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Abstract

Deep neural networks tend to reciprocate the bias of
their training dataset. In object detection, the bias exists in
the form of various imbalances such as class, background-
foreground, and object size. In this paper, we denote size of
an object as the number of pixels it covers in an image and
size imbalance as the over-representation of certain sizes
of objects in a dataset. We aim to address the problem of
size imbalance in drone-based aerial image datasets. Ex-
isting methods for solving size imbalance are based on ar-
chitectural changes that utilize multiple scales of images or
feature maps for detecting objects of different sizes. We,
on the other hand, propose a novel ARchitectUre-agnostic
BAlanced Loss (ARUBA) that can be applied as a plu-
gin on top of any object detection model. It follows a
neighborhood-driven approach inspired by the ordinality of
object size. We evaluate the effectiveness of our approach
through comprehensive experiments on aerial datasets such
as HRSC2016, DOTAv1.0, DOTAv1.5 and VisDrone and ob-
tain consistent improvement in performance.

1. Introduction
In recent years, drones have shown immense potential in

numerous disciplines. In military warfare, they can be used
as target decoys for combat missions. In agriculture, drones
provide farmers with real-time data to make informed har-
vesting decisions. For search-and-rescue, they can reach
places where humans cannot. Alternatively, they are also
used in fire-fighting, delivery of essentials and aerial pho-
tography. This increasing demand for drones in various do-
mains has recently encouraged the computer vision commu-
nity to work extensively on vision from drones [3].

Deep neural networks have led computer vision research
and development for a decade now on multiple challeng-
ing problems such as semantic segmentation, object detec-
tion/tracking, as well as image classification. In object de-
tection, methods like FasterRCNN [27], YOLO [25], Reti-
naNet [15] and its variants have achieved decent perfor-
mance on many challenging datasets. With increased inter-

Figure 1: Predictions on an image from VisDrone dataset
[6] with Focal loss [14] vs Ours. Top: Focal loss fails
to detect many objects. Bottom: Ours is able to recog-
nize additional objects, including small ones, because of our
ARchitectUre-agnostic BAlanced (ARUBA) loss. Yellow
boxes indicate objects additionally detected.

est and creation of datasets in drone-based imagery, aerial
object detection [34, 6] has gained a lot of interest from the
research community. Although the aforementioned meth-
ods exhibit exceptional performance on popular general ob-
ject detection datasets such as MSCOCO [16], aerial-object
datasets [34, 6] pose more challenges, even to state-of-the-
art object detection models.

High variation in scale and orientation of objects in
aerial datasets, especially from drone images, make detect-
ing these objects quite challenging. Specialized methods
[8, 37] have been proposed to capture the oriented bound-
ing boxes efficiently. An added difficulty in aerial datasets
[34, 6, 19] is that they are highly skewed in their object size
distribution in addition to the class distribution (as shown
in Figure 2. Note that in Figure 2b, x-axis shows the object
area bins where the size of the objects increases from left to
right and y-axis shows the number of object instances per
an area bin). We also observe that size imbalance is severe
in aerial object datasets when compared to more general-
purpose object detection datasets (refer Figure 3), which
motivates us to address this imbalance problem of drone-
based aerial datasets in this work.
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(b) Size Imbalance

Figure 2: Highly skewed class and size distributions in Vis-
Drone dataset

Size imbalance is a common problem in object detection
datasets, and many methods have been proposed to miti-
gate this issue, as summarized in [20]. Existing methods
[13, 18, 28] have largely proposed architectural modifica-
tions to enhance the model’s ability to view objects at dif-
ferent scales. However, such multi-scale approaches arise
from careful engineering of architectures to suit a specific
domain or setting. In this work, we propose to address the
size imbalance problem from an architecture-agnostic bal-
anced loss perspective. One could also view our approach
as a long-tailed perspective to a size balance problem, un-
like the class imbalance setting that is typically studied in
long-tailed detection/recognition problems.

Long-tailed object detection methods typically focus on
datasets with skewed class distribution, to improve perfor-
mance on detecting and classifying minority classes. Many
methods [10, 2, 32, 31, 5, 30, 24] have been proposed
to tackle this problem from a class imbalance perspective
(summarized in Sec 2). We focus on the idea of using loss-
reweighting [5, 30, 24] wherein higher weights are assigned
to tail classes. Unlike class labels, size (when distinguished
as large-to-small) is an ordinal variable making it non-trivial
to apply existing solutions for class imbalance to size. Be-
sides, as shown in Figure 2b, small-sized objects are dom-
inant in drone-based aerial datasets and large-sized objects
are sparse. Although large-sized objects are the tail, they
have larger spatial support which can provide richer and
more useful features compared to small objects which can
make it helpful to detect them. On the other hand, learning
small-sized objects, although the majority in such datasets,
is challenging, even for state-of-the-art detection models
[27, 25, 15]. The increasing use of drone images and the
lack of a consistent method for detection of objects of dif-
ferent sizes in such datasets motivates us to solve the severe
size imbalance in such aerial datasets. In summary, we ad-
dress the long-tailed size imbalance issue in drone-based
aerial datasets rather than the long-tailed class imbalance
issue that is typically addressed in earlier related efforts.

To this end, we propose a novel architecture-agnostic
loss-reweighting strategy which considers the ordinality of
the size variable in its design. The performance of an object
detection model on instances of a given size would have a
contribution from object instances of neighboring sizes. For
example, given a particular class, a model learned on object
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(b) Size Imbalance-VisDrone

Figure 3: Comparison of size imbalance severity between
general and drone-based aerial object datasets. Note that y-
axis is log of frequency, hence the effect is exponential in
terms of occurrence.

instances of area X is more likely to recognize an instance
of area X ± δ rather than X ± kδ, where k is a large inte-
ger. We hence apply a Gaussian amplification on the size
distribution to consider the effect of such neighborhood in-
stances (as detailed in Section 3). We subsequently use a
clustering approach to assign weights to object instances
based on their sizes. Finally, inspired by previous balanced
loss work which focus on class imbalance [5], we reweight
the loss based on size clusters to suit our problem. Unlike
existing methods for long-tailed class imbalance which as-
sign lower weights to head categories, our method assigns
higher weights to the head categories (small-sized objects)
ensuring that the model learns better on them. We show that
the size-imbalance problem can be addressed using such a
loss-based approach without the need for time-consuming
architecture engineering. To summarize, our key contribu-
tions are as follows:

• We propose a novel architecture-agnostic loss-
reweighting strategy to solve the severe size im-
balance issue in drone-based aerial image datasets.
We call this ARchitectUre-agnostic BAlanced Loss
(ARUBA), which can be applied while training any
object detection model.

• To the best of our knowledge, this is the first such loss-
based approach to handle size imbalance in this do-
main. Our key observations around the ordinality of
the considered categories and the connection of such
ordering to a model’s performance may be useful in
other settings with ordinal categories (e.g. class labels
of a disease with increasing severity levels).

• We propose a simple yet effective pipeline based on
well-known modules to achieve the objectives using
our loss-reweigting strategy. Our extensive experimen-
tal results corroborate the usefulness of this pipeline.

• We perform a comprehensive suite of experiments on
multiple drone-based aerial image datasets including
HRSC2016, DOTA-v1.0, DOTA-v1.5 and VisDrone to
validate the effectiveness of our proposed approach.
We also provide additional ablation studies and quali-
tative results to illustrate the usefulness of the proposed
method to handle size imbalance in this domain.
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2. Related Work

We describe prior work from different related perspec-
tives individually below.

Aerial Object Detection. Compared to the general object
detection [17], aerial object detection requires special atten-
tion because of the additional challenges like high variation
in orientation of the objects. Specialized methods [35, 7, 8]
have been designed for detecting oriented bounding boxes
in such aerial image datasets. R3Det [35] proposed a fea-
ture refinement module for accurate features, thereby im-
proving performance. S2aNet addressed the issue of mis-
alignment between anchor boxes and axis-aligned convolu-
tional features by proposing Feature Alignment Module and
Oriented Detection Module. Recently, ReDet [8] encoded
rotation equivariance and rotation invariance by incorporat-
ing rotation-equivariant networks. However, all these meth-
ods use architecture-based approaches, as mentioned ear-
lier. We instead propose a loss-based approach to address
this problem. We, in fact, make use of the abovementioned
methods as baselines and show that our loss re-weighting
strategy achieves improvement in performance when ap-
plied on top of them.

Size Imbalance. There have been fewer efforts that have
explicitly addressed size imbalance in object detection as
summarized in [20]. These approaches typically depend on
using multiple scales of images, feature maps or both to de-
tect objects of different sizes. Methods like SSD [18] and
Scale-aware Fast-RCNN [11] make predictions from mul-
tiple layers of feature maps and combine them. Feature
Pyramid Networks [13] and its variants aggregates features
from multiple layers before performing prediction. Image
pyramid-based methods like SNIP [28] and SNIPER [29]
use multiple scales of images rather than features for de-
tecting objects of different sizes. [23, 12] combines the ad-
vantages of both feature pyramids and image pyramids. The
idea behind these methods is to improve the performance by
processing at multiple scales. We, on the other hand, exploit
the long-tail imbalance of the size distribution by proposing
a loss-reweighting strategy for this challenge.

Long-tailed Object Detection. Existing efforts on long-
tailed imbalance generally focus on class imbalance and are
divided into three categories: sampling-based, data genera-
tion and re-weighting based methods. We describe each of
them below.

Sampling based methods: Sampling-based approaches
rely on data manipulation techniques such as under-
sampling and over-sampling. Works such as [10, 22, 2]
utilize sampling-based methods to balance background-
foreground and class labels in the dataset.

Data generation methods: These methods generate ob-

jects of minority classes synthetically using data generation
methods such as Generative Adversarial Networks and data
augmentation [32, 31]. Unlike oversampling, this approach
does not repeat data samples and thus reduces over-fitting.
However, the performance of these methods is contingent
on quality of the samples generated.

Re-weighting based methods: Re-weighting methods for-
mulate the training objective of a model based on the statis-
tics of the class-imbalanced dataset. [5] balance the loss
based on the effective number of instances per class. [30]
ignore the discouraging gradients for the rare categories
from majority categories. [24] alleviate the class-imbalance
problem by posing it as a ranking problem.

These approaches tackle the long-tailed imbalance prob-
lem from a class perspective. However, we tackle this prob-
lem from a size perspective.

Regression Imbalance. One of the works closest the
present work is DIR [36] which focuses on imbalance in
continuous targets in general rather than categorical. We
focus on continuous targets specific to object detection and
propose a framework to mitigate the issue of object size im-
balance, which is different from their focus.

3. Architecture-Agnostic Balanced Loss
As stated earlier, the proposed ARUBA (ARchitectUre-

agnostic BAlanced) loss is designed to address the prob-
lem of severe size imbalance in drone-based aerial object
datasets. To formulate ARUBA, we begin by discussing the
loss re-weighting strategy used in general long-tailed class
imbalance methods [14, 5, 30]:

CB(p, y) = wy ∗ Lcls(p, y) (1)

where wy is the weight for a class y, p is the predicted class
probability and Lcls is the classification loss. We instead
propose herein a size-balanced loss based on the size of the
objects within a class as follows:

Lours = wys ∗ Lreg(b
′, b) (2)

where wys is the weight for an object of size s belonging
to a class y; b′ and b are the predicted and ground-truth
bounding boxes, and Lreg is the regression loss. The idea
of our re-weighting strategy is to assign higher weights to
small-sized objects because they have poor spatial support
making it difficult to detect them. Note that size being an
ordinal variable does not have strict partitions like class cat-
egories. Learning to detect objects of a given size does im-
bue a model with the capability to detect objects of similar
sizes (at least partially, as also shown in Table 1 and ex-
plained in the next paragraph). Also, objects in a dataset
may have a large variety of sizes, unlike a fixed number of
classes. These differences between categorical and ordinal
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Figure 4: Overview of proposed method: (a) The top figure shows how our method is architecture-agnostic. Independent
of the object detection architecture, ARUBA calculates weights for objects based on their sizes. (b) The bottom figure details
the ARUBA pipeline comprised of four stages. We use the size distribution of the DOTA v1.5 dataset for visualization.

Trained on Tested on
Small Medium Large

Small 33.78 26.87 1.81
Medium 7.01 46.01 15.26

Large 2.56 23.53 49.21
All 17.93 29.58 38.91

Table 1: Performance of baseline on different size bins of
HRSC2016 dataset. The train and test sets are divided into
three bins - Small, Medium, and Large. ALL bin means we
consider the entire train data.

variables make it non-trivial to directly apply long-tailed
class re-weighting strategies to solve size imbalance. To
address these differences, we propose a pipeline of steps,
which are simple and well-known, to address size imbal-
ance: class-wise segregation, followed by Gaussian ampli-
fication and then clustering. The details of each of these
modules are provided in subsequent sections. Figure 4 out-
lines our overall pipeline.

Effect of neighborhood. Before describing each of the com-
ponents in our pipeline, we first show the effect of the ordi-
nality of the size variable through a study. In particular, we
discuss the effect of neighborhood on adjacent size bins by
experimenting on the HRSC2016 dataset which only has a
single class, Ship. We divide both train and test data into
three kinds: small, medium and large, based on the object

sizes. Table 1 summarizes the results (Average Precision
values) of a recent aerial object detection method, ReDet
[8], trained and tested on these categories of objects. We
note that the model trained on the small train bin (bin con-
taining small-sized objects) performs well on the small test
bin, and its performance reduces as we move from small test
bin to large. Similarly, the performance of a model trained
on the large train bin decreases as we move from large test
bin to small. The influence of ordinality of the size cate-
gories on model performance is evident in these results. We
leverage this neighborhood effect by using a Gaussian am-
plification process that we describe later in this section.

Class-wise segregation. As shown in Figure 4, the first
stage of our overall pipeline is the class-wise segregation.
Our empirical studies presented in the supplementary sec-
tion suggest that the effect of neighborhood should be con-
sidered within a class rather than across-classes. We hence
segregate the size distribution class-wise and deal with size
imbalance within each class separately (shown as the first
stage in Figure 4b).

Gaussian Amplification. We apply a Gaussian amplifica-
tion on the size distribution of each class to add the con-
text of the size neighborhood. Similar to Label Distribution
Smoothing in DIR [36], we use kernel density estimation
to achieve our objective. For each class, we convolve a
1D-Gaussian kernel with the size distribution to obtain a
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smoothed and amplified distribution. We denote the size
distribution of class c as Bc and a discrete Gaussian kernel
with window size w as Kw. They are defined as follows:

Bc = (bc1, b
c
2, ....b

c
m) (3)

Kw = (k−w/2, ....k−1, k0, k+1, ...k+w/2) (4)

We design the above discrete Gaussian kernel with certain
properties: 1. It is an odd-symmetric kernel. 2. The peak
of the kernel, k0, is always one. We divide the kernel by its
maximum value to achieve this. 3. It has two hyperparame-
ters, namely, window size w and variance σ. w is the width
of the Gaussian kernel, i.e. it specifies the number of bins
(b−w/2 to bw/2) that we want to consider from the neigh-
borhood. σ specifies the importance that we give to each
bin while considering the neighborhood. By increasing σ,
we increase the weight given to each neighboring bin.

We thus define Gaussian Amplification, GA, as follows:

GA(bk) =

w/2∑
i=−w/2

ki ∗ bk+i (5)

where bk refers to the size bin in consideration and ki is
the corresponding entry of the Gaussian kernel. For the ex-
tremities, the convolution is zero-padded accordingly. Un-
like Gaussian smoothing, which can result in reduction of
the bin values at times, our procedure always results in am-
plification by design of the Gaussian filter. We hence call
it Gaussian Amplification. For better understanding of its
functioning, please go through the example provided in the
supplementary section.

Clustering. Objects in a dataset usually can be of a wide
variety of sizes. One way of categorizing the size distribu-
tion is to simply consider each size as a different category.
However, this may result in too many size categories. We
divide the objects into multiple equal-sized bins before ap-
plying Gaussian amplification to accommodate the effect of
neighborhood. However, owing to the large number of ob-
ject instances in aerial object datasets [34, 6], this results
in a large number of bins. This makes the step of weight-
ing the loss terms of each bin tedious. In order to make
the loss reweighting step more feasible, we cluster the in-
stance area distribution (after Gaussian amplification) into
a fixed number of clusters, which we can then reweight. In
this work, we use a simple k-means approach for clustering
the distribution into k clusters. Figure 4b shows an illustra-
tion of the size distribution after clustering the data. As we
can observe, objects are grouped as per their sizes. Small-
sized objects are clustered together and large-sized objects
are clustered together with some intermediate-sized clusters
in the middle. We found in our empirical studies that this
step provided significant control over the reweighting strat-
egy than merely using equal-sized bins.

Loss function. We now describe the actual size-balanced
loss itself. As explained earlier, the differences between or-
dinal and categorical variables make it non-trivial to apply
the existing loss re-weighting strategies used for long-tailed
class imbalance in solving size imbalance. We bridge this
gap by considering the effect of neighboring sized object
instances and forming object clusters based on their sizes.
This allows us to obtain weights based on size cluster fre-
quencies. Inspired by [5], we define effective number of
object instances of a class y belonging to a size cluster s as:

Eys =
1− βGA(nys)

1− β
(6)

where GA refers to the Gaussian Amplification process as
in Eqn 5, nys is the number of objects of class y in size
cluster s, and β ∈ [0, 1) is a hyperparameter as defined
in [5], it controls how fast Eys grows as cluster size s in-
creases. Depending on the size of the dataset, the value of
GA(nys) could be very large, which is indeed the case for
aerial datasets. A large value causes numerical instability,
which is the drawback of [5]. We mitigate this issue by us-
ing an nth root as follows:

Ẽys =
1− β

n
√

GA(nys)

1− β
(7)

Using nth root stabilizes the effective numbers without
changing the way they (Ẽys) are calculated.

In our overall object detection framework, for an object in-
stance belonging to a class y and size cluster s, our loss
function Lours is thus given by:

Lours = LC + wys ∗ LR (8)

where LC and LR represent the classification and regres-
sion loss terms respectively, and wys is the re-weighting
factor based on Ẽys as given below:

wys = 1− 1

Ẽys

(9)

Adding the above weights wys to the object detection loss is
the only implementation step required in our framework for
any object detection architecture, thus making our approach
easy to implement and effective.

4. Experiments and Results
Datasets: We perform extensive experiments on several
popular drone-based aerial image datasets, namely, DOTA-
v1.0 [34], DOTA-v1.5 [1], HRSC2016 [19] and VisDrone
[6]. The details of these datasets are shared below.

DOTA-v1.0 [34]: This is one of the largest aerial im-
age datasets released in 2018 containing 2,806 images and
188,282 object instances. The dataset is divided into train,
val and test in 1/2, 1/6 and 1/3 ratios respectively. The
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aerial images are widespread in 15 different categories
namely Plane (PL), Baseball-Diamond (BD), Bridge (BR),
Ground-Track-Field (GTF), Small-vehicle (SV), Large-
vehicle (LV), Ship (SH), Tennis-Court (TC), Baseball-Court
(BC), Storage-Tank (ST), Soccer-Ball-Field (SBF), Round-
about (RA), Harbor (HA), Swimming-Pool (SP) and Heli-
copter (HC). Small-vehicle class is the majority class while
Ground-Track-Field (GTF) is the minority class.

DOTA-v1.5: [1]: This was released in 2019 as the succeed-
ing version of the DOTA-v1.0 with an additional category
Container-Crane (CC) added to it. Although it is made from
the same images as DOTA-v1.0, many additional annota-
tions of very small object instances (less than 10 pixels) are
added. It has a total of 403,318 object instances which is
more than double the instances present in DOTA-v1.0, mak-
ing it very distinct. Object detection on DOTA-v1.5 is more
challenging than on v1.0 because of the newly added very
small instances. Small-vehicle class is the majority class
while the newly added Container-Crane class is the minor-
ity class.

HRSC2016 [19]: This is an aerial image dataset that focuses
on ship detection. It is comparatively smaller in number, but
has variation in object sizes. It has 1061 images divided into
436, 181 and 444 images for training, validation and testing
respectively.

VisDrone [6]: This dataset is released as a part of the Vis-
Drone Object detection challenge in 2019. It contains a to-
tal of 10209 images divided into 6471, 548 and 3190 for
training, validation and testing respectively. Train and val-
idation sets have a combined total of nearly 382,000 object
instances that are spread across 10 different categories.
Evaluation Metrics: For HRSC2016 and VisDrone
datasets, we present the results in the standard COCO for-
mat, mAP as the mean of APs@[.5 : .05 : .95]. For DOTA-
v1.0 and DOTA-v1.5, following [33, 35, 7, 8], we present
class wise AP@50 and mAP as the mean of class-wise APs.
Implementation Details: Our method is architecture-
agnostic and can be applied on top of any architecture pro-
posed for object detection. As we aim to solve the size im-
balance issues in drone-based aerial object datasets, for our
experiments, we chose two recent state-of-the-art aerial ob-
ject detection architectures [7, 8] as our baselines. We im-
plement our method using the mmdetection repository.
For purposes of fair comparison, we use the same back-
bone, training schedules, optimizer, learning rate, momen-
tum, weight decay, number of epochs and dataset prepara-
tion strategy as used in the baseline methods [7, 8]. For
training, we use 4 GTX 1080 Ti GPUs and for inference,
we use a single GTX 1080 Ti GPU.
Results:
HRSC2016. For our experiments, we use ReResNet50 as
the backbone and ReFPN as the neck which were proposed

Method mAP
ReDet [8] 70.41

Ours + ReDet [8] 72.42

Table 2: Comparisons with the baseline on HRSC2016.

in [8]. We crop all images in HRSC2016 dataset to 800∗512
and perform horizontal flip augmentation.Table 2 shows our
results. Our method obtains a notable performance im-
provement of 2.01% mAP over the baseline method [8].

DOTAv1.0. For both DOTA-v1.0 and v1.5, the images were
cropped to 1024∗1024 and augmented with horizontal flips.
Table 3 summarizes the results of state-of-the-art meth-
ods on DOTA-v1.0 OBB task. We apply our method on
top of two baselines S2aNet [7] and ReDet [8]. As ob-
served, our method obtains improvement on top of both
baselines, showing the architecture-agnostic nature of our
approach. ReDet obtains a performance of 76.15% mAP
and our method obtains 77.14% mAP. Our model performs
better than all existing state-of-the-art methods. Compared
to ReDet, our method improves performance on 12 out of 15
classes, which contain a good mix of both small and large-
sized objects. Specifically, on classes ‘Roundabout (RA)’
and ‘Helicopter (HC)’, our method achieves an improve-
ment of 4.49% and 3.76% in AP respectively. We observed
that these classes have severe size imbalance which shows
the efficacy of our approach.

DOTAv1.5. Table 4 provides a comparison with state-of-
the-art results on DOTA-v1.5 OBB task. ReDet [8] obtains
a performance of 66.86% mAP, while our method obtains
68.71% mAP. Our method achieves a gain of 1.85% mAP.
We also obtain improvement for most of the classes on this
dataset. Specifically, for the class ‘Basketball Court’, which
has severe imbalance in object sizes, we obtain an improve-
ment of 5.97% in AP. Despite the fact that DOTA-v1.5 con-
tains a lot of newly added small instances when compared to
DOTA-v1.0, our methods achieves better results on DOTA-
v1.5, which supports our claim that our method improves
performance on small objects.

VisDrone. We use the same image cropping and augmen-
tation techniques as used for the DOTA datasets. A perfor-
mance comparison between the state-of-the-art models and
our model is given in Table 5. As the evaluation server for
this challenge dataset is closed, we present our model’s per-
formance on the validation set, and do the same for the base-
line models for fairness of comparison. Our model achieves
a performance gain of 1.5% mAP over the baseline.

Results on small, medium and large objects. Table 6 shows
a comparison in the performance of the baselines [7, 8] and
our model on different sized objects. For these experiments,
we use the test set of HRSC2016 and the validation set of
DOTA-v1.0 and DOTA-v1.5. Note that the ground truth
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Method backbone PL BD BR GTF SV LV SH TC BC ST SBF RA HA SP HC mAP
DRN [21] H-104 88.91 80.22 43.52 63.35 73.48 70.69 84.94 90.14 83.85 84.11 50.12 58.41 67.62 68.60 52.50 70.70
CenterMap [33] R50-FPN 88.88 81.24 53.15 60.65 78.62 66.55 78.10 88.83 77.80 83.61 49.36 66.19 72.10 72.36 58.70 71.74
R3Det [35] R50-FPN 88.92 77.70 46.49 71.24 72.70 77.81 79.75 90.86 81.46 83.96 57.53 59.10 65.24 70.59 51.38 71.63
S2aNet [7] R50-FPN 89.00 80.77 51.77 70.91 78.52 78.01 87.19 90.86 84.99 84.64 58.45 63.60 66.39 67.90 57.92 74.06
Ours + S2aNet [7] R50-FPN 89.23 81.07 51.92 70.91 78.68 78.97 87.33 90.89 86.07 85.41 63.20 66.22 66.90 69.82 59.81 75.20
ReDet [8] ReR50-ReFPN 89.34 83.03 53.83 74.35 77.45 83.41 87.86 90.87 87.77 85.06 62.89 62.10 75.76 70.58 57.93 76.15
Ours + ReDet [8] ReR50-ReFPN 89.34 83.17 54.16 76.24 78.22 83.42 87.97 90.90 87.86 85.35 65.39 66.59 76.17 70.63 61.69 77.14

Table 3: Comparison of our method with the state-of-the-art methods on DOTA-v1.0 OBB Task. The results in bold specify
the best result of each column.

Method PL BD BR GTF SV LV SH TC BC ST SBF RA HA SP HC CC mAP
RetinaNet-O [14] 71.43 77.64 42.12 64.65 44.53 56.79 73.31 90.84 76.02 59.96 46.95 69.24 59.65 64.52 48.06 0.83 59.16
FR-O [26] 71.89 74.47 44.45 59.87 51.28 68.98 79.37 90.78 77.38 67.50 47.75 69.72 61.22 65.28 60.47 1.54 62.00
Mask R-CNN [9] 76.84 73.51 49.90 57.80 51.31 71.34 79.75 90.46 74.21 66.07 46.21 70.61 63.07 64.46 57.81 9.42 62.67
HTC [4] 77.80 73.67 51.40 63.99 51.54 73.31 80.31 90.48 75.12 67.34 48.51 70.63 64.84 64.48 55.87 5.15 63.40
ReDet [8] 79.20 82.81 51.92 71.41 52.38 75.73 80.92 90.83 75.81 68.64 49.29 72.03 73.36 70.55 63.33 11.53 66.86
Ours + ReDet [8] 79.85 83.02 52.86 72.73 52.35 75.74 87.18 90.87 81.78 68.68 56.90 73.16 73.41 70.49 65.96 14.34 68.71

Table 4: Comparison of our method with the state-of-the-art methods on DOTA-v1.5 test set OBB Task.

Method Backbone AP@50 AP@75 mAP
RetinaNet [14] R50 27.7 12.7 13.9
DSHNet [38] R50 30.2 15.5 16.1
ReDet [8] ReR50-ReFPN 30.86 19.50 18.80
Ours + ReDet [8] ReR50-ReFPN 32.84 21.6 20.32

Table 5: Comparison of our method with the state-of-the-art
methods on VisDrone validation set.

Trained on Method Tested on
Small Medium Large

HRSC2016 ReDet 17.93 29.58 38.91
Ours + ReDet 20.79 29.97 38.01

DOTA-v1.0 ReDet 09.74 23.48 52.44
Ours + ReDet 11.81 23.34 52.24

DOTA-v1.5 ReDet 8.32 24.85 43.56
Ours + ReDet 10.65 24.76 43.52

DOTA-v1.0 S2aNet 10.64 24.93 47.43
Ours + S2aNet 12.48 25.57 47.85

Table 6: Comparison between the performance of our
model and the baseline model on small, medium and large
sized objects.

annotations of the test set for DOTA dataset are not pub-
licly available, hence, we use the validation set. We fol-
low the same evaluation metrics as mentioned in Section
4. Our method when applied on top of ReDet [8], achieves
an improvement of 2.86%, 2.07% and 2.33% mAP on the
small sized objects of HRSC2016, DOTA-v1.0 and DOTA-
v1.5 datasets respectively (first three rows of Table 6). We
also provide the performance gain of our method applied
on top of a different architecture [7] (last row of Table 6).
On all the datasets, our model maintains the performance
on medium and large sized objects as well which shows the
efficacy of our approach.

Method FPN AP@50 AP@75 mAP
S2aNet [7] ✗ 56.27 23.72 27.85
Ours + S2aNet [7] ✗ 57.68 25.22 28.78
S2aNet [7] ✓ 74.06 36.88 40.28
Ours + S2aNet [7] ✓ 75.20 38.76 41.04

Table 7: Performance of our model with and without FPN.

5. Discussion and Analysis

5.1. Ablation studies

To clearly evaluate the effectiveness of our proposed
approach, we perform ablation studies on the DOTA-v1.0
dataset using two baselines S2aNet [7] and ReDet [8]. We
use the ResNet50-FPN and ReResNet50-ReFPN backbones
for experiments on the baseline methods [7] and [8] respec-
tively. Table 8 shows the results, and indicates consistent
improvement over the baseline methods.

Method GA AP@50 AP@75 mAP
S2aNet [7] ✗ 74.06 36.88 40.28
Ours + S2aNet [7] ✗ 74.32 37.12 40.35
Ours + S2aNet [7] ✓ 75.20 38.76 41.04
ReDet [8] ✗ 76.15 50.75 47.05
Ours + ReDet [8] ✗ 76.47 51.15 47.42
Ours + ReDet [8] ✓ 77.14 52.93 48.13

Table 8: Performance comparison of our model with and
without Gaussian Amplification. GA refers to Gaussian
Amplification.

Effect of Gaussian Amplification: Table 8 shows the
performance of our model with and without employing the
Gaussian amplification step. As observed, when Gaussian
amplification is not applied, results show minimal improve-
ment on both baselines [7, 8] in contrast to a healthy im-
provement when it is applied. This shows the importance of
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considering the effect of neighborhood when dealing with
ordinal variables like size of objects.
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Figure 5: Effect of various hyperparameters on model per-
formance

5.2. Hyperparameter Sensitivity Analysis

Analysis on k: k is the hyperparameter associated with k-
Means clustering. It determines the number of clusters. We
experimented with different k values on HRSC2016 and
k = 50 gives the best results as evident from Figure 5a.
We noticed this to be consistent with other datasets too.

Analysis on β: β is the hyper-parameter used in the calcula-
tion of effective weights. To determine the best value of β,
we vary β in the range [0.9, 0.99, 0.999, 0.9999, 0.99999].
Figure 5b shows the performance on HRSC2016 dataset.
We observed that by increasing the value of β, starting from
0.9, the performance increases until β = 0.9999 which
achieves the best result. Lower values of β, eg. 0.5, 0.6,
and 0.7 make the effective weights uniform. This issues is
also cited in [5]. Upon experimentation on smaller βs, we
observed that the results were close to the baseline.

Analysis on σ: σ specifies the level of importance to be
given to neighboring bins when applying Gaussian amplifi-
cation to a given bin. It can also be regarded as an amplifica-
tion factor. Figure 5c shows the performance of our model
as we change the σ value. We obtained the best results when
σ is set to 2.

Analysis on w: This hyperparameter specifies the num-
ber of neighboring bins to consider while applying Gaus-
sian amplification to a given bin. We experimented on
HRSC2016 dataset by varying w, refer Figure 5d. We found
that a width of 11 gives the best results.

We note that these hyperparameter values performed well
across all the four datasets considered, without the need to
fine tune the model separately on different datasets.

Figure 6: Predictions on images from HRSC2016 dataset
[19] - ReDet [8] vs Ours. Top: The baseline method fails to
detect small sized objects. Bottom: Ours is able to recog-
nize additional small objects. Yellow boxes indicate objects
additionally detected.

5.3. Further Analysis
Feature Pyramid Network [13] is one of the primary

methods developed to solve the problem of high variation in
sizes of instances in object detection datasets. Many meth-
ods [23, 12] have been proposed based on the idea of FPN.
We perform experiments on DOTA v1.0 dataset to show
that our approach improves detection performance when
applied on top of FPN. Table 7 summarizes the results of
these experiments. As observed, when FPN is not applied,
our model improves mAP from 27.85 to 28.78. Also, when
FPN is used, our model achieves the best performance by
improving mAP from 40.28 to 41.04. FPN enhances the
model’s capability to process at multiple scales while our
method addresses the severe long-tail in the size imbalance.
Hence, best results are obtained when our method is applied
on top of such architecture-engineered methods.

6. Conclusions and Future Work
In this work, we presented a framework to alleviate

imbalance in the object size distribution. We proposed
a novel simple-to-implement architecture-agnostic loss re-
weighting method for drone-based aerial object detection.
We dealt with the ordinality of size by taking into consid-
eration the effect of neighborhood instances on prediction
and by clustering the object instances based on their size.
We showed the need to increase the contribution of small
objects despite them belonging to the head of the long-tail
size distribution. We showed that our method improves per-
formance on popular datasets like HRSC2016, DOTAv1.0
DOTAv1.5 and VisDrone. In future, we plan to extend this
work by mitigating the imbalance of class and size together.
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