truth label y. 1 is the indicator function.

Average (Proxy) Radius Improvement. To sum-
marily analyze the improvement of RANCER with re-
spect to ANCER [9], we introduce two new metrics.
The first metric is average radius improvement ARI =
Ex,y∼Dt

[Rx1(gΣ̂(x) = y) − Rx1(gA(x) = y)] and
the second is average proxy radius improvement AR̃I =
Ex,y∼Dt [R̃x1(gΣ̂(x) = y) − R̃x1(gA(x) = y)] where Rx

and R̃x are the corresponding radius and proxy radius ob-
tained with ANCER. According to the definition, a positive
ARI/AR̃I indicates RANCER on average outperforms the
radii/proxy radii obtained by ANCER in Dt.
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Figure 2. Safe directions approximation via Hessian eigenvectors. Figures (a,b,c) show the loss function value in the the directions v1

and v2 which are the Hessian eigenvectors corresponding to largest and second largest eigen values. The red region corresponds to small
loss value while the blue region corresponds to the high loss value. Figure (d) shows a point classified as class “red” along with the certified
regions 3 different methods.

4.2. Safe Directions Approximation

To illustrate the practical soundness of using the eigen-
vectors of the Hessian of the loss function as the covariance
of our smoothing distribution following the similar setup
as proposed in [22], we conduct different experiments with
2D data to show how good the safe approximation is based
on the difference between the original and second-order ap-
proximation of the loss function. An example of safe di-
rections approximation can be seen in Figure 2. The center
point classified as class “red” from (d) is used to show the
hessian approximation. This point is located in the mid-
dle of the certified ellipsoid and is marked as a black dot
in (a,b,c). The red ”valley” represents the points where the
loss value is small for this class, while blue points corre-
spond to higher values of the loss. Based on the representa-
tive curvature of the ”valley” dependent on the loss values
we obtain a Hessian with a good directions approximation.

As observed in (a), (b), and (c), the first eigenvector v1

points to the safe potential direction to expand. During op-
timization vector v1 will become larger and v2 shorter and
they will form the radii of the final pink ellipsoid in (d). As
a conclusion, due to our experiments, the safe directions are
reasonably aligned with the eigenvectors of the Hessian of
the loss function, so it is a good choice for approximation.

4.3. CIFAR-10 Certification Results

We report the previously discussed final evaluation met-
rics obtained with Gaussian smoothing procedure described
in the experimental setup and clearly defined in Algorithm
1. Following the evaluation implementation from [5, 9], we
calculated the top-1 certified accuracy for different ℓ2 radii
for CIFAR-10 dataset. The obtained values were taken af-
ter memory-based certification following the same logic as
previously stated by [9], see Tables 1 and 2 for radius and
proxy radius results correspondingly. The newly proposed
metrics ARI and AR̃I create the additional value as we are
now able to analyze the exact improvement in the certifica-

tion region. With the conducted experiments we obtained
ARI = 0.0673 and AR̃I = 0.0792 compared to ANCER.
Thus, on average RANCER has bigger certification radii
letting it to increase the certified accuracy.

Additionally, we show the plots of certified accuracy
and anisotropic certified accuracy as a function of radius
and proxy radius, respectively, for the different methods
in Figure 3. From the visual comparison we can see that
both Isotropic DD and ANCER achieve better performance
than Fixed σ for radii bigger then 0.5. This coincides with
the findings reported in [1, 9] because fixed σ struggles
with the robustness/accuracy trade-off and leads to the rapid
drop in accuracy. ANCER shows better certification results
by certifying larger regions in terms of volume utilizing
the anisotropic generalization. However, our proposed ap-
proach achieves even better performance giving the poten-
tial to extend to bigger non-axis aligned regions. Analyzing
the visual results, we see that the improvement of certified
accuracy is almost stable for all radii R and R̃.

We observe that RANCER improves certified accuracy
to 82% (from 75%) and 48% (from 43%) for ℓ2 radii 0.25
and 0.5, respectively. In that way, the proposed method out-
performs the previous state-of-the-art approach for ℓ2 certi-
fied robustness. Moreover, in the same manner, RANCER
improves ACR and ACR̃ significantly (see Tables 1 and
2). As expected, we were able to obtain much larger certifi-
cation regions by utilizing the non-axis aligned anisotropic
generalization which leads to higher ACR and ACR̃.

4.4. Runtime Analysis

We compare the runtime complexity of RANCER
against previous methods. All experiments are conducted
on NVIDIA GeForce RTX 2080 GPU with a total mem-
ory of 8Gb. We report the time results in Table 3. Previ-
ous SOTA approaches [1, 9] have significantly improved
certified accuracy, but with a cost of runtime because of
sample-wise optimization in contrast to Fixed σ. RANCER
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Certification Method Accuracy @ ℓ2 radius (%)
ℓ2 ACR0.25 0.5 0.75 1.0 1.25 1.5

Fixed σ 56 1 0 0 0 0 27
ISOTROPIC DD [1] 38 15 7 1 0 0 25
ANCER [9] 75 43 22 7 0 0 46
RANCER 81 48 28 11 1 0 53

Table 1. Certified accuracy comparison at different ℓ2 radii and ℓ2 and ACR on CIFAR-10. We compare top-1 certified accuracy
and ACR obtained by using the isotropic σ used during training of NNs (Fixed σ); the isotropic data-dependent optimization procedure
from [1] (Isotropic DD); and anisotropic approach from [9] (ANCER).

Certification Method Accuracy @ ℓΣ2 proxy radius (%)
ℓΣ2 ACR̃0.25 0.5 0.75 1.0 1.25 1.5

Fixed σ 56 1 0 0 0 0 27
ISOTROPIC DD [1] 38 15 7 1 0 0 25
ANCER [9] 77 64 45 29 17 12 72
RANCER 82 68 48 36 21 13 80

Table 2. Certified accuracy comparison at different ℓΣ2 proxy radii and ℓΣ2 and ACR̃ on CIFAR-10. We compare top-1 certified
accuracy and ACR̃ obtained by using the isotropic σ used during training of NNs (Fixed σ); the isotropic data-dependent optimization
procedure from [1] (Isotropic DD); and anisotropic approach from [9] (ANCER).

Figure 3. Certified accuracies over multiple radii on CIFAR-10.
Distribution of top-1 certified accuracy as a function of ℓ2 radius
(on the top) and ℓΣ2 proxy radius (bottom) obtained with different
approaches. RANCER line is on the top for every value of radii
showing the improved performance across all values of r.

is approximately 2.5 times slower than ANCER. The ad-
ditional complexity comes from the hard procedure of safe
directions calculation as it involves calculating Hessian and
performing eigendecomposition. This affects a batch size

Fixed σ Isotropic DD ANCER RANCER

4.2s 4.9s 7.65s 19.1s

Table 3. Per sample certification time for each method. The
results of average certification time for each sample are reported
here. The measures were done on the same hardware mentioned
in the Section 4.4.

significantly and we had to set it at most of 4 to be able to
run the experiments (it was 128 in [9]). Another overhead
is caused due to a general check of ellipsoids intersection
mentioned in Section 3. As such, we observe RANCER
trades off certified accuracy for runtime efficiency.

4.5. Sensitivity to Initialization

One of the bottlenecks of the DDS based approaches is
the optimization procedure for σ. To simplify the com-
putations, we experimented with different safe directions
magnitude values. The first approach was to use Hessian
eigenvalues Λ as the magnitude for safe directions vectors
without the optimization in Algorithm 1 when computing
Σ̂. This simplifies the pipeline and improves the time com-
plexity, however, results in an oversmoothing distribution,
large diagonals for Σ̂ii, leading to worse performance. The
next approach was to set Λ as an initialization for Σ̂ to get
rid of DDS initial σ calculation. While this does decrease
the time complexity, it also resulted in oversmoothing, large
diagonals for Σ̂, worsening the performance. So our final
decision was to use isotropic σ as initialization for optimiza-
tion similarly to ANCER as it showed the best results.
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5. Limitations

As was mentioned in the [1], the main drawback of data-
dependent certification is the variance of σ which breaks
the soundness of certification. The original solution to this
problem (memory-based certification) was proposed in [1]
and later modified in [9]. But such a solution raises a new
problem - memory and runtime complexity by its definition.
In our framework, the complexity increases even more in
three bottleneck places. Firstly. we were able to remove the
transformation matrix optimization and replace it with the
straightforward hessian eigenvectors computation, but it is
still a computationally expensive procedure. Secondly, the
runtime of some of the particular memory-based procedures
increased, for example, checking the intersection of rotated
ellipsoids. And finally, we need to store the transformation
matrices for certification. For CIFAR-10 with 32 × 32 ×
3 image sizes, the transformation matrix will have a size
of 32 × 32 × 3 × 32 × 32 × 3. There are some potential
improvement methods to reduce the memory consumption
and speed up the process (for example using k-d trees), but
they are outside the scope of this paper.

Notwithstanding these limitations, we believe that our
approach will be beneficial for the safety-critical applica-
tions where a high robustness guarantee is needed and in-
ference time complexity is not critical.

6. Conclusion

We succeeded in providing the theoretical extension
to the anisotropic data dependent randomized smooth-
ing and presenting its generalized counterpart - non-axis
aligned anisotropic certification. To that end, we introduced
RANCER, a new practical framework that optimizes the pa-
rameters of a data dependent non-axis aligned anisotropic
smoothing distribution in order to certify larger regions than
the axis aligned case. We experimentally validated our
approach by obtaining ℓ2 and ℓΣ2 certification results on
the CIFAR-10 dataset, achieving a state-of-the-art memory-
based randomized smoothing classifier in that setting.
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