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Abstract

Currently available face datasets mainly consist of a
large number of high-quality and a small number of low-
quality samples. As a result, a Face Recognition (FR)
network fails to learn the distribution of low-quality sam-
ples since they are less frequent during training (underrep-
resented). Moreover, current state-of-the-art FR training
paradigms are based on the sample-to-center comparison
(i.e., Softmax-based classifier), which results in a lack of
uniformity between train and test metrics. This work inte-
grates a quality-aware learning process at the sample level
into the classification training paradigm (QAFace). In this
regard, Softmax centers are adaptively guided to pay more
attention to low-quality samples by using a quality-aware
function. Accordingly, QAFace adds a quality-based adjust-
ment to the updating procedure of the Softmax-based clas-
sifier to improve the performance on the underrepresented
low-quality samples. Our method adaptively finds and as-
signs more attention to the recognizable low-quality sam-
ples in the training datasets. In addition, QAFace ignores
the unrecognizable low-quality samples using the feature
magnitude as a proxy for quality. As a result, QAFace pre-
vents class centers from getting distracted from the optimal
direction. The proposed method is superior to the state-of-
the-art algorithms in extensive experimental results on the
CFP-FP, LFW, CPLFW, CALFW, AgeDB, IJB-B, and IJB-C
datasets.

1. Introduction
Recent advances in FR performance can be credited

to introduction of novel network architectures, large-scale
datasets, and new loss functions [23]. Regarding the ar-
chitecture, ResNet and its variants are mostly used as the
backbone for extracting features from the face images [11].
In terms of datasets, large-scale publicly available train-
ing data leads to unprecedented improvement in FR perfor-
mance [13]. Recent attempts on FR are mainly focused on
manipulating the training criteria [25, 40, 11, 32, 39, 42].
In this manner, Softmax with a cross-entropy loss, i.e.,

Figure 1. A binary classification example illustrates that unrecog-
nizable samples can misguide the Softmax centers, w1 and w2,
from their optimal direction. Circles with solid black borders are
recognizable low-quality samples, and black dashed borders are
unrecognizable samples. gi shows the direction that the centers
are being pushed. a) without injection, there is no g, b) equally
injecting samples results in stronger g from samples with more
angular disparity, and c) injecting with emphasis on recognizable
low-quality samples and ignoring unrecognizable (there is no g
toward unrecognizable). Shaded areas are the direction in which
feature injection causes the centers to move. Note that g1 < g

′
1

and g2 < g
′
2.

sample-to-center comparison, is the most popular criterion
for FR, (i.e., classification) [25]. In the classification frame-
work, the weights connecting the penultimate layer output
(i.e., feature) to the classification layer represent the centers
of Softfmax classes [2].

Since FR is an open-set problem, during testing, sample-
to-center (dis)similarity of the Softmax is irrelevant and
sample-to-sample (dis)similarity matters. In order to unify
the train and test similarity metrics, pioneering works [32,
43], devised metric-based loss functions based on sample-
to-sample comparison [37, 43]. These metric-based losses
try to directly minimize a distance metric when two samples
come from the same identity (positive pair); otherwise (neg-
ative pair) impose a margin [32]. However, the sample-wise
comparison highly depends on the pair selection strategy
and requires a sophisticated mining method [22]. Besides,
in large-scale datasets [11] with thousands of identities and
millions of samples, there is a combinatorial explosion in
the number of possible pairs, leading to costly pair selec-
tion, unstable training, and slow convergence [36].

Several studies show that projecting features and class
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centers to the unit-hypersphere improves the discriminative
power of representation learned by Softmax [40, 39, 25].
In this manner, Softmax classifies images using the angu-
lar distance between the feature representations and Soft-
max centers [39]. An angular margin is then integrated to
the Softmax loss to further enforce intra-class compactness
and inter-class separability [25, 40, 23, 46]. The angular-
based Softmax loss functions are more stable than metric-
based, i.e., no pair selection, and the number of centers is
much fewer than the number of samples [24]. As a result,
angular-based Softmax losses have become the state-of-the-
art method for training FR frameworks [11, 28].

In sample-to-center training paradigms, every identity is
represented as a deterministic point in high-dimensional la-
tent space [6], i.e., centers. As a result, their performance
degrades when there is a large disparity between training
and testing data [34]. Although augmentation may narrow
the gap between training and evaluation data distribution,
it increases the occurrence of unrecognizable samples and
overfitting [26], as illustrated in Fig. 2. To alleviate this
problem, authors in [28] propose to use feature magnitude
as a proxy to measure the image quality. Also, there are
methods to estimate the distribution of each class instead
of presenting them as a single deterministic point [6, 34].
Despite the performance improvement, these approaches do
not propose a solution to the overfitting problem nor guar-
antee (dis)similarity between (negative)positive samples.

Usually, there are three different types of samples in
FR datasets [28]. First, samples that are easy to learn by
the model. These easy samples usually have good quality-
related factors such as high resolution [28]. Second, images
that have low-quality, but recognizable (hard-samples) [7].
Third, unrecognizable samples that even humans can not
correctly recognize their identity [28, 7]. As shown in Fig.
1, unrecognizable samples have larger angular disparity, θ2
and θ4, compared to low-quality instances, θ2 > θ1 and
θ4 > θ3. The primary idea in recent works is to increase the
margin constraints as the angular disparity between sample
and the Softmax center increases [46, 23, 18]. However, the
recognizability of samples and sample-wise (dis)similarity
are not considered by any of the mentioned methods. There-
fore, the model tries to reduce the training loss by overfitting
on unrecognizable samples, which harms model generaliza-
tion [13].

Recently, authors in [12] integrate sample-to-sample
comparison to the Softmax via injecting sample represen-
tations to the centers. Although VPL [12] brings sample-
to-sample comparison to the Softmax framework, the prior
assumption is that the unrecognizable samples do not dis-
tract the learning. Due to the larger angular disparity, in-
jecting without considering the recognizability of samples
puts more emphasis on unrecognizable samples during in-
jection, see Fig. 1. Adding variations toward the unrec-

ognizable samples harms the model learning paradigm and
distract the Softmax centers from the optimal direction. The
injection process directly changes centers. Therefore, it is
important to push the centers to a valid direction.

Sample selection strategy is indispensable in every
sample-wise FR training paradigm [32, 23]. In this work,
we try to weigh samples based on their recognizability and
quality. In this manner, the sample-wise part of the pro-
posed method (QAFace), injection, benefits from recogniz-
able low-quality (hard) samples. During training, QAFace
effectively ignores the unrecognizable samples and prevents
the class centers from being distracted from the optimal
direction. At the same time, QAFace emphasizes on low-
quality samples considering them as hard samples. More-
over, since high-quality samples are being well explored by
sample-to-center part of the training, the proposed method
puts less attention on high-quality samples during their
injection. Compared to [12], our method adds no extra
memory consumption and sampling strategy to the training.
The presented model queues sample representation using
MOCO [16] to maintain both samples and centers on the
same embedding space. Contributions of this work can be
summarized as follows:

• we use informative hard samples (low-quality in-
stances) to introduce sample-wise comparison to the
angular-margin Softmax loss.

• we propose a new quality-based weighting function
that can effectively de-emphasize unrecognizable sam-
ples based on the magnitude of their feature represen-
tation as a proxy of image quality.

• we leverage hard samples to add uncertainty to the
Softmax centers toward the direction of hard samples.

2. Related Works
2.1. FR Loss Functions

Most of the previous FR methods were established on
a metric-learning loss function, such as triplet [32] or con-
trastive loss [8, 30]. These loss functions were based on
sample-to-sample comparison in Euclidean space. Then
[43] enhanced the intra-class similarity via proposing a new
loss to directly minimize intra-class distance while doing
classification. In this manner, the main challenges toward
general FR were the necessity of sample mining, lack of
generalization, and feature collapsing problem [40, 32, 15].
More recently, studies showed that applying Softmax to
the angular space enhances the discriminability of fea-
tures [25, 40, 11, 43]. Consequently, pioneering works of
[39, 40, 11], introduced intuitive loss functions by applying
three different types of margin to the angular space of Soft-
max: 1) multiplicative angular margin, 2) cosine margin,
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Figure 2. Same Augmentation, i.e., down-sampling and ran-
dom cropping, results in different recognizability among samples.
Green border shows the recognizable samples, and red shows un-
recognizable samples.

and 3) additive angular margin, resulting to state-of-the-art
performance.

2.2. Angular Margin Variations

Recent studies explore the effects of adaptive angular
margin on the learning paradigm of the network [46, 23,
23]. Liu et al. [23] propose to adaptively tune the margin
value to put more constraint on the tail classes. The role
of negative samples in obtaining more discriminative fea-
tures is investigated in [18]. Authors of [14], add new term
to the angular-margin loss function to supervise the uni-
formly spreading of class centers on the unit hyper-sphere.
MagFace [28] establishes the norm of features as a proxy
of sample recognizability. Image recognizability increases
as the feature norm increase [28]. MagFace assigns high
angular margin on the high-norm feature in the premises
of pushing those samples to be closer to their class center.
The drawback is that it fails to put emphasis on the valuable
hard samples. Furthermore, none of the mentioned methods
guarantee the samples-wise similarity. Also, representing
each identity with a single deterministic point, i.e., center,
in high-dimensional space results in the performance drop
when testing data has a large disparity with training samples
[34].

2.3. Probabilistic Face Modeling

Probabilistic face modeling is well-established in face
template/video matching [5, 3]. In these works, a series
of samples is used as the input rather than a single face im-
age. Shi et al. for the first time integrate uncertainty into
a single image FR [34]. PFE [34] represents each image
as a Gaussian distribution. The mean and variance of the
Gaussian reflect the “most likely latent feature”, and “the
uncertainty in the feature values”, respectively [34]. The
goal is to add uncertainty to the model to boost performance
for unseen data with large disparity [6]. Instead of adding
uncertainty to each image representation, VPL [12] assigns
a distribution to each class within the classification frame-
work. Specifically, VPL injects the class instances to the
corresponding classifier to bring more uncertainty to centers
and, at the same time, integrate sample-to-sample compari-
son to the classification paradigm. However, it fails to con-
sider the image recognizability measure. Considering the

whole memorizing process in [12], projecting all the repre-
sentations to the unit hyper-sphere results in an equal con-
tribution of different instances in the memory. Therefore,
because of large angular disparity with centers, unrecogniz-
able samples distract centers from their optimal direction,
see Fig. 1 (b).

3. Proposed Method
In this section, we begin by analyzing the Softmax-based

loss functions. Then, we further explain the integration of
Softmax-based classifier with the sample-to-sample com-
parison. We devise a new injection function to integrate a
quality-aware sample-to-sample comparison to the classifi-
cation framework (QAFace). Finally, we investigate the ca-
pability of our method to ignore the unrecognizable samples
and the complementary role of our quality-aware injection
to the learning signal of Softmax-based loss function.

3.1. Preliminaries

Most of the deep visual recognition modules, including
FR, can be regarded as the stack of non-linear feature ex-
tractor layers (backbone), together with a classifier which is
usually a Softmax layer [4]. Both the backbone and classi-
fier will be trained end-to-end using a back-propagation al-
gorithm. The Softmax training criterion can be formulated
as follows [1, 20]:

L = − 1

N

N∑
i=1

log
e
WT

yi
xi+byi

e
WT

yi
xi+byi +

∑C
j=1
j ̸=yi

eW
T
j xi+bj

, (1)

where Wj ∈ Rd is j-th classifier (center), d is the feature
dimension, and bj is the bias for j-th Softmax output. xi

is the learned representation of i-th sample, and yi is its
corresponding ground truth. N and C represent the mini-
batch size and the total number of classes, respectively.

The angular distribution of representations learned via
the Softmax loss, xi, suggests using cosine distance as
the metric rather than Euclidean distance [39]. Hence, a
modified Softmax loss was defined by projecting both cen-
ters and representations to the unit-hypersphere [39, 25],
||Wj || = ||xi|| = 1 and bj = 0.

L
′
= − 1

N

N∑
i=1

log
es(cos(θyi ))

es(cos(θyi )) +
∑C

j=1
j ̸=yi

es(cos(θj))
, (2)

where cos(θyi
) reflects the cosine similarity between xi and

wyi
and cos(θj) denote similarity between xi and wj (nega-

tive centers). s is introduced as the scaling hyper-parameter
which affects the curves of the output [46], see Fig. 6. In
common FR practice, biases are removed from Eq. 1 be-
cause they are learned for close-set recognition and cannot
be generalized to open-set testing.
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Figure 3. Left: the general architecture of the proposed method. In each iteration, the class centers represent the centers and accumulated
features of the hard samples of previous iterations. The representations for injecting to the centers are obtained from the momentum
backbone. Right: shows the updating of the Momentum Backbone parameters.

To enhance the intra-class compactness and inter-class
separability, authors in [39, 40, 11] developed intuitive loss
functions by applying three different types of margins to Eq.
2.

L
′′
= − 1

N

N∑
i=1

log
es(cos(mSθyi+mA)−mC)

es(cos(mSθyi+mA)−mC) +
∑C

j=1
j ̸=yi

escos(θj)
,

(3)
SphereFace [25] introduced the multiplicative angular mar-
gin to modify decision boundaries from cos(θ1) = cos(θ2)
to cos(mSθ1) = cos(θ2). Where (θ1)θ2 represent angle be-
tween xi and (Wyi

)Wj . Their modification to Softmax does
improve the result; however, the proposed loss function is
computed through a series of approximations, which results
in unstable training [40]. CosFace modified the decision
boundary to cos(θ1)+mC = cos(θ2) and ArcFace changed
it to cos(θ1 + mA) = cos(θ2). Eq. 3 represents all men-
tioned modifications. Where mS , mC , and mA are margins
introduced by SphereFace [25], CosFace [40], and ArcFace
[11], respectively. Despite the remarkable improvement, the
sample-wise (dis)similarity is not considered in any of these
modifications.

Also, presenting each identity with a single determinis-
tic point in embedding space results in performance degra-
dation when there is a significant disparity between training
and testing data [34]. For better illustration, we experiment
by manually degrading five high-quality testing datasets.
Comparing the results of Arcface and VPL in Table 1, less
performance gap in VPL shows that adding uncertainty to
the Softmax centers results in better handling of quality dis-
parity between train and test datasets. Comparing the results
of QAFace with VPL, it is shown that our proposed method
can further reduce the gap between representation of high
and low quality samples by putting more emphasise on the
low-quality samples during the injection.

3.2. Classification-Based Gradient

We can divide a Softmax-based FR method into its back-
bone and classifier components. Hence, here we study the
updating of the backbone and center of Softmax separately.

For the backbone, we show the gradient with regard to its
output (feature), i.e., ∂L

∂xi
. By omitting bias in the Eq. 1 the

derivatives to j-th class center and i-th sample’s feature are:

∂L

∂xi
= ((pi,yi − 1)Wyi) +

C∑
j=1
j ̸=yi

pi,jWj , (4)

∂L

∂WJ
=

N∑
i=1
yi=j

((pi,yi − 1)xi) +

N∑
i=1
yi ̸=j

pi,jxi, (5)

where pi,j =
e
WT

j xi∑C
j=1 e

WT
j

xi
. Eq. 4 shows that from the back-

bone perspective, the network is being updated toward in-
creasing the similarity between features and the positive
class centers while decreasing similarity with negative cen-
ters. Moreover, Eq. 5 demonstrates that centers update to-
ward being more similar to their corresponding class in-
stances and away from samples of other classes. Hence,
both backbone and centers are moving toward each other,
and sample-wise (dis)similarity is being supervised indi-
rectly.

3.3. Sample-Wise Similarity with Softmax

In order to directly supervise sample-wise
(dis)similarity, [12] injects samples feature to their
corresponding class center. To this end, a memory, M , is
constructed, which memorizes the positive features of each
class. The memory has the same shape as the Softmax
centers: W ∈ RC×d, and M ∈ RC×d. Considering the
injection process as: W̃yi

= Wyi
+ λMyi

, the derivative
with regard to features changes to:

∂L

∂xi
= ((pi,yi − 1)(Wyi + λMyi)) +

C∑
j=1
j ̸=yi

pi,j(Wj + λMj),

(6)
here, the memorized features, M , affects the gradient that
is updating the backbone. Therefore, sample-to-sample
(dis)similarity is being directly supervised. λ is a hyper-
parameter to adjust the amount of the injection and should
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Figure 4. Histogram of the magnitude of features obtained from
10k randomly selected training images and their down-sampled
version. Early stage: mean over histogram of epochs one to four.
Middle stage: mean over histogram of epochs 10 to 15. Final
stage: mean over histogram of epochs 20 to 24. Top (before) and
bottom (after) applying Eq. 10.

be set manually. In this injection manner, all the represen-
tations are projected to the unit hyper-sphere first. There-
fore, unrecognizable samples which have considerable an-
gular disparity with Softmax centers have more influence
on the centers than other samples. Therefore, centers will
be distracted from the optimal direction. On the other hand,
high-quality samples have high similarity with class centers
and do not contribute to adding beneficiary variation to the
centers.

3.4. Quality Aware Sample Injection

To address the mentioned shortcomings of the classifi-
cation framework, prevent Softmax centers from being dis-
tracted, and explore recognizable low-quality samples, we
propose QAFace, a quality-aware injection procedure. Pro-
posed method ignores unrecognizable samples and, at the
same time, uses recognizable low-quality samples to add
more valid uncertainty to the centers. The injection process
is as follows:

Wyi = Wyi + f(|̂|xi||) ∗
xi

||xi||
, (7)

where |̂|xi|| is the normalized version of feature magnitude.
We normalize the feature magnitude via batch statistics: µ
and σ. To relax µ and σ from the batch size, we calculate
them in an exponential moving average over the training it-
erations. f(|̂|xi||) projects |̂|xi|| to have zero value for the
features that have |̂|xi|| lower than a threshold, −τ , other-
wise positive.

σt = ασt + (1− α)σt−1, (8)

µt = αµt + (1− α)µt−1, (9)

|̂|xi|| =
||xi|| − (µ)

σ
, (10)

Figure 5. Illustration of three types of samples with regard to the
feature norm at the final stage of training. Left: samples that model
ignored. Middle: Samples that are being emphasised. Right: Sam-
ples with high feature norm.

Table 1. Performance (%) of Arcface, VPL, and our method on
the different down-sampled versions of LFW, CFP-FP, CALFW,
CPLFW, AgeDB. 1:1 verification accuracy is reported.

Resolution LFW CFP-FP CPLFW CALFW AgeDB

A
rc

Fa
ce 8×8 71.86 56.92 56.43 57.56 54.48

16×16 96.60 84.21 82.76 84.30 78.20
original 99.83 98.27 92.08 95.45 98.28

V
PL

8×8 71.96 60.75 57.78 59.56 52.45
16×16 97.30 85.98 83.53 84.61 79.06
original 99.83 99.11 93.45 96.12 98.60

Q
A

Fa
ce 8×8 72.76 59.62 57.65 59.93 54.16

16×16 98.26 89.57 86.75 88.20 83.56
original 99.85 99.21 94.41 96.11 97.91

f(|̂|xi||) =

{
e−|̂|xi|| if |̂|xi|| ≥ −τ,

0 else.
(11)

Eqs. 10 and 11 together work in a way that 1) samples
with |̂|x|| lower than -τ would not affect the centers, 2) rec-
ognizable but low-quality samples will be emphasized dur-
ing training, and 3) high-quality samples will receive less
attention in comparison to recognizable low-quality sam-
ples. Using informative samples in metric-based FR train-
ing paradigm has been well-established [32]. Therefore,
employing informative samples to add sample-wise com-
parison to the classification framework is of most impor-
tance. Our proposed algorithm adaptively: 1) assigns more
weight to the recognizable low-quality (hard) samples, 2)
ignores unrecognizable samples, and 3) puts less attention
on easy high-quality samples. Hence, our approach can
be regarded as a kind of hard-sample mining, but without
adding any computational burden on hard sample selection.
It is worth mentioning that, f(|̂|xi||) ∗ xi

||xi|| is happening
during the memorizing the representations in the memory.
Consequently, we can re-write the Eq. 10 as:

Wyi = Wyi +M(|̂|xi||, xi). (12)

3.5. Distractor Samples

The major advantage of the QAFace over [12] is the abil-
ity to identify the unrecognizable from recognizable sam-
ples and emphasize the recognizable low-quality samples
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Table 2. Perfomance (%) comparison of our method with other recent algorithms. 1:1 verification accuracy is reported on LFW, CFP-FP,
CPLFW, AgeDB.

Method Venue
Verification accuracy TAR@FAR=1e− 4

LFW CFP-FP CPLFW CALFW AgeDB IJB-B IJB-C
Wang et al. [40] CVPR18 99.81 98.12 92.28 95.76 98.11 94.80 96.37
Deng et al. [11] CVPR19 99.83 98.27 92.08 95.45 98.28 94.25 96.03
Sun et al. [38] CVPR20 99.73 96.02 - - - 93.95
Deng et al. [9] ECCV20 99.80 98.80 98.31 94.94 96.28

Wang et al. [41] AAAI20 99.80 98.28 92.83 97.95 96.10 93.6 95.2
Huang et al. [18] CVPR20 99.80 98.37 93.13 96.20 98.32 94.8 96.1
Kim et al. [22] ECCV20 99.85 98.63 93.17 96.20 98.38 94.97 96.38
Shi et al. [35] CVPR20 99.78 98.64 - - - - 96.6
Kim et al. [21] CVPR20 99.85 98.63 93.17 96.20 98.28 94.93 96.26
Chang et al. [6] CVPR20 99.83 98.78 - - - - 94.61
Meng et al. [28] CVPR21 99.83 98.46 92.87 96.15 98.17 94.51 95.97
Deng et al. [12] CVPR21 99.83 99.11 93.45 96.12 98.60 95.56 96.76

QAFace 99.85 99.21 94.41 96.11 97.91 95.67 97.20

Figure 6. Curve of pi,j = e
WT

j xi∑C
j=1 e

WT
j

xi
when cos(θj) is fixed and

cos(θyi) changes from -1.0 to 1.0.

in the injection process. To this end, we employ the mag-
nitude of the feature vector as a proxy for the input sample
recognizability [28]. We perform an experiment to demon-
strate how the feature magnitude is affected by recogniz-
ability and how our method can use hard samples to reduce
the gap between the representation of low and high-quality
samples. We randomly select a subset of 10K images of the
training data and down-sampled them to the different levels
(8×8, and 16×16). Then, at the end of every epoch, we save
the magnitude of the representations obtained from original
and down-sampled images, see Fig. 4. From the results
shown in Fig. 4 (top) we can observe that as the recogniz-
ability increases, the magnitude of representations increases
as well, i.e., green > blue > orange.

Complete overlapping of the distribution of down-
sampled with the original instances is an ideal scenario,
which means that the model became quality-agnostic. The
model progressively learns to increase the lower bond of
feature magnitude to narrow the gap between original and
low-quality samples. At the early stages of the training, the
full range of feature magnitude is around 25 (from 5 to 30).
Then in the final stages, the range narrows to 15 (from 15

to 30). Also, the mean of the original image distribution
(green) is always around 23, which shows that our proposed
method can effectively involve low-quality samples in train-
ing without reducing the performance on the high-quality
samples.

Another observation from Fig. 4 (bottom) is the neces-
sity of normalizing the magnitude. Without applying Eq. 10
on the feature magnitude, the threshold for ignoring unrec-
ognizable samples changes as the training progresses. Eq.
10 omits the bias from the distribution of features magni-
tude caused by the training stage. Therefore, we can choose
a fixed τ for ignoring the unrecognizable and emphasizing
the hard samples.

3.6. Complement to Angular-Margin Gradient

Unlike triplet and contrastive losses, softmax-based
losses are not subject to explicit easy/hard sample min-
ing [42, 31]. In this section, using a simple toy ex-
ample, we show that the Softmax-based losses implicitly
benefit easy/hard sample mining by their gradient. Ad-
ditionally, we elaborate on the ability of the proposed
f(|̂|xi||) to complement the Softmax learning signal (gra-
dient). Consider a four-identity classification. For a given
sample xi with ground truth identity yi = 4, the logits are
cos(θ1), cos(θ2), cos(θ3), cos(θ4). In Fig. 7, we plot the
loss value for a fixed cos(θj), j ̸= 4 while cos(θyi=4)
changes from -1 to 1. The first observation from Fig. 7
(right) is that the scaling parameter s is tuning the sensitiv-
ity of the loss function. As the scaling value increases, the
slope of the loss function (gradient) increases [46].

Moreover, s directly influences the point that samples
would be recognized as easy. Easy samples would barely
experience change, i.e., low slope, while hard samples re-
ceive high gradient value, i.e., high slope. Also, in Fig. 7
(left), we demonstrate that the drawback here is the mono-
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Figure 7. Curves of pyi =
e
s(cos(θyi

))∑C
j=1 e

s(cos(θj))
, when yi = 4 and

cos(θyi) changes from -1 to 1.

Figure 8. Illustration of sample-to-center cosine similarity for two
randomly selected subjects. High-norm samples are very similar
to the class center. Low-norm samples have lower similarity with
Softmax center.

tonicity of the gradient among the hard samples. In other
words, some samples are unrecognizable; however, their
gradient is equivalent to those of informative but hard sam-
ples. Consequently, the model tries to overfit the unrecog-
nizable samples because there is no identity information on
those instances [35]. Our proposed method tries to compen-
sate for this effect by ignoring the unrecognizable samples
during the injection. It does not further involve the unrec-
ognizable samples in the injection process and ignores them
using the proposed feature weighting paradigm. As a result,
our method justifies the classifier direction to tolerate more
variation toward hard and informative samples and plays a
complementary role to the Softmax-based learning signal.

4. Experiments
4.1. Datasets

We employ Webface4M [49] as our training data, which
contain 4 million samples of around 200,000 identities, Ta-
ble 2. For evaluation of our method, we use CFP-FP [33],
CPLFW [47], CALFW [48], LFW [17], AgeDB [29], IJB-
B [44], and IJB-C [27]. Based on the datasets evaluation
protocols, we report 1:1 verification accuracy for CFP-FP,
LFW, CPLFW, CALFW, and AgeDB datasets. For IJB-B
[44] and IJB-C [27], we report the True Acceptance Rate
(TAR) over the False Acceptance Rate of 1e− 4.

4.2. Training Settings

We use [10] to detect five landmarks in each image. Then
images are aligned and rescaled to 112×112, following the
setting in [11]. We adopt ResNet [11] for the backbone.
The model is trained for 24 epochs with Arcface loss. The

Figure 9. Comparison between pair-wise similarity score on the
IJB-C dataset obtained from VPL and QAFace.

Table 3. Ablation of ∆t. The metrics are the same as Table 2.

∆t
Verification Accuracy TAR@FAR:1e− 4

LFW CFP-FP CPLFW IJB-B IJB-C
0 99.71 98.40 92.01 95.26 96.4

500 99.80 98.81 92.84 95.46 96.75
1000 99.85 99.21 94.41 95.67 97.20
1500 99.78 99.01 93.12 95.45 96.87
2000 99.69 98.33 92.95 95.14 96.35

optimizer is SGD, with the learning rate starting from 0.1,
which is decreased by a factor of 10 at epochs {10, 16, 22}.
The optimizer weight-decay is set to 0.0001, and the mo-
mentum is 0.9. During training, the mini-batch size on each
GPU is 512, and the model is trained using two Quadro
RTX 8000. Following [16], γ in Fig. 3 is 0.99. In calcu-
lating the µ and σ, α in Eq. 8 and 9, is 0.99. Given a pair
of images, the cosine distance between the representations
is the metric during inference.

4.3. Ablation Study

4.3.1 Impact of the Memory Length

In [16], the memory is a dynamic queue of representations.
The whole memory has a length of |M |, and queuing new
samples results in de-queuing the oldest samples. Here the
length of memory is equal to the number of classes. There-
fore, we should memorize the last iteration in that every
instance in the memory was updated. In this way, we can
prevent from employing outdated representations in the in-
jection. For instance, if the training is on the iteration I and
a specific instance in memory was updated on I − ∆t, if
∆t is larger than a threshold, that specific memory instance
cannot be used during the injection. It is shown that in the
early epochs, the changes in the feature space are drastic;
after that, it is negligible [12]. Therefore, we start the in-
jection after the fourth epoch of training. Table 3 shows the
ablation experiments on ∆t. In these experiments, we fixed
τ to 2. We increase ∆t with the interval of 500 iterations.
As illustrated in Table 3, the performance constantly im-
proves from ∆t = 0 to ∆t = 1000, and after that, it starts
to degrade.
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Table 4. Ablation of τ . The metrics are the same as Table 2.

τ
Verification Accuracy TAR@FAR:1e-5

LFW CFP-FP CPLFW IJB-B IJB-C
0 99.86 99.23 93.20 95.03 96.12
1 99..83 99.11 93.14 95.41 96.91
2 99.85 99.21 94.41 95.67 97.20
3 99.83 99.02 93.02 95.51 96.84
4 98.76 98.45 92.32 95.02 96.20

Table 5. Ablation of augmentation probability, TAR@FAR=1e-4.

probability cropping down-sampling IJB-B IJB-C
0.0 - - 95.34 96.60
0.1 - ✓ 95.56 96.89
0.1 ✓ - 95.41 96.65
0.1 ✓ ✓ 95.57 96.95
0.2 - ✓ 95.63 96.91
0.2 ✓ - 95.45 96.67
0.2 ✓ ✓ 95.67 97.20

4.3.2 Impact of Threshold (τ )

We fix the memory length to 1000 iterations. Then we in-
vestigate different values for the threshold (τ ) in Eq. 10.
As illustrated in Table 4, the performance on IJB-B and
IJB-C constantly increases with changing τ from zero to
2. At τ = 0, only samples with |̂|x|| above the zero are
involved in the injection. Consequently, the model perfor-
mance decreases when the input comes from datasets like
IJB-B and IJB-C, which contain low-quality samples [35].
On the other hand, the results in clean datasets like CFP,
CPLFW, and LFW are reasonably good [35].

4.4. Impact of Augmentation

For data augmentations, we used random cropping and
down-sampling [19, 45]. On-the-fly data augmentation pro-
vides more diverse training data. However, as illustrated
in Fig. 2, it increases the occurrence of unrecognizable
samples. We perform experiments on our method with and
without the presence of data augmentation. Accordingly,
we can show that our method can effectively ignore unrec-
ognizable samples and, at the same time, benefits from more
training instances, see Fig. 5. As shown in Table 5, the
model gains performance on the IJB-B and IJB-C datasets
by increasing the probability of augmentations. As these
datasets contain low-quality samples, down-sampling leads
to more performance improvement than random cropping.

4.5. Comparison with state-of-the-art

Table 2 shows the proposed method’s performance com-
pared to the state-of-the-art algorithms. For better clarifi-
cation, we explain our observation in two parts. For the
results on LFW, CPLFW, CALFW, CFP-FP, and AgeDB, it
is essential to mention that QAFace is built upon putting
more emphasis on the low-quality samples and making

these samples’ representation more similar to the high-
quality samples’ features. Consequently, the performance
gain in these datasets is marginal, as they contain almost
high-quality samples [35]. Although the performance is
saturated in most of these datasets, our method strives to
increase the 1:1 verification accuracy for the CFP-FP and
CPLFW datasets. The IJB-B and IJB-C datasets are more
challenging and have images/frames with diverse quality.
Results on the IJB-B and IJB-C datasets show the supe-
riority of our approach in more general face recognition.
As these datasets contain low-quality and high-quality im-
ages, the performance gain in these datasets is more evident.
In IJB-B, compared to VPL, QAFace improves the TAR at
FAR=1e− 4.

5. Conclusion

This work argues the importance of integrating sample-
wise similarity to the Softmax framework. Also, we showed
that existing angular-margin-based loss functions could be
distracted by the unrecognizable samples in the dataset. In-
spired by the well-established idea of hard sample mining in
the sample-to-sample comparison framework, we proposed
a weighting scenario to ignore unrecognizable samples and
emphasize recognizable low-quality samples during the in-
jection. We empirically showed the effect of ignoring un-
recognizable samples by improving the similarity score be-
tween positive samples in the IJB-C dataset. Also, We an-
alyzed the proposed function for weighting. Our proposed
approach is based on the simple idea of using the norm of
features as the proxy for the recognizability of face images.
Furthermore, we empirically showed the effect of the qual-
ity of face images on the magnitude of features. We demon-
strated that there is a direct proportion between the face im-
age quality and the magnitude of its representation. Our
approach could successfully outperform all of its competi-
tors in five out of seven evaluation benchmarks, including
the IJB-B and IJB-C datasets.
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