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Figure 1. In this image pair, 5 out of 6 differences are shown using yellow boxes. Can you spot the remaining one? Our model can.

Abstract

We live in a dynamic world where things change all the
time. Given two images of the same scene, being able
to automatically detect the changes in them has practical
applications in a variety of domains. In this paper, we
tackle the change detection problem with the goal of de-
tecting “object-level” changes in an image pair despite
differences in their viewpoint and illumination. To this
end, we make the following four contributions: (i) we pro-
pose a scalable methodology for obtaining a large-scale
change detection training dataset by leveraging existing
object segmentation benchmarks; (ii) we introduce a co-
attention based novel architecture that is able to implic-
itly determine correspondences between an image pair and
find changes in the form of bounding box predictions; (iii)
we contribute four evaluation datasets that cover a vari-
ety of domains and transformations, including synthetic im-
age changes, real surveillance images of a 3D scene, and
synthetic 3D scenes with camera motion; (iv) we eval-
uate our model on these four datasets and demonstrate
zero-shot and beyond training transformation generaliza-
tion. The code, datasets and pre-trained model can be found
at our project page: https://www.robots.ox.ac.
uk/˜vgg/research/cyws/.

1. Introduction

Change is all around us. Detecting changes, whether
in image pairs or image sequences, is a natural computer
vision task. Its applications range from the simple “spot-
the-difference” game to more practical use cases such as
in facility monitoring [31], medical imaging [24], satellite
surveillance [9], and counterfeit detection where, for in-
stance, a forged produce label could have subtle differences
from the original.

The problem we study in this work is the following:
given a pair of images, determine all the changes between
them, if any. The challenge is to determine the changes be-
tween the images that are important for a particular appli-
cation, while ignoring “noise” or “nuisance” variables that
are irrelevant. For instance, in a surveillance application
with a fixed camera, the “nuisance” parameters could be the
varying lighting of the scene, changing weather conditions
(e.g. rain, fog) etc. that prevent a simple “difference image”
method from being applied. More generally, the two images
may be taken from different viewpoints entirely so that in
addition to a photometric transformation there maybe also
be a geometric transformation between them. Under this
setting, determining the differences can also implicitly sub-
sume a registration problem.

We formulate this problem as the widely studied detec-
tion problem, wherein each change is delineated using a
bounding box, as opposed to computing per-pixel changes.

3993



This enables “object-level” change predictions and simpli-
fies counting the number of changes between two images.
To tackle this problem, we introduce a simple Siamese neu-
ral network architecture that operates on two images with
geometric and photometric changes and is designed to be
class-agnostic, in that it can detect changes irrespective of
the object classes involved. We make use of an atten-
tion mechanism, similar to [36, 33], that can implicitly de-
termine the correspondences between the images, register
them and detect their differences.

To train this architecture, we introduce a scalable method
for generating synthetic training data from real images –
where for each pair of training images, we know the ground
truth bounding boxes of the differences. The key idea is to
leverage existing large-scale image datasets such as COCO
and KITTI, and use off-the-shelf inpainting methods to in-
paint various regions in an image to create differences be-
tween the inpainted and the original versions. In addition,
we take measures that prevents the model from “cheating”
by detecting inpainting noise. Using this dataset, we intro-
duce both geometric and photometric transformations that
we wish to be invariant to (i.e. not important for an applica-
tion) by standard augmentations during training.

We demonstrate that a model trained only on this syn-
thetic dataset using affine transformations and colour jitter-
ing can generalize in two significant ways: (i) it can be ap-
plied zero-shot to other datasets, and we evaluate its perfor-
mance over four different datasets including different do-
mains and both real and synthetic cases; and (ii) the trans-
formations that it can handle extend beyond affine, and we
evaluate this by including a dataset with 3D effects due to
camera motion. The first generalization is a consequence of
using a varied training dataset, and the second is a conse-
quence of using attention to determine the correspondences
implicitly, rather than explicitly computing geometic and
photometric transformations between the images.

In summary, we make the following four contributions:
(i) we introduce a novel architecture for change detection,
formulated as a detection (rather than segmentation) prob-
lem that is able to implicitly learn correspondences between
the images; (ii) we introduce a novel scalable method for
generating a large-scale dataset of training image-pairs from
existing object segmentation benchmarks; (iii) we define
four evaluation datasets that cover a variety of domains and
transformations: synthetic inpainted COCO image pairs re-
lated by affine transformations; a variety of images with
text added in a manner consistent with the geometry of the
scene; real surveillance images of a 3D scene; and synthetic
3D scenes and camera motion using the Kubric pipeline; fi-
nally, (iv) we ablate our design choices, and demonstrate
zero-shot and beyond training transformation generaliza-
tion.

2. Related Works
Since the notion of “change” is very broad, the problem
of exploring changes in a scene has been studied under
several different settings. In this section we summarise the
contributions of relevant works in each category.

Change captioning: The change detection problem has
been posed as a captioning problem where the model is
expected to describe the differences in a pair of images in
natural language. Jhamtani et al. [13] present a Spot-the-
difference (STD) dataset of image pairs from surveillance
cameras with text based annotations for changes and
propose a method that captures visual salience by using
a latent variable to align clusters of differing pixels with
output sentences. Park et al. [22] focus on semantically
relevant changes and present a method that performs
robust change captioning on STD as well as a new change
detection dataset. Oluwasanmi et al. [21] propose a
fully-convolutional CaptionNet that outperforms previous
methods on the STD dataset.

Street-view change segmentation: Most of the existing
works that attempt to localise changes between a pair of im-
ages, formulate it as a segmentation problem, particularly
in a street-view setting. Sakurada et al. [27] proposed a
method for segmenting changes in a street scene using a pair
of its vehicular, omnidirectional images, with the intention
of detecting “city-scale” changes. Towards the same goal,
Alcantarilla et al. [2] presented a system for performing
structural change detection in street-view videos captured
by a vehicle mounted monocular camera over time. Saku-
rada et al. [28] further posed a novel semantic change detec-
tion problem and proposed a weakly-supervised silhouette-
based model to address it. Recently, Lei et al. [16] pre-
sented a method to locate the changed regions between a
given street-view image pair and demonstrated superior re-
sults to the previous methods.

A big challenge faced by these methods is the lack of a
large-scale and comprehensively labelled change dataset.
Manually labelling all the changed pixels in an uncontrolled
setting like streets is an extraordinarily expensive and error-
prone task. TSUNAMI and GSV datasets presented in [27]
contain 100 image pairs each, where the authors report
spending 20 minutes to annotate each image pair. PSCD
dataset presented in [28] contains 500 image pairs where
the authors report spending an average of 156 minutes to
annotate each image pair. Despite the remarkable effort, (a)
these datasets are relatively small, and (b) their annotations
are not comprehensive (by choice) e.g. changes in road
signs on ground are not accounted.

Synthetic change detection datasets: An alternative
to collecting and labelling real-world images is to use
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synthetic datasets where the changes can be controlled. To
this end, datasets such as StandardSim1 [19] for change
detection in retail stores, ChangeSim [23] for change detec-
tion in warehouses and CARLA-OBJCD1 [11] for change
detection in street scenes have been introduced. In this
work, we take a tangential approach instead and leverage
existing large-scale object detection datasets to train our
model. Furthermore, we approach the change detection
problem as a bounding box based detection problem (as
opposed to segmentation) which makes it possible for us
to curate various test sets, with relative ease, to reliably
evaluate our model.

Change classification: Change detection has also been
explored as a classification problem by Fujita et al. [7] for
damage detection and Wu et al. [38] for detecting changes
in book covers.

Correspondence matching: An orthogonal, yet related,
problem to change detection is that of correspondence
matching, where the goal is to find corresponding points
in images rather than differences. There exists a plethora of
literature proposing methods to find corresponding points
between a pair of images [6, 15, 29, 33, 34, 35, 3, 30].

3. Architecture

Overview: Given a pair of images under some geometric
transformation, our goal is to localise the changes between
them in the form of bounding box predictions for each im-
age. To do so, the model must have a notion of computing
correspondences between the two images and establishing
whether certain regions have changed, while ignoring nui-
sance factors such as photometric changes. Therefore, the
model must simultaneously operate on both the images, co-
alesce their feature maps in a meaningful way and localise
the changed regions.

We achieve this by first obtaining a set of dense feature
descriptors for each image using a CNN-based encoder.
These dense feature descriptors are then conditioned on
each other using a co-attention mechanism that implicitly
supplies the correspondences. Next, these conditioned fea-
ture descriptors are passed through a decoder to obtain high
resolution conditioned image descriptors which are used
by a bounding box detection head to localise the changes.
Briefly, we employ a siamese architecture comprising of a
U-Net model [25], modulated with co-attention layers [36]
and concurrent Spatial and Channel Squeeze & Excitation
blocks (scSE) [26], followed by a bounding box prediction
head [39], as shown in Fig. 2.

In detail, given two images I1 ∈ R3×H×W and

1These datasets have not been released publicly at the time of writing.

I2 ∈ R3×H×W with an unknown geometric transfor-
mation between them, the model used to localise changes
between them is split into four components.

U-Net Encoder: First, we encode I1, I2 using a U-Net
encoder (CNN), represented by ΦE(·), to obtain dense
feature descriptors at multiple spatial resolutions s. Specif-
ically, we obtain feature maps f1s ∈ Rcs×hs×ws and
f2s ∈ Rcs×hs×ws for images I1, I2 respectively, where
s ∈ {1, 2, 3}, after the last three blocks in a ResNet50 [12]
model.

Co-Attention Module: In order to predict changed regions
in I1, its feature maps must also embed information from
I2, and vice versa. We, therefore, wish to propagate the in-
formation embedded in f1s and f2s to each other in order to
facilitate the computation of what has “changed”. To permit
this information exchange, we make use of the co-attention
module [36]. Intuitively, each feature vector at location
(x1, y1) in f1s attends to feature vectors at all locations
(x2, y2) in f2s and is concatenated to their weighted sum
(and vice-versa). This can be thought of as spatially warp-
ing the feature vectors of one image and concatenating with
the other such that the two images are registered. Formally,
we obtain the co-attended features g1s = [f1s ∥ ψ(f1s , f2s )]
and g2s = [f2s ∥ ψ(f2s , f1s )], where [ ∥ ] is the concatenation
operation (along channel c) and ψ(·) is the cross-attention
mechanism defined as

ψ(fq, fk)cij =
∑
l

∑
m

Aijlm.Vclm (1)

where,

Aijlm = Softmax(
∑
c

Qcij .Kclm, dim=l,m) (2)

and,
Q = Wqfq, K = Wkfk, V = fk (3)

where Wq and Wk are learnable parameters. Thus, the
feature maps g1s and g2s are conditioned on both the images
and contain adequate information to localise the changes.

U-Net Decoder: Following this, we upsample and decode
g1s , g2s using the U-Net decoder (with skip connections from
the encoder), modulated with scSE blocks [26], represented
by ΦD(·) to produce feature maps h1 and h2 respectively,
at the original image resolution.

Bbox Head: Finally, h1 and h2 are fed into a CenterNet
head, which minimises the detection loss function as de-
scribed in [39], to produce bounding boxes around changed
regions in both the images.
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Figure 2. Architecture: Given two images I1, I2, an encoder produces feature maps f1
s , f

2
s respectively at multiple resolutions. A co-

attention module is then used to compute conditioned feature maps g1s , g2s that are impicitly registered with the other image. A U-Net style
decoder is then applied to the original and conditioned features maps to produce feature maps h1, h2. Finally, the bbox detector head uses
h1, h2 to produce bounding boxes for I1, I2 respectively. For brevity, we only show this pipeline for image I1 (it is symmetric for image
I2). Please see Sec. 3 for details.

Figure 3. Training data generation pipeline: The figure above illustrates how we generate several image pairs with changed regions from
a single COCO image. Given an original COCO image, we first (a) use an in-painting method to compute several images with inpainted
regions. Then (b) given the original image along with inpainted images, we randomly sample an image pair for training, along with their
ground truth bounding boxes, as shown. Notice that the image pairs can have inpainted regions that are not valid changes. This prevents
the model from collapsing to simply learning inpainitng noise patterns. Please see Sec. 4 for details.

4. No Change Detection Dataset? No Problem

Much of the recent success of deep learning methods is
attributed to the availability of large-scale training datasets
with reliable annotations. Currently, however, there are
no publicly available datasets for the change detection
problem, as formulated in this work. To avoid curating and
manually labelling thousands of image pairs with changes,
we propose a procedure to leverage existing large-scale
image datasets and state-of-the-art image inpainting meth-

ods to simulate visually realistic “changes”. The complete
training data processing pipeline is shown in Fig. 3 while
we delineate the details below.

Inpainted changes: For this work, we make use of the
COCO dataset [18], which comes with bounding boxes
and segmentation masks for various objects in each image.
Given a COCO image along with a binary segmentation
mask of various objects in it, we inpaint the said objects
using a state-of-the-art image inpainting method, LaMa
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[32], to make the objects “disappear”. The resulting
inpainted image along with the original COCO image
now constitute an image pair with changes (disappeared
objects), for which we have the ground truth annotations
(bounding boxes for the objects in the original COCO
image).

Combating inpainting noise: Even though inpainting pro-
duces seemingly realistic changes, we noticed that the in-
painted regions tend to have “noise” (as observed by other
works in the literature [17, 37]). In order to discourage the
model from simply learning this inpainting noise instead of
learning the actual changes between images, we adopt the
following two strategies:

• For each COCO image we obtain multiple inpainted
images, each with a different subset of inpainted ob-
jects, out of which we randomly sample two. For in-
stance, consider an image with 3 objects: A, B & C.
Let’s say we obtain two inpainted images: I1 which
only has object A (B & C have been inpainted), and I2
which only has object B (A & C have been inpainted).
In this case the model must predict two bounding
boxes per image (B does not exist in I1 and A does not
exist in I2, hence two changed regions per image). At
the same time, the model must learn to ignore inpaint-
ing noise for C which has disappeared in both the im-
ages and is therefore not a valid change. Thus we force
the model to learn actual visually-salient changes.

• Aside from inpainted changes, we also “paste” random
objects into the image (taken from a different random
COCO image) to simulate changes. While these in-
serted objects seem visually unrealistic, it requires the
model to predict the “missing” object in the original
image, which does not have any inpainting noise.

Training dataset: We randomly select 60000 images from
the COCO train subset as our “original” images. For each
original image, we use LaMa [32] to generate n ∈ {1, 2, 3}
images, each with a different subset of objects inpainted, as
described in the pipeline above. We then randomly split
these 60000 samples (each with Cn+1

2 image pairs) into
training and validation set consisting of 57000 and 3000
samples respectively. Each image is resized to 256 × 256
pixels (due to computational constraints), along with the ap-
propriate scaling of its ground truth change bounding boxes.
Given an image pair, we apply random affine transforma-
tions (scale ∈ [0.8, 1.5], translation ∈ [−0.2, 0.2] and rota-
tion ∈ [−π

6 ,
π
6 ]) to each image independently and adjust the

ground truth bounding boxes appropriately. In addition, we
apply random colour jittering to make our model invariant
to photometric changes. We note that the change annota-
tions are class agnostic in that they do not have access to
the COCO class labels, rather the only classification is that

something has changed at the scale of the bounding box.
The validation set is strictly used to pick the best model
(with the lowest loss) for evaluation and does not inform
the training in any other way.

5. Experiments
Given two images, under some geometric transformation
from one another, we aim to localise the changed regions
while being invariant to photometric changes. This section
describes the datasets we used to test our model and various
implementation details, along with the results.

5.1. Evaluation datasets

To evaluate the performance of our model, we contribute
four test datasets as described below. Please see Fig. 4 for
example image pairs.

COCO-Inpainted: We curate an inpainting-based test set
from the COCO test subset. We divide this test set into 3
categories based on the size (small, medium and large, as
defined in [1]) of the inpainted objects. Using the same
methodology as described in Sec. 4, we curate 1655 image
pairs for small, 1747 image pairs for medium and 1006
image pairs for large, giving us a total of 4408 image pairs
for this test set. Furthermore, we apply random affine
transformations to the images along with colour jittering.
Due to the affine transformations and cropping there will be
some regions of the image that have no correspondence in
the other image. Please see the first example pair in Fig. 4
for reference.

Synthtext-Change: We use the pipeline described in [10]
to synthetically add random text to “background” images
and generate 5000 image pairs with text-based changes in
a manner that is consistent with their geometry. We do not
augment the images any further i.e. the images have an
identity geometric and photometric transformation. Note
that in order to simplify quantitative evaluation, the gen-
erated texts are reasonably-spaced letters of varying sizes.
This avoids having to deal with letter-level, word-level
and paragraph-level predictions, where the model groups
spatially-close small letters into a single bounding box but
predicts a bounding box for each letter for bigger font-sizes.

VIRAT-STD: To detect outdoor scene changes, we select
1000 image pairs at random from the STD dataset [13].
These image pairs are originally taken from the VIRAT
Video Dataset [20], which has bounding box annotations
for several objects in each video frame. Since STD does
not come with ground truth bounding box annotations for
changes, we use a best-effort automated pipeline to obtain
the ground truth (with a small percentage of them manually
verified by human-in-the-loop). Since the camera is static,
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Figure 4. Qualitative results: We show the bounding box predictions (solid) of our model on all the test sets, along with the ground truth
(dashed). Since the detection head outputs 100 bounding boxes per image (see Sec. 5.2), for the purpose of visualisation, we display the
5 most confident predictions. In case of multiple bounding boxes with significant overlap, we keep the most confident and suppress the
others. Note the significant photometric changes in COCO-Inpainted, 3D geometric effects in Kubric-Change (notice the inside of the cup
in row 2, col 3-4), detection of really small objects in VIRAT-STD (even picking up valid changes that are not part of the ground truth
e.g. row 5, col 5-6) and very subtle letters in Synthtext-Change. We recommend that the reader zooms in on the individual image pairs for
inspection.

there is an identity geometric transformation between the
images (though there may be small motions of the camera
due to wind etc.), but the photometric conditions may
change due to time-of-day, weather conditions etc.

Kubric-Change: We use the recently introduced Kubric

dataset generator [8] to curate 1605 realistic-looking image
pairs with controlled changes. The scenes consist of a
randomly selected set of 3D objects resting on a randomly
textured ground plane. For a given scene, we iteratively
remove objects from it and capture “before” and “after”
image pairs. Unlike the datasets above where there is
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Figure 5. Co-attention maps: Given some pre-determined regions in I1 (QUERY), we visualise the cross-attended regions in I2
(REFERENCE) from the (spatially highest resolution) COAM layer of our model. The examples on the left show varying shape and size of
QUERY regions, including the correspondence for a single pixel. The examples on the right show cases where the query region selected
has no correspondence on the right (as the object is missing) – in these cases the attention map correctly does not highlight a region in the
REFERENCE images. It is evident that the model has not only learnt to establish corresponding regions between the two images, but also
fine-grained point-to-point correspondences.

backbone # attn modules attn type scSE geom transformation coco-inpainted test set (AP)
(train & test) small medium large all

ResNet18 2 COAM ✗ affine 0.08 0.16 0.26 0.11
ResNet18 3 COAM ✗ affine 0.32 0.49 0.49 0.37
ResNet50 3 NOAM ✗ affine 0.15 0.32 0.49 0.21
ResNet50 3 COAM ✗ affine 0.46 0.74 0.70 0.58
ResNet50 3 COAM ✓ affine 0.46 0.79 0.85 0.63

ResNet50 3 COAM ✓ identity 0.60 0.89 0.94 0.73
ResNet50 3 NOAM ✓ identity 0.68 0.93 0.95 0.79

Table 1. Ablation study: We ablate various components of our model and report the AP on two variants (affine, identity) of the COCO-
inpainted test set. Note that due to out-of-bounds cropping when applying geometric transformations, affine and identity test sets do not
necessarily have the same number of changes, and methods trained and tested on one should not be directly compared with the other.

a planar geometric transformation between the images
(affine or identity), for these image pairs the camera centre
moves. Since the scene is 3D there can be parallax and
occlusion/disocclusion changes between the image pairs.

5.2. Implementation

We use ResNet50 [12] as the encoder for our U-Net model
(with ImageNet pre-trained weights), with 5 blocks (1-5),
where we apply the co-attention module to the feature maps
of blocks 3-5. The U-Net decoder also has 5 blocks with
depths (256, 256, 128, 128, 64), along with scSE blocks
[26]. The CenterNet head is implemented as described in
[39] with the hidden channel dimension of 64 and is config-
ured to predict 100 bounding boxes per image. The overall
model has 49.5M trainable parameters and is trained on 2
P40 GPUs for 200 epochs, using the DDP training strategy
with a batch size of 16. We use Adam [14] to optimise the
overall objective with learning rate of 0.0001 and weight
decay of 0.0005.

5.3. Evaluation Metrics

To quantitatively evaluate our model, we compute the Aver-
age Precision (AP) metric defined in [5], as is standard. We
emphasise the fact that for each image pair, the model out-
puts bounding boxes of changed regions for both the images
and is evaluated as such.

5.4. Ablation

To study the effect of various modules of our method, we
ablate different components of our model and show its per-
formance on the 3 subsets (small, medium and large) of
the COCO-Inpainted test set. As evident from Table 1, us-
ing more attention modules (3 instead of 2), using a bigger
model (ResNet50 as opposed to ResNet18) and adding scSE
blocks [26] all lead to an improvement in the results.

Furthermore, given two images under affine transforma-
tion, we recognise that it is possible to register them if their
transformation matrix is known. Consequently, if we know
a priori that the images are registered, we note that it is pos-
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test set COCO-Inpainted Synthtext-Change VIRAT-STD Kubric-Change

type inpainting synthetic real photo-realistic sim
fixed camera ✓ ✓ ✓ ✗

geometric transformation Affine None None 3D
# image pairs 4408 5000 1000 1605

result (AP) 0.63 0.89 0.54 0.76

Table 2. Quantitative results: We report the AP of our model (ResNet50, 3 COAM layers, with scSE blocks) on various test sets.

sible to replace the co-attention module (COAM) with a sim-
pler module, which we call no-attention module (NOAM),
which simply concatenates the features maps from the two
images i.e. ψ(fq, fk) = fk in eq. 1. The results from Ta-
ble 1 show that COAM is almost on par with NOAM when
the images are under an identity transformation, however,
NOAM is much worse than COAM under geometric transfor-
mations.

5.5. Results

We take our model (ResNet50 backbone, 3 COAM layers,
with scSE blocks) trained on the dataset described in Sec. 4
(with affine transformation) and evaluate it on 4 test sets
without any further training/finetuning. We show some
qualitative predictions by the model in Fig. 4 on each of the
test sets and report the average precision values in Table 2.
To the best of our knowledge, there are no existing works
that tackle the change detection problem using a bounding-
box based method which makes it difficult to compare our
method with prior-art.

Our results show that not only is our method able to
detect changes under extreme affine transformation and
colour-jittering for the COCO-Inpainted test set, but also it
is able to generalise zero-shot to changed image pairs pro-
cured from very different data distributions. Particularly,
we note that even though our model is only trained using
affine transformations, it produces impressive results on the
Kubric-Change test set, where the changed image pairs are
no longer related by a homography due to the movement of
camera centre and the fact that the objects in the scene are
3D.

In Fig. 5 we show the visualisation of attention maps
from the co-attention module. Specifically, given feature
maps f1s ∈ RC×I×J and f2s ∈ RC×L×M of images I1 and
I2 respectively, we obtain A ∈ RI×J×L×M using eq. 2.
Then, for a set of query locations q in f1s , the co-attention
map G, given by

Glm = max
(i,j)∈q

Aijlm, (4)

represents the attended locations in f2s . It is evident from
the visualisations that the model has learnt to establish cor-
respondences between the two images, which is a logical
step towards finding the changes.

6. Conclusion

Humans have a hard time finding changes in a scene –
which is why we tend to find “spot the difference” tasks
to be quite challenging. Adding viewpoint and photomet-
ric changes on top of this already difficult problem further
elevates its perplexity. In this work we tackled the prob-
lem of automatically detecting changes in two images of the
same scene under some geometric transformation, while ig-
noring nuisance factors such as photometric changes. We
study a new formulation of this problem and treat it as a
bounding-box based detection problem. Due to the lack
of a large-scale training dataset for this problem, we pro-
posed a training data generation pipeline that leverages ex-
isting datasets (or any arbitrary collection of images for that
matter) and off-the-shelf image inpainting methods. Fi-
nally, we proposed and trained a novel neural network (in
an end-to-end manner using a standard detection loss [39])
and showed that it is able to successfully zero-shot detect
changes (without any finetuning or sim2real training) on
several new benchmarks.

Limitations: The method proposed in this work largely fo-
cuses on the detection of changes in things rather than stuff
(as defined in [4]). While it is likely that the trained model
has the capacity to detect stuff changes, we have not investi-
gated this. Furthermore, since the trained model is a change
detector and not an object detector, it may group several
overlapping changed objects into a single bounding box (as
a single changed “object”). Finally, due to the nature of the
training data, the model was largely tested on relatively pla-
nar scenes with mild occlusions/dis-occlusions. Going be-
yond, to general two-view scenes, with significant changes
in the camera pose and challenges such as parallax and se-
vere occlusions/dis-occlusions is a natural direction for fu-
ture work.

Acknowledgements: We would like to thank Charig
Yang, Laurynas Karazija, Luke Melas-Kyriazi, Aleksan-
darv (Suny) Shtedritski and Yash Bhalgat for proof-reading
the paper. This research is supported by EPSRC Programme
Grant VisualAI EP/T028572/1 and a Royal Society Re-
search Professorship RP\R1\191132.

4000



References
[1] COCO Detection Evaluation,

https://cocodataset.org/#detection-eval.
[2] Pablo F. Alcantarilla, Simon Stent, German Ros, Roberto Ar-

royo, and Riccardo Gherardi. Street-view change detection
with deconvolutional networks. In Proceedings of Robotics:
Science and Systems, AnnArbor, Michigan, June 2016.

[3] Connelly Barnes, Eli Shechtman, Adam Finkelstein, and
Dan B Goldman. PatchMatch: A randomized correspon-
dence algorithm for structural image editing. In ACM
Transactions on Graphics (ToG), volume 28, page 24. ACM,
2009.

[4] Holger Caesar, Jasper Uijlings, and Vittorio Ferrari. Coco-
stuff: Thing and stuff classes in context. In Proceedings
of the IEEE conference on computer vision and pattern
recognition, pages 1209–1218, 2018.

[5] Mark Everingham, Luc Van Gool, Christopher KI Williams,
John Winn, and Andrew Zisserman. The pascal visual object
classes (voc) challenge. International journal of computer
vision, 88(2):303–338, 2010.

[6] Mohammed E Fathy, Quoc-Huy Tran, M Zeeshan Zia, Paul
Vernaza, and Manmohan Chandraker. Hierarchical metric
learning and matching for 2D and 3D geometric correspon-
dences. In Proc. ECCV, 2018.

[7] Aito Fujita, Ken Sakurada, Tomoyuki Imaizumi, Riho Ito,
Shuhei Hikosaka, and Ryosuke Nakamura. Damage detec-
tion from aerial images via convolutional neural networks. In
2017 Fifteenth IAPR International Conference on Machine
Vision Applications (MVA), pages 5–8, 2017.

[8] Klaus Greff, Francois Belletti, Lucas Beyer, Carl Doersch,
Yilun Du, Daniel Duckworth, David J Fleet, Dan Gnanapra-
gasam, Florian Golemo, Charles Herrmann, et al. Kubric: A
scalable dataset generator. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition,
pages 3749–3761, 2022.

[9] Lionel Gueguen and Raffay Hamid. Large-scale damage de-
tection using satellite imagery. In 2015 IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), pages
1321–1328, 2015.

[10] Ankush Gupta, Andrea Vedaldi, and Andrew Zisserman.
Synthetic data for text localisation in natural images. In IEEE
Conference on Computer Vision and Pattern Recognition,
2016.

[11] Ryuhei Hamaguchi, Shun Iwase, Rio Yokota, Yutaka Mat-
suo, Ken Sakurada, et al. Epipolar-guided deep ob-
ject matching for scene change detection. arXiv preprint
arXiv:2007.15540, 2020.

[12] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In Proceedings
of the IEEE conference on computer vision and pattern
recognition, pages 770–778, 2016.

[13] Harsh Jhamtani and Taylor Berg-Kirkpatrick. Learning to
describe differences between pairs of similar images. In
Proceedings of the 2018 Conference on Empirical Methods
in Natural Language Processing (EMNLP), 2018.

[14] Diederik P Kingma and Jimmy Ba. Adam: A method for
stochastic optimization. arXiv preprint arXiv:1412.6980,
2014.

[15] Zihang Lai, Erika Lu, and Weidi Xie. MAST: A memory-
augmented self-supervised tracker. In Proc. CVPR, 2020.

[16] Yinjie Lei, Duo Peng, Pingping Zhang, Qiuhong Ke, and
Haifeng Li. Hierarchical paired channel fusion network for
street scene change detection. IEEE Transactions on Image
Processing, 30:55–67, 2021.

[17] Ang Li, Qiuhong Ke, Xingjun Ma, Haiqin Weng, Zhiyuan
Zong, Feng Xue, and Rui Zhang. Noise doesn’t lie: To-
wards universal detection of deep inpainting. In Zhi-Hua
Zhou, editor, Proceedings of the Thirtieth International Joint
Conference on Artificial Intelligence, IJCAI-21, pages 786–
792. International Joint Conferences on Artificial Intelli-
gence Organization, 8 2021. Main Track.

[18] Tsung-Yi Lin, Michael Maire, Serge J. Belongie, James
Hays, Pietro Perona, Deva Ramanan, Piotr Dollár, and
C. Lawrence Zitnick. Microsoft coco: Common objects in
context. In ECCV, 2014.

[19] Cristina Mata, Nick Locascio, Mohammed Azeem Sheikh,
Kenny Kihara, and Dan Fischetti. Standardsim: A synthetic
dataset for retail environments. In International Conference
on Image Analysis and Processing, pages 65–76. Springer,
2022.

[20] Sangmin Oh, Anthony Hoogs, Amitha Perera, Naresh Cun-
toor, Chia-Chih Chen, Jong Taek Lee, Saurajit Mukherjee,
JK Aggarwal, Hyungtae Lee, Larry Davis, et al. A large-
scale benchmark dataset for event recognition in surveillance
video. In CVPR 2011, pages 3153–3160. IEEE, 2011.

[21] Ariyo Oluwasanmi, Enoch Frimpong, Muhammad Umar
Aftab, Edward Y. Baagyere, Zhiguang Qin, and Kifayat Ul-
lah. Fully convolutional captionnet: Siamese difference cap-
tioning attention model. IEEE Access, 7:175929–175939,
2019.

[22] Dong Huk Park, Trevor Darrell, and Anna Rohrbach. Ro-
bust change captioning. In 2019 IEEE/CVF International
Conference on Computer Vision (ICCV), pages 4623–4632,
2019.

[23] Jin-Man Park, Jae-Hyuk Jang, Sahng-Min Yoo, Sun-Kyung
Lee, Ue-Hwan Kim, and Jong-Hwan Kim. Changesim: To-
wards end-to-end online scene change detection in indus-
trial indoor environments. In 2021 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), pages
8578–8585. IEEE, 2021.

[24] Julia Patriarche and Bradley Erickson. A review of the au-
tomated detection of change in serial imaging studies of the
brain. J. Digit. Imaging, 17(3):158–174, Sept. 2004.

[25] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-
net: Convolutional networks for biomedical image seg-
mentation. In International Conference on Medical image
computing and computer-assisted intervention, pages 234–
241. Springer, 2015.

[26] Abhijit Guha Roy, Nassir Navab, and Christian Wachinger.
Concurrent spatial and channel ‘squeeze & excitation’in
fully convolutional networks. In International conference
on medical image computing and computer-assisted
intervention, pages 421–429. Springer, 2018.

4001



[27] Ken Sakurada and Takayuki Okatani. Change detection from
a street image pair using cnn features and superpixel segmen-
tation. pages 61.1–61.12, 01 2015.

[28] Ken Sakurada, Mikiya Shibuya, and Weimin Wang. Weakly
supervised silhouette-based semantic scene change detec-
tion. In 2020 IEEE International Conference on Robotics
and Automation (ICRA), pages 6861–6867, 2020.

[29] Nikolay Savinov, Lubor Ladicky, and Marc Pollefeys.
Matching neural paths: transfer from recognition to corre-
spondence search. In NeurIPS, 2017.

[30] Johannes Lutz Schönberger, Enliang Zheng, Marc Pollefeys,
and Jan-Michael Frahm. Pixelwise view selection for un-
structured multi-view stereo. In Proc. ECCV, 2016.

[31] Simon Stent, Riccardo Gherardi, Björn Stenger, and Roberto
Cipolla. Detecting change for multi-view, long-term sur-
face inspection. In Xianghua Xie, Mark W. Jones, and
Gary K. L. Tam, editors, Proceedings of the British Machine
Vision Conference (BMVC), pages 127.1–127.12. BMVA
Press, September 2015.

[32] Roman Suvorov, Elizaveta Logacheva, Anton Mashikhin,
Anastasia Remizova, Arsenii Ashukha, Aleksei Silvestrov,
Naejin Kong, Harshith Goka, Kiwoong Park, and Victor
Lempitsky. Resolution-robust large mask inpainting with
fourier convolutions. In Proceedings of the IEEE/CVF
Winter Conference on Applications of Computer Vision,
pages 2149–2159, 2022.

[33] Carl Vondrick, Abhinav Shrivastava, Alireza Fathi, Sergio
Guadarrama, and Kevin Murphy. Tracking emerges by col-
orizing videos. In Proc. ECCV, 2018.

[34] Qianqian Wang, Xiaowei Zhou, Bharath Hariharan, and
Noah Snavely. Learning feature descriptors using camera
pose supervision. In Proc. ECCV, 2020.

[35] Xiaolong Wang, Allan Jabri, and Alexei A Efros. Learning
correspondence from the cycle-consistency of time. In Proc.
CVPR, 2019.
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