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Abstract

Over the last decade, online lecture videos have become
increasingly popular and have experienced a meteoric rise
during the pandemic. However, video-language research
has primarily focused on instructional videos or movies,
and tools to help students navigate the growing online lec-
tures are lacking. Our first contribution is to facilitate re-
search in the educational domain by introducing AVLec-
tures, a large-scale dataset consisting of 86 courses with
over 2,350 lectures covering various STEM subjects. Each
course contains video lectures, transcripts, OCR outputs
for lecture frames, and optionally lecture notes, slides, as-
signments, and related educational content that can inspire
a variety of tasks. Our second contribution is introduc-
ing video lecture segmentation that splits lectures into bite-
sized topics. Lecture clip representations leverage visual,
textual, and OCR cues and are trained on a pretext self-
supervised task of matching the narration with the tempo-
rally aligned visual content. We formulate lecture segmen-
tation as an unsupervised task and use these representa-
tions to generate segments using a temporally consistent 1-
nearest neighbor algorithm, TW-FINCH [44]. We evaluate
our method on 15 courses and compare it against various
visual and textual baselines, outperforming all of them. Our
comprehensive ablation studies also identify the key factors
driving the success of our approach.

1. Introduction

The last decade has seen a significant increase in on-
line lectures in the form of Massive Open Online Courses
(MOOCs) through platforms such as Coursera or EdX.
Many high-quality recorded lectures are also published on-
line, e.g., MIT through MIT OpenCourseWare (OCW)1, top
Indian universities through NPTEL2, and several professors
that make their lectures publicly available3. This increase

* indicates equal first author contribution
1MIT-OCW - https://ocw.mit.edu/
2NPTEL - https://nptel.ac.in/
3e.g. Statistics 110 or Stanford’s CS231n.

in online content is considered one of the biggest turning
points in the history of education as anybody can learn any
topic from the world’s leading teachers from the comfort of
their home [3, 22]. As the world moved to an online mode
during the pandemic, there is absolutely no doubt that such
online lecture content creation will only increase.

Creating an online course requires tremendous effort
from the instructor and teaching assistants. Apart from de-
signing and preparing the content itself, the mode of pre-
sentation poses challenges including segmenting the large
videos into smaller topics to enhance the learning experi-
ence, adding quiz-like questions during the lecture to re-
tain the student’s engagement, summarizing the lecture at
the end, etc. These tasks require carefully combing through
the lecture several times, a time-consuming and error-prone
process. Our goal is to encourage the community to address
these tasks automatically or at least provide automatic rec-
ommendations for a human-in-the-loop system as they have
the potential to reduce instructor’s efforts, giving them more
time and energy to improve the lecture content.

To build such solutions, machine understanding of
audio-visual (AV) lectures is crucial. However, currently,
there are no large-scale datasets of audio-visual lectures4.
Our first contribution is AVLectures, a large-scale dataset
to facilitate research in automatic understanding of lecture
videos (see Sec. 3 for details and statistics). By releasing
AVLectures, we wish to ignite research in the largely over-
looked applications in education to help manage the fast-
growing online lecture content.

Our second contribution is the formulation and bench-
marking of the lecture segmentation task, where, given a
long video lecture, our goal is to temporally segment it
into smaller bite-sized topics. Lecture segmentation can be
more challenging than scene segmentation in movies [41] or
cooking videos [28] as the differences across segments are
subtle, in both the visual and transcribed narrations. For ex-
ample, Fig. 1 shows a professor teaching on the blackboard
and walking along the podium. A model trained on movies
or instructional videos may find it hard to segment the lec-

4Despite educational videos being the fourth most consumed content
on the Internet according to this survey, just behind “How-to” videos.
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Figure 1: We address the task of lecture segmentation in an unsupervised manner. We show an example of a lecture segmented
using our method. Our method predicts segments close to the ground-truth. Note that our method does not predict the segment
labels, they are only shown so that the reader can appreciate the different topics.

ture as the objects or actions in the video do not change
significantly. Across segments, the visual boundaries are
subtle changes such as clearing the board, while the narra-
tion may see a shift in the overall topic of discussion.

We propose lecture segmentation as an unsupervised task
that leverages visual, textual, and OCR cues from the audio-
visual lecture. We first split the lecture into small clips
and extract each clip’s visual and textual features using pre-
trained models. To make our representations lecture-aware,
we learn a joint text-video embedding in a self-supervised
manner by matching the narration with the aligned visual
content. Finally, we obtain clusters using a temporally con-
sistent 1-nearest neighbor algorithm, TW-FINCH [44]5.

We pick lecture segmentation as our first use case based
on an insightful large-scale study conducted on the EdX
platform [23]. They find that students who successfully
complete an online course typically spend 4.4 minutes on
a 12-15 minute long lecture clip, clearly demonstrating
the need for simplified navigation of long clips. Lecture
segmentation is also a first step towards creating a multi-
modal table of contents to summarize a lecture [32]. Fi-
nally, there is evidence for segmentation to assist in en-
abling non-linear video consumption [50] and efficient pre-
viewing [12, 16, 40]. While segmentation is our first task,
we emphasize that AVLectures can be used for various other
tasks in the future such as generating automatic quizzes for
the lecture, aligning lecture videos with the notes enabling
generation of lecture notes, retrieving relevant clips of the
lecture using text queries, summarizing long lecture videos,
retrieving and aligning similar courses/lectures from differ-
ent learning platforms, and many more.

Our key contributions are summarized below. (i) We in-
troduce a novel educational audio-visual lectures dataset,
AVLectures, that can facilitate several applications in the
education domain. (ii) We formulate and benchmark the
problem of unsupervised lecture segmentation. We show
that self-supervised multimodal representations learned by
matching the narration with temporally aligned video clips
greatly help the task of segmentation. (iii) Our method out-

5Temporally consistent here refers to temporally contiguous, i.e. the
segment membership of clips looks like [0, 0, 1, 1, 1, 2, 2] rather than [0,
1, 0, 2, 2, 1, 1]. TW-FINCH [44] allows this over base FINCH [45].

performs several baselines. We also provide extensive abla-
tion studies to understand prominent factors leading to the
success of our approach. We will release code and data.

2. Related Work

Applications in educational videos. Research in video-
language domain has focused primarily on movies [39, 42,
48], and instructional videos [7, 36, 43], especially cook-
ing videos [17, 55]. However, there are a few isolated
works [13, 14, 20, 22, 31, 32] that attempt to solve var-
ious problems in the education domain that we highlight
below. Mahapatra et al. [31] propose an approach to gen-
erate a hierarchical table of contents for a lecture video us-
ing multimodal information such as transcripts and associ-
ated metadata from video key frames. In the direction of
localizing and recognizing text on a blackboard, Dutta et
al. [20] introduce LectureVideoDB, a dataset consisting of
frames from multiple lecture videos (including blackboard).
Bulathwela et al. [13, 14] introduce datasets to understand
learner engagement with educational videos.

Related to our work, lecture video segmentation was first
proposed by Gandhi et al. [22]. A visual saliency algorithm
is adopted to find the topic transition points in the lecture
automatically, however, this works primarily for slide-based
lectures. In contrast, our method shows promising results
across all lecture types: blackboard, slide-based, and digital
board. Additionally, the dataset of [22] is orders of magni-
tude smaller, 10 vs. 2,350 lectures. Finally, AVLectures is
not only video material but is augmented by rich metadata,
including transcripts, OCR outputs for slides/blackboard
frames, lecture notes, lecture slides, and assignments.
Joint representation learning of video and language. Our
proposed model learns meaningful representations of lec-
tures and aligned transcripts, which we use to perform
the lecture segmentation task. In this section, we review
popular works that address joint representation learning in
video and language. A common self-supervised objec-
tive used to learn good representations is aligning video
with its corresponding narrations [34, 36], which can then
be used for a number of downstream tasks, such as text-
to-video retrieval [21, 29, 36], visual question answer-
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Figure 2: AVLectures statistics. (a) Subject areas. ME: Mechanical Eng., MSE: Materials Science and Eng., EECS:
Electrical Eng. and Computer Science, AA: Aeronautics and Astronautics, BCS: Brain and Cognitive Sciences, CE: Chemical
Eng. (b) Lecture duration distribution. (c) Presentation modes distribution.

ing [9, 48, 53], video captioning [26, 38, 54], natural lan-
guage guided video summarization [37] among others. Typ-
ically, representations from off-the-shelf pre-trained visual
and language models are improved via a joint video-text
embedding trained on the alignment task [36]. Recent ap-
proaches [18, 21, 29] also adopt Transformer-based mod-
els that learn in an end-to-end manner from raw video pix-
els. Our work explores the first direction. We extract video
features using off-the-shelf models and combine them with
OCR features. Then joint embeddings are learned using
a pretext self-supervised task of matching the embeddings
from narrations with temporally aligned video clips.

Temporal video segmentation. While fully super-
vised [19], weakly supervised [30, 47], and unsupervised [6,
7, 28, 44] approaches have been explored, we adopt the
unsupervised path as collecting ground-truth segmentation
labels is challenging, and we would like our method to
generalize to diverse courses from novel educational plat-
forms. In the unsupervised space, instructional videos are
segmented by finding and grouping direct object relations in
the narrations [7] or through the use of frame-level features
that incorporates relative temporal information followed by
K-means clustering (CTE) [28]. Proxy tasks such as future
frame prediction are also used to perform temporal segmen-
tation [6]. Recently, a temporally weighted version of a 1-
nearest neighbor clustering algorithm is proposed to pro-
duce temporally consistent clusters (TW-FINCH) [44]. We
will show that self-supervised joint text-video representa-
tion learning together with TW-FINCH leads to good seg-
mentation performance on AVLectures.

3. The AVLectures Dataset

We introduce AVLectures, a large-scale educational
audio-visual lectures dataset to facilitate research in the do-
main of lecture video understanding. The dataset comprises
of 86 courses with over 2,350 lectures for a total dura-
tion of 2,200 hours. Each course in our dataset consists of
video lectures, corresponding transcripts, OCR outputs for
frames, and optionally lecture notes, slides, and other meta-

data, making our dataset a rich multi-modality resource.
Courses span a broad range of subjects, including Mathe-

matics, Physics, EECS, and Economics (see Fig. 2a). While
the average duration of a lecture in the dataset is about 55
minutes, Fig. 2b shows a significant variation in the dura-
tion. We broadly categorize lectures based on their pre-
sentation modes into four types: (i) Blackboard, (ii) Slides,
(iii) Digital Board, and (iv) Mixed, a combination of black-
board and slides. Fig. 2c depicts a healthy distribution of
presentation modes in our dataset. Additional statistics are
presented in the supplementary material.
Courses with Segmentation. Among the 86 courses in
AVLectures, a significant subset of 15 courses also have
temporal segmentation boundaries. We refer to this subset
as the Courses with Segmentation (CwS) and the remainder
71 courses as the Courses without Segmentation (CwoS).

3.1. Dataset Collection Procedure

Our dataset is primarily sourced from MIT-OCW [4].
We curated a list of courses by browsing the OCW website
and used web scraping tools to download the video lectures
and accompanying metadata such as narration transcripts,
assignments, lecture notes/slides, etc. Non-lecture videos
(e.g. instructor interviews) that were found in some courses
are manually discarded. We process and store the OCR out-
puts of video frames in each lecture using Google Cloud
Vision API. As sudden changes in the visual content of a
lecture are rare, we process one frame at every 10 seconds.

3.2. Curating the Lecture Segmentation Dataset

It is shown that partitioning a long duration lecture into
shorter topic-based clips helps in capturing students’ atten-
tion and improves the overall learning experience [23, 50].
However, manually segmenting lecture recordings is a time-
consuming and costly task. To evaluate automatic meth-
ods for lecture segmentation, we create a subset of our
dataset, called Courses with Segmentation (CwS), that in-
cludes courses in which long lecture videos are segmented
into multiple smaller clips. We curate 15 such courses with
350 lectures in total, where temporal segmentation ground-
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Figure 3: Segmentation pipeline. (a) Video clip and feature extraction pipeline used to extract visual and textual features
from small clips of 10s-15s duration. The feature extractors are frozen and are not fine-tuned during the training process.
(b) Joint text-video embedding model learns lecture-aware representations. (c) Lecture segmentation process, where we apply
TW-FINCH at a clip-level to the learned (concatenated) visual and textual embeddings obtained from (b).

truth (for each lecture) is obtained in one of two ways.
(i) Out of the 15 courses, 5 courses6 have topics in the table
of contents that refer to various temporal segments in a long
lecture video. We obtain the segmentation timestamps for
such courses directly by web scraping. (ii) The rest of the 10
courses7 have concepts that are presented as pre-segmented
short videos. Here, we re-assemble the small segments to
build the original complete lecture. We trim the intro and
outro from short video clips to avoid biasing the models to
identify the segments easily.

4. Lecture Segmentation
Our lecture segmentation approach involves three stages

(Fig. 3). In the first stage, we extract features from diverse
modalities of the lecture (Sec. 4.1 and Fig. 3a). In the sec-
ond stage, we learn lecture-aware representations by align-
ing the visual content with the corresponding narration us-
ing self-supervision (Sec. 4.2 and Fig. 3b). Finally, we per-
form segmentation using TW-FINCH [44] on the learned
representations (Sec. 4.3 and Fig. 3c).

4.1. Video clip feature extraction

We divide a lecture into small clips of 10-15 seconds
while ensuring that subtitles are not split. This clip is a ba-
sic unit for segmentation, i.e. segmentation boundaries can
be placed before or after, not in between. The chosen du-
ration is small enough to not introduce boundary errors for
segmentation but big enough to contain meaningful infor-
mation about the lecture, as will also be shown empirically.
Video feature extraction. The visual clip representation
consists of three feature types: OCR, 2D, and 3D. The

6(i) e.g. Single Variable Calculus
7(ii) e.g. Classical Mechanics

OCR feature encodes the output text from an OCR API
using the BERT sentence transformer model. Specifically,
we use MPNet (all-mpnet-base-v2) [46, 52] from Hug-
gingFace to obtain a 768-dimensional vector that captures
the semantic information of the recognized text. The 2D
and 3D features are extracted using a video feature ex-
traction pipeline [36]. An ImageNet pre-trained Resnet-
152 [25] model produces 2D features at 1 fps while the 3D
features are extracted using the Kinetics [15] pre-trained
ResNeXt-101 [24] to obtain 1.5 features per second. We
apply max-pooling across the temporal dimension to obtain
2048-dimensional vectors, v2d and v3d respectively.

Text feature extraction uses the same model as used
for OCR. The text feature encodes the instructor’s spoken
words or subtitles corresponding to each video clip.

4.2. Learning joint text-video embeddings

Our approach transforms features from off-the-shelf
models into lecture-aware embeddings and is inspired by
popular works on instructional videos [36, 43].

Model architecture. Fig. 3b depicts our model used to
learn lecture-aware embeddings by matching the visual fea-
ture of a clip with its corresponding text pair. We first
extract the visual and textual features for a video clip C
and transcript (text) T using the feature extraction pipelines
described above. We pass the OCR feature through a
fully-connected layer to obtain a 2048-dimensional vec-
tor o, and concatenate it with v2d and v3d to form a
6144-dimensional vector c describing the clip C. Simi-
larly, the text feature vector (output of the transformer) is
passed through a fully connected layer to obtain a 4096-
dimensional vector t, representing text T . Next, we learn a
projection using the non-linear context gating [35, 36] de-
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rameters, ⊙ is element-wise multiplication and σ is an
element-wise sigmoid. f(c) and g(t) are 4096-dimensional
embeddings, which are used later for the segmentation task.
Loss function. We train our embedding model’s parameters
with the max-margin ranking loss [27, 51]. Specifically, we
consider the (cosine) similarity score between a clip Ci and
transcript Tj as sij = ⟨f(ci), g(tj)⟩. We loop over paired
samples of a mini-batch B and compute the loss as∑
i∈B

∑
j∈N (i)

max(0, δ+sij−sii)+max(0, δ+sji−sii) , (3)

where sii corresponds to a positive (aligned) clip-transcript
pair (Ci, Ti) and should score high, while N (i) is the set of
negative pairs such that half the negative pairs are from the
same lecture and act as hard negatives, while the others stem
from other lectures [8, 36]. Our mini-batch size is |B| = 32
and the margin is set at δ = 0.1.

4.3. Lecture segmentation with learned embeddings

We extract clip and transcript embeddings from our joint
text-video model and concatenate them to obtain an overall
representation ϕi = [f(ci), g(ti)]. All such representations
of a lecture with N clips, {ϕ1, . . . , ϕN}, are passed to the
TW-FINCH algorithm [44] that encodes feature similarity
and temporal proximity as a 1-nearest-neighbor graph and
produces a clustering as shown in Fig. 3c. Specifically, we
denote the feature similarity between clips as Es and tem-
poral proximity as Eτ .

Es(m,n) =

{
1− ⟨ϕm, ϕn⟩ if m ̸= n ,

1 otherwise .
(4)

Eτ (m,n) =

{
|τm − τn|/T if m ̸= n ,

1 otherwise ,
(5)

where m,n ∈ [1, . . . , N ], τm and τn are timestamps for the
clips m and n and T is the total lecture duration.

We construct a fully-connected graph G with N nodes
that have edge distances obtained as a combination of
feature-space distances and temporal proximity

E(m,n) = Es(m,n) · Eα
τ (m,n) , (6)

where α acts as a further modulating factor. The graph G
is converted to a 1-nearest-neighbor graph by keeping only
one edge to the nearest node for each node based on the

edge distances defined in E, resulting in the first cluster-
ing partition. TW-FINCH [44] operates recursively and
merges clusters (nodes) by averaging their representations
and timestamps until the desired number of clusters (con-
nected components) is obtained. For more details, we re-
quest the reader to refer to Algorithm 1 and 2 in [44].

Note that the original algorithm [44] does not include an
α scaling factor, or considers it to be 1 (c.f . Eq. 6). How-
ever, we observed a few cases where this is unable to pro-
duce temporally consistent segments using our learned em-
beddings. As higher values of alpha amplify the strength of
the temporal proximity factor, incrementing it progressively
(e.g. by 0.1 steps) yields temporally consistent clusters.

5. Experiments
We evaluate our proposed approach for lecture segmen-

tation and present extensive ablation studies.

5.1. Experiment setup

Training procedure involves two stages. In the first stage,
we pre-train the embedding model (Sec. 4.2) on the Courses
without Segmentation (CwoS). In the second stage, we fine-
tune our embedding model on the Courses with Segmen-
tation (CwS) in an unsupervised manner. Note that we do
not update the feature extraction backbones (BERT, ResNet,
etc.). Next, we extract the visual and textual embeddings
from the trained model, which are used to perform seg-
mentation using the TW-FINCH algorithm. We evaluate
the segments obtained from TW-FINCH using five differ-
ent metrics described below. Additional training details can
be found in the supplementary material (Sec. E).

Evaluation dataset. We evaluate all 15 courses of CwS
to report performance. Our self-supervised fine-tuning pro-
cess can be easily extended to a new course that needs seg-
mentation. Further impact of pre-training and fine-tuning
strategies is evaluated in Sec. 5.3, Ablation 2.

Evaluation metrics. Normalized Mutual Information
(NMI) is a standard clustering metric [33]; Mean over
Frames (MoF), F1-score, and Intersection over union (IoU)
or the Jaccard index are standard metrics used in segmen-
tation (e.g. [44]); and Boundary Score @ k (BS@k), is the
average number of predicted boundaries matching with the
ground truth boundaries within a k second interval. Differ-
ent from the above metrics, BS@k measures the localiza-
tion of boundaries rather than the overlap of segments.

5.2. Comparison against Segmentation Baselines

We briefly describe the baselines below:

1. Naı̈ve. The video lecture is split into equal parts based
on the number of ground-truth (GT) segments.

2. Content-Aware Detector [2] is a shot/scene detection
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Feature modality
Method visual textual learned NMI ↑ MOF ↑ IOU ↑ F1 ↑ BS@30 ↑

1 Naı̈ve (Equal Splits) - - - 71.8 75.5 62.7 74.0 32.5
2 Content-Aware Detector [2] ✓ - - 72.9 73.3 59.4 65.9 57.0
3 Text Tiling [5] - ✓ - 67.9 64.7 46.3 50.9 33.7
4 LDA [11] - ✓ - 70.0 72.4 57.6 68.2 38.8
5 K-Means - - ✓ 63.9 66.8 48.2 55.7 44.9
6 CTE [28] - - ✓ 67.2 67.3 48.1 57.3 41.5

7 ✓ - - 71.6 71.3 56.5 66.4 46.9
8 Vanilla TW-FINCH [44] - ✓ - 74.6 75.4 62.0 71.2 48.9
9 ✓ ✓ - 74.9 75.1 61.7 70.9 52.1

10 Ours - - ✓ 79.8 80.3 69.2 76.9 58.7

Table 1: Segmentation performance on all 350 lectures from 15 courses. Our approach outperforms all baselines. Here,
learned feature modality refers to the features extracted from our joint text-video embedding model (Sec. 4.2). For rows
2-4, the visual and textual feature modalities refer to the unprocessed lecture video or transcripts respectively. For rows 7-9,
visual and textual feature modalities refer to the features obtained from pre-trained backbones (ResNet or BERT, Sec. 4.1).

algorithm that detects jump cuts in a video by finding ar-
eas of high difference between two adjacent frames. While
there is no direct way to set the number of segments, we
search across several thresholds to generate the GT number
of segments to ensure a fair comparison.

3. Text Tiling utilizes only the transcripts to predict the
segments. We implement text tiling using the NLTK [5]
library. As there is no way to set the number of clusters, we
let the algorithm decide the appropriate number of clusters.

4. Latent Dirichlet Allocation (LDA) [1, 11] is a genera-
tive probabilistic model that automatically discovers hidden
topics based on a text corpora. LDA is used as a baseline in
identifying topic transitions in educational videos [22] and
many other topic modeling works [10, 49]. We train the
LDA model on the transcripts of AVLectures and represent
each clip as a distribution over topics. Finally, we use TW-
FINCH to perform lecture segmentation using these vectors.

5. K-Means clustering algorithm is applied to the learned
embeddings from our joint text-video embedding model.

6. CTE [28] is a strong unsupervised approach that in-
fuses features with relative temporal information and clus-
ters them using K-Means. We report CTE scores using
learned embeddings from our joint model.

7. Vanilla TW-FINCH [44]. Visual and textual features
from the feature extraction pipeline in Sec. 4.1 are adopted
here (no lecture-awareness). We apply the TW-FINCH seg-
mentation algorithm directly on these features.

We compare all baselines against our approach and re-
port performance in Table 1. For K-Means (row 5) and CTE
(row 6), we report the best performance with learned fea-
tures, while detailed ablations are presented in the Sec. D
of the supp. mat. We observe that the Naı̈ve baseline (row

1) performs quite well, and in fact outperforms strong base-
lines with learned features such as K-Means (row 5) and
CTE (row 6). This may be due to an inherent bias of the in-
structor spending close to equal amounts of time on various
sub-topics of the lecture (supp. mat. Sec. D digs deeper into
this). The text-only approach, Text Tiling (row 3) lags be-
hind the visual-only approach Content-Aware Detector (row
2) as the latter performs specially well on non-blackboard
courses (see Fig. 5). An additional factor is that we are un-
able to select the ground-truth number of clusters for Text
Tiling. Our approach (row 10) outperforms all baselines. In
fact, the gap between our approach and Vanilla TW-FINCH
baselines (rows 7-9) highlights the importance of training
lecture-aware representations using the joint text-video em-
bedding model, as even a combination of both modalities
(row 9) falls short of our approach by almost 5% on NMI.
This emphasizes the importance of learning lecture-aware
embeddings in a self-supervised manner.

We further analyze the results by slicing lectures based
on the number of GT segments in Fig. 4. Our method out-
performs all the other baselines irrespective of the num-
ber of segments in the ground truth, indicating the robust-
ness of our approach. Another way is to slice the data
based on presentation mode, specifically blackboard and
non-blackboard. Fig. 5 shows a similar trend, our approach
outperforms all baselines in both scenarios. Interestingly,
the Naı̈ve baseline works well for blackboard lectures (per-
haps indicative of relatively equal time allocation across
sub-topics), while slide-based lectures with clear transitions
are segmented well by the visual Content-Aware Detector.

5.3. Ablation Studies

We present various ablation studies to understand the
contributing factors to our approach’s performance.
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Figure 5: Comparing NMI across all methods grouped by
presentation mode: blackboard and non-blackboard.

Features Metrics
2D 3D OCR NMI ↑ MOF ↑ IOU ↑ F1 ↑ BS@30 ↑

✓ - - 76.6 76.8 64.4 73.0 54.4
- ✓ - 75.1 76.0 62.9 72.2 50.7
- - ✓ 78.9 79.7 68.2 76.2 57.7
✓ ✓ - 76.6 77.0 64.7 73.5 53.9
✓ - ✓ 79.5 80.3 69.1 76.9 58.6
- ✓ ✓ 78.4 79.5 68.3 76.4 57.9
✓ ✓ ✓ 79.8 80.3 69.2 76.9 58.7

Table 2: Impact of visual features.

1. How important is each visual feature? To understand
the impact of each individual visual feature, we train sepa-
rate models on all combinations of visual features and report
performance in Table 2. We observe that although the indi-
vidual features perform reasonably well, OCR outperforms
2D and 3D representations, and it is the combination of all
features that outperforms all other variations.

2. Impact of training datasets. Educational lecture
videos are very different compared to instructional videos

PT FT NMI ↑ MOF ↑ IOU ↑ F1 ↑ BS@30 ↑

1 HowTo100M - 73.0 58.8 68.3 73.0 48.5
2 HowTo100M CwS 74.5 75.1 61.5 71.0 49.7
3 - CwS 78.5 79.0 67.2 75.3 57.2
4 CwoS - 77.7 78.0 66.0 74.2 57.1
5 CwoS CwS 79.8 80.3 69.2 76.9 58.7

Table 3: Impact of pre-training (PT) on HowTo100M or
CwoS. The second column indicates whether unsupervised
fine-tuning (FT) is performed on CwS.

Embed. type NMI ↑ MOF ↑ IOU ↑ F1 ↑ BS@30 ↑

Visual 78.6 79.1 67.7 75.7 57.9
Textual 75.6 77.0 64.4 73.5 50.3
Visual + Textual 79.8 80.3 69.2 76.9 58.7

Table 4: Impact of different embedding modalities.

or movies. Lecture videos typically have much less dy-
namic visual content and compensate for this through sub-
stantial amounts of textual information, both accompany-
ing (narrated speech/transcripts) and even inside the video
(which we extract using OCR). As a result, the represen-
tations learned from instructional videos may not transfer
well to the tasks in the education domain, necessitating a
collection of lecture videos for learning representations.

We validate the above claim by showing that pre-training
on AVLectures is more effective than pre-training on the
general instructional videos (e.g. HowTo100M) for the lec-
ture segmentation task, see Table 3. While using a model
to improve representations is clearly better than the naı̈ve
baseline (NMI 73.0 vs. 71.8), we can see that a model
pre-trained on AVLectures (rows 3-5) outperforms a model
pre-trained on HowTo100M (rows 1-2) consistently. This
strengthens our dataset contribution and highlights the im-
portance of pre-training on AVLectures for tasks in the ed-
ucation domain. In row 4, though the model is trained only
on CwoS, it is able to generalize well to unseen courses
and predict reasonable segmentation boundaries. After fine-
tuning the model on CwS we get a slight boost in perfor-
mance (row 5). Row 5 outperforms row 3 that is trained
only on CwS, justifying our adoption of pre-training on
CwoS followed by fine-tuning on CwS. Note that all the
training is performed in an unsupervised manner and only
applies to the text-video embedding model.
3. Impact of modalities. From the joint text-video embed-
ding model we can extract visual and textual embeddings.
We compare visual-only, textual-only, and a concatenation
of visual and textual learned embeddings in Table 4. A com-
bination of both modalities shows best results.
4. Impact of lecture clip duration. Works on instructional
videos such as [34, 36] typically split videos into short clips
of 4s. We perform an experiment to determine an appropri-
ate clip duration for lecture videos: 4-8s, 10-15s, or 20-25s.
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Naive
Content Aware Detector

Text Tiling
LDA

K-Means
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Vanilla TW-FINCH
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Max-min problems
(Single Variable Calculus)

Independence
(Introduction to Probability)

Beyond the well-mixed room
(Physics of COVID-19 Transmission)

Figure 6: Segmentation examples for three lectures. Our approach closely resembles the ground-truth. Best viewed in color.

PT FT Duration NMI ↑ MOF ↑ IOU ↑ F1 ↑ BS@30 ↑

4-8 53.2 58.7 53.0 40.9 26.4
✓ - 10-15 77.7 78.0 66.0 74.2 57.1

20-25 73.9 77.0 64.6 74.8 36.7

4-8 54.6 60.0 54.1 42.2 26.6
✓ ✓ 10-15 79.8 80.3 69.2 76.9 58.7

20-25 74.5 77.7 65.6 75.6 36.8

Table 5: Performance for different clip durations (in sec-
onds). PT: Pre-training on CwoS, FT: Fine-tuning on CwS.

The results reported in Table 5 coincide with our expec-
tations that 4-8s clips are too short to capture meaningful
information while 20-25s clips are harder to represent due
to the pooling operation and also cause a significant drop
in BS@30 due to their longer duration. Clips of 10-15s
are a good compromise and span meaningful lecture con-
tent while not losing information to pooling.
Additional ablations on the number of GT segments, max-
margin vs. contrastive loss, different language models, em-
bedding dimension, and evaluation of BS@k at multiple
values of k are presented in Sec. D of the supp. mat.

5.4. Qualitative results

We visualize segmentation outputs for three video lec-
tures from different courses in Fig. 6 and compare our
method with all other baselines. It is clear that our method
yields better segments (overlap) and boundaries as opposed
to other methods that produce noisy segments. In the third
lecture, the first and second predicted segments of our ap-
proach are different from the GT while the other boundaries
are detected correctly. We explain failure cases in Sec. B
and show more results in Sec. F of the supp. mat.

An additional problem that can be addressed using the
embeddings learned from our joint text-video model is the
text-to-video retrieval task. Given a text query, we retrieve
a list of lecture clips for which the similarity scores with
the text query are the highest. Fig. 7 shows some of the
retrieved clips for various text queries. We can see that our
model is able to relate the visual notion of graphs with the
word. Similar results are observed for the other queries.
Sec. F of the supp. mat. shows many more examples.

      Graphs

      Newton’s Laws

      Logic Gates

Figure 7: Examples of text-to-video retrieval for different
queries using our learned joint embeddings. Our model is
able to retrieve relevant lecture clips based on the query.

6. Conclusion

We made two significant contributions. We introduced
AVLectures, a large-scale audio-visual lectures dataset
sourced from MIT OpenCourseWare, with 86 courses
and over 2,350 lectures from various STEM subjects and
showed it’s efficacy for pre-training on tasks in the edu-
cational domain. We also formulated unsupervised lec-
ture segmentation and proposed an approach that learns
multimodal representations by matching the narration with
temporally aligned visual content. When used with TW-
FINCH, the learned embeddings resulted in significant per-
formance improvements and highlighted the importance of
both the visual and the textual modalities. Thorough exper-
iments demonstrated that our approach outperforms multi-
ple baselines while comprehensive ablation studies identi-
fied the key factors that lead to the success of our approach:
textual and visual representations with all 3 features (2D,
3D, OCR) and the pre-training and fine-tuning strategy.
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