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Figure 1: SGPCR generates a rotation-equivariant representation of point clouds for point cloud registration and retrieval.
Compared to DeepUME [31] and DeepGMR [51], SGPCR results in higher alignment quality on noisy ModelNet40 [49]

data with no points shared between source and target point cloud (left). Further, compared to MCSS [21], SGPCR increases
the registration quality of scan-to-CAD procedures on the Scan2CAD [3] dataset (right).

Abstract

Retrieving and aligning CAD models from databases
with scanned real-world point clouds remains an impor-
tant topic for 3D reconstruction. Due to zero point-to-point
correspondences between the sampled CAD model and the
scanned real-world object, an information-rich represen-
tation of point clouds is needed. We propose SGPCR, a
novel method for representing 3D point clouds by Spheri-
cal Gaussians for efficient, stable, and rotation-equivariant
representation. We also propose a rotation-invariant convo-
lution to improve the representation quality through a train-
able optimization process. In addition, we demonstrate the
strengths of SGPCR-based point cloud representation us-
ing the fundamental challenge of shape retrieval and point
cloud registration on point clouds with zero point-to-point
correspondences. Under these conditions, our approach
improves registration quality by reducing chamfer distance
by up to 90% and rotation root mean square error by up
to 86% compared to the state of the art. Furthermore, the
proposed SGCPR is used for one-shot shape retrieval and
registration and improves retrieval precision by up to 58%
over comparable methods.

1. Introduction

The recreation of 3D indoor environments is an impor-
tant aspect for a variety of 3D content applications. For the
geometry of these environments, 3D point clouds are often
used as the underlying representation. While the accuracy
of point clouds generated by mobile 3D sensing devices
(e.g., Intel RealSense, Navvis VLX, Microsoft Kinect, Mo-
bile Phones) has improved in recent years, missing surface
information limits its usability in many applications such as
virtual reality and augmented reality. To address this issue,
3D reconstruction has become a popular process for trans-
forming raw point clouds into surface representations.

The existing literature approaches the 3D reconstruction
problem by either surface reconstruction [12, 23, 35, 16] or
scan-to-CAD registration methods [3, 24, 29, 4]. Due to
occlusions and unavoidable inaccuracies of scanners and/or
human operators, surface reconstruction methods may lead
to more holes and lower precision in the reconstruction of
specific objects compared to scan-to-CAD methods [29]. In
addition, by using existing CAD objects from a database,
movements, rearrangements, and removal of objects from
a scene can easily be adjusted. Hence, in this work, we

572



Figure 2: Based on already detected 3D objects of a 3D indoor environment, SGPCR-based object retrieval aims to retrieve
uniformly sampled CAD objects from a database (blue) and align (red) them simultaneously to synthetic or real-world (gray)
models with zero point-to-point correspondences. The estimated transformation is used on the CAD mesh to create a surface
representation of the scanned environment.

concentrate on improving 3D reconstruction based on the
registration of CAD models with the raw 3D sensor data, as
shown in the qualitative results of Figure 1.

In general, the pipeline of any scan-to-CAD method can
be structured into three steps: i) 3D Object Detection/ Se-
mantic Instance Segmentation [20, 37, 22, 36], ii) Shape
Retrieval [54, 27, 8, 14], and iii) Point Cloud Registration
[51, 31, 47, 19, 34]. As 3D Object Detection/ Semantic Seg-
mentation has been studied extensively [32, 30, 55, 39, 33],
this work adopts existing solutions for this step.

In a real-world scan-to-CAD registration task, shape re-
trieval and point cloud registration steps are usually per-
formed on 3D point clouds with zero point-to-point corre-
spondences, different densities and varying scaling. This is
defined as cross-source registration and retrieval. It occurs
in situations in which object models are scanned or created,
using different sensors or with different occlusions. These
variations require a stable and invariant representation of
the point cloud.

This work introduces a novel point cloud representation
using Spherical Gaussians (SGs) for both, cross-source re-
trieval and registration, shown in Figure 2. By the nature
of SGs, the representation is rotation-equivariant similar to
[17] and is thus a good choice for cross-source point cloud
registration. Further, SGs are represented on a 3D sphere
with a clearly defined lobe axis, amplitude and lobe sharp-
ness. As a result, the transformation between two point
clouds can be estimated by finding the rotation for which the
correlation between the lobes is the highest. By exploiting
the inherent characteristics of SGs, we are able to improve
the quality of cross-source point cloud registration and re-
trieval.

Our contributions can be summarized as follows

• We introduce a novel rotation-equivariant representa-
tion of point clouds through SGs.

• We exploit the properties of SGs to propose a novel
rotation-invariant convolution, which can be used for
registration and retrieval tasks.

• We design a point cloud registration pipeline for 6 and
9 degrees of freedom on highly noisy point clouds with
zero point-to-point correspondences.

• We show that the proposed point cloud representation
allows for one-shot retrieval and registration.

2. Related Work

Tsai [42] first introduced the concept of Gaussian spheri-
cal radial basis functions, which was later termed Spherical
Gaussians (SGs). Initially, SGs were developed for the il-
lumination of rendered objects in simulated static scenes.
For this, SGs give an efficient approximation of the render-
ing equation to estimate lighting and specular BRDFs [52].
To the best of our knowledge, we are the first to propose
the use of SG Mixture Models to represent point clouds for
scan-to-CAD alignment applications.

VoteNet [37] introduced voting to detect and classify
3D objects in point clouds. By processing the point cloud
through PointNet [38], centers of objects are estimated.
Each point that the network assumes corresponds to an ob-
ject is assigned to one of the voted centers. We use VoteNet
to predict classes and bounding boxes from 3D indoor en-
vironments such as ScanNet [15]. The resulting 3D model
point clouds are used for CAD model-based cross-source
retrieval and alignment.
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2.1. Point Cloud Registration

Point Cloud Registration has been a long-standing re-
search topic [7, 11]. With PointNet [38], extracting features
from point clouds improved significantly. One of the ear-
lier works, PointNetLK [1] leveraged these improvements
for more accurate registration. RGM [19] proposed the use
of a graph-based method, thus further using structural in-
formation to reduce the effect of outliers. The introduction
of Transformers [44] led to further improvements in point
cloud registration, as demonstrated by DCP [47] and Deep-
UME [31]. In contrast, our approach is based on SGs and
SG convolutions, which significantly reduces the inference
time and the number of parameters. It also improves the
quality of alignment for cross-source data. Furthermore,
our method leverages the rotation-equivariant property of
SGs and the rotation-invariant SG convolutions to improve
the registration procedure.

DeepGMR [51] extracts rotation-invariant features from
the point cloud from which a corresponding Gaussian Mix-
ture Model (GMM) is obtained. These GMMs are mini-
mized with the KL-divergence to attain the final transfor-
mation. While our work is inspired by DeepGMR’s GMM
registration, we use a novel spherical representation of point
clouds based on SG Mixture Models, which can be used
not only for registration but also retrieval tasks. Moreover,
compared to DeepGMR our method does not need exter-
nally introduced rotation-invariant features [10] or feature
sampling through PointNet.

2.2. Shape Retrieval

Shape Retrieval is one of the core elements for the CAD-
based reconstruction of indoor environments. The availabil-
ity of large CAD databases [9, 49] enabled the possibility of
using shape retrieval to reconstruct indoor environments, as
shown by Scan2CAD [3].

To address the retrieval problem, CORSAIR [54] extends
FCGF [18] to learn global object-shape representations and
local point-wise features, thus allowing for the retrieval of a
similar object from a category-based CAD database. PCRP
[27] is an unsupervised method based on the unsupervised
point cloud registration method of R-PointHop [26] and
extends it for the shape retrieval task. By modifying R-
PointHop, through aggregating point features into global
VLAD representation [25], PCRP works as a more general-
izable method compared to CORSAIR.

Different from the existing works, our approach results
in a one-shot registration and retrieval method, thus reduc-
ing complexity. Additionally, this one-shot procedure re-
moves the need to separate retrieval and point cloud regis-
tration methods commonly used in scan-to-CAD methods
[4, 54]. Furthermore, training time and training complexity
are reduced since the SG representation is trained only once
for the registration procedure.

3. Problem Statement
We consider a scanned indoor environment from which

a CAD-based representation is reconstructed. Given a point
cloud of the indoor environment and the point clouds of
CAD models, there is a need for shape retrieval and point
cloud registration.

Let X = {Xc,m|Xc,m ∈ RN1×3, c ={1, ..., C},
m ={1, ...,Mz}} be the Mz segmented objects of different
classes C with N1 points from an indoor environment z.
In this case, segmentation does not necessarily mean some
form of semantic segmentation. It can also be in the form of
a 3D bounding volume containing points of the model and
the background environment.

In addition, Y = {Y c,k|Y c,k ∈ RN2×3, c ={1, ..., C},
k ={1, ...,K}} is the database containing K uniformly
sampled CAD models represented as point clouds with N2

points. The number of points is simplified to N=N1=N2

for a fair comparison to the state of the art. For a retrieval
task, we assume that K ≫ Mz ∀z and that all classes rep-
resented in X are also represented in Y .

3.1. Point cloud registration

Point cloud registration describes the method of finding
a rigid transform of a point cloud Y c,k to a corresponding
point cloud Xc,m of the same class. Depending on the de-
grees of freedom needed for the point cloud registration, the
formulation of the rigid transformation differs slightly. A
rigid transform with 6 degrees of freedom (6DoF) defines
the optimization problem

min
R∈SO(3),t∈R3

d(Xc,m,RY c,k + t) (1)

in which a rotation R ∈ SO(3) and a translation t ∈ R3

with respect to Y c,k is estimated. For 9 degrees of freedom
this formulation is extended by a diagonal scaling matrix
S ∈ diag(R3

≥0)

min
R∈SO(3),t∈R3,S∈diag(R3

≥0
)
d(Xc,m,RSY c,k + t) (2)

where d represents the distance metric, which depends on
the specific use case. If Xc,m and Y c,k contain point-to-
point correspondences created by the same sensing or sam-
pling technique, d is defined as the average distance be-
tween the points yj , xj ∈ R3 as in Eq. 3.

d(X,Y ) =
1

N

N∑
j=1

∥yj − xj∥22 (3)

For Xc,m and Y c,k with no point-to-point correspon-
dence, Barrow et al. [6] defined the chamfer distance dC

dC =
1

|X |
∑
x∈X

min
y∈Y

∥x− y∥22 +
1

|Y|
∑
y∈Y

min
x∈X

∥x− y∥22 . (4)

574



3.2. Shape Retrieval

For the retrieval of the model Y c,k from the database, the
optimization can be defined as

argmin
k={1,...,K}

dS(Y
c,k, Xc,m) (5)

which represents the minimization of the similarity dis-
tance dS between one scanned source object model Xc,m

and a target model Y c,k from a database depending on a
class c ∈ C and a model id k ∈ K.

The representation through SGPCR allows us to either
use the chamfer distance or the mean square error, depend-
ing on the task.

4. Preliminaries - Spherical Gaussian Mixture
Models

SGPCR core representation is through SGs, which fol-
low the definition of Wang et al. [46]:

G(ν;a, λ,p) = aeλ(ν
Tp−1) (6)

with the lobe axis p ∈ R3, lobe sharpness λ ∈ (0,+∞), the
lobe amplitude a ∈ R3, and the spherical direction param-
eter ν ∈ S3. The convenient description of spherical radial
basis functions allows for the simple extension of Eq. 6 for
the use on volumetric data [48].

As [42] and [46] show, SGs are by definition symmet-
ric around the lobe axis p. Hence, if a point cloud is
represented by SGs and is rotated, this is represented by
a rotation of the parameter p. This results in a rotation-
equivariant description of a model through SGs. This is an
essential property for the simplification of the point cloud
registration process.

4.1. Spherical Gaussian Mixtures

A Spherical Gaussian Mixture is generated by the sum-
mation of various SGs.

SGM(ν,a, λ,p) =

|ν|∑
i=1

G(ν;ai, λi,pi) (7)

Eq. 7 represents the parametric description of point
clouds by the three parameters ai, λi and pi times the num-
ber of SGs, which is the number of spherical samples |ν|.

In addition, as defined by [46], the SG Mixture in Eq. 7
has a closed form under rotation. This important property
enables us to simplify the estimation of a rotation. For
example, if we assume two SG representations of a point
cloud, one arbitrarily rotated by Rp ∈ SO(3) and the other
not, our problem reduces to finding a rotation Rv ∈ SO(3)
on the surface of a sphere for which RT

v Rp results in the
identity matrix I. Eq. 8 shows that by finding RT

v Rp = I,
the non-rotated SG representation can be attained.

G(Rvν,Rpp, :) = aeλ(ν
TRT

v Rpp−1) = aeλ(ν
Tp−1) (8)

4.2. Spherical Gaussian Convolution

We are also interested in extending the parameter space
and improving the quality of the SG representation with-
out changing the rotation-equivariant property of the SGs.
Following the derivation of [42], and the simplifications in-
troduced in [46], the rotation-invariant convolution of two
SGs (Gs(ν;as, λs,ps) and Gt(ν;at, λt,pt)) is defined by

(Gs ∗Gt)(ν) =
4πasat
eλs+λt

sinh (dst)

dst
(9)

with dst = ∥λsps + λtpt∥, thus allowing for an efficient
calculation and representation through SG Mixtures.

The introduction of these two properties, rotation-
equivariant representation and rotation-invariant convolu-
tion, enables the easy integration of SG-based structures
into any deep learning-based system.

5. SGPCR
This section describes our approach for representing 3D

point clouds through SG mixtures (see also pipeline in Fig-
ure 3).

5.1. Spherical Sampling

An SG is the reformulation of a Gaussian function on
a 3D surface. A Gaussian function contains the distance
between a point and the center of the Gaussian. To represent
this on a sphere instead of using the cartesian distance, we
have to use the angle between a point sampled on a sphere
ν ∈ S3 and a point on our SG. In Eq. 6, this is shown by
the dot product between ν and p. As such, to represent the
point cloud with Eq. 6 spherical sampling is required.

As [41] and [17] mention, there does not exist an optimal
discretization on a sphere. Nevertheless, we assume a sub-
optimal sampling on a sphere but reduce the error through
the use of nearest neighbor clustering.

To sample the sphere, we use the method presented by
Vogel [45]. The points sampled by Vogel in cartesian coor-
dinates are converted into spherical coordinates [2] to rep-
resent a sampled sphere. Following the notation of [2], a
golden angle δ is defined, which is derived from the golden
ratio ϕ

δ = 2π(1− 1

ϕ
) = π(3−

√
5) (10)

where ϕ = arccos
(
1− 2 i

N

)
is a ratio that defines the num-

ber of consecutive terms of a Fibonacci sequence. Through
this angle a sample point νi

νi = (cos (i · δ) · sinϕ, sin (i · δ) · sinϕ, cosϕ) (11)

can be constructed. The method creates a spiral structure,
which according to [2] generates more evenly spread sam-
ples compared to related methods.
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Figure 3: General pipeline for training the proposed SGPCR-based registration method. The source and target are used
to generate the initial parameters of the Spherical Gaussian Mixture (SG Mixture) shown in a). In b) by combining previously
attained a and p with trainable λ the SG is generated. After passing the SG Mixtures through c), the SG convolution described
in Section 5.3 creates the final trainable SG Mixtures. In d) the representations of target and source are compared, through
the cross-covariance. By using SVD, the SGPCR-based registration approach attains the rotation value following [43], the
translation value by solving Eq. 14 and the scaling through bounding box comparison as described in Section 5.4. Lastly in
e) the resulting transformation and distance metric is used to update the learnable parameters in b) and c) through a gradient
descent algorithm. At test time the trained parameters are reused.

5.2. Spherical Gaussian Representation

After defining the spherical samples ν, this subsection
now defines the representation of p ∈ R3, λ ∈ R and a ∈
R3 for point clouds.

For λ a trainable parameter is chosen and initialized be-
tween [0,+∞]. To obtain the lobe axis p the closest point
of the sampled sphere to the point cloud is attained by the
nearest neighbor search algorithm. After finding this lobe
axis p, a k-nearest neighbor search averages the k-nearest
points of the local neighborhood and returns the local fea-
ture a. Figure 3 shows this in part (b).

5.3. Spherical Gaussian Convolution

In addition, a convolutional layer is used in this work
to improve the registration and retrieval task by providing
more parameters to the optimization algorithm.

In this work, SGConv in Eq. 12, our SG convolution, is
defined between the SG representation GX , obtained from
the point cloud, and our trainable SG kernel GR. For regis-
tration, we calculate the convolution only once before esti-
mating the rotation matrix.

Gy
X = (GX ∗2 GR)(ν) =

4πaXaR
eλX+λR

sinh (dXR)

dXR
(12)

Eq. 12, with dXR = ∥λXpX + λRpR∥, shows that the con-
volution of two SGs is rotation-invariant and requires low
computational effort. Thus, we use Eq. 12 to calculate the
convolution between the representation of either the source
SG GS or the target SG GT and our SG kernel GR. Figure 3
(c) shows this part of the pipeline.

5.4. Spherical Gaussian Alignment

First, we want to find the rotation for which the lobes
of the source and target SG Mixtures on the sphere have
the highest correlation. For this, we calculate the cross-
covariance matrix W ∈ R3×3 between Gy,i

S and Gy,i
T

W =
[
Gy,1

T . . . G
y,|ν|
T

] [
Gy,1

S . . . G
y,|ν|
S

]T
. (13)

Following the approach of Umeyama et al. [43], we can
calculate the rotation matrix Rp from W. Since the SVD is
differentiable it can be integrated into the pipeline.

For the translation vector tp ∈ R3 the lobe centers of pS

and pT are compared, thus

tp =

 1

|ν|

|ν|∑
i=0

pT

−Rp

 1

|ν|

|ν|∑
i=0

pS

 . (14)

To scale an object, first, the source and target point
clouds are transformed through the estimated rotation and
translation. Then the oriented bounding box of the target
Ot ∈ R8×3 is calculated and compared with the oriented
bounding box of the source Os ∈ R8×3. We use Eq. 15 to
attain the first part of the scaling estimation sb ∈ R3.

sb =
1

8

8∑
i=1

∣∣Oi
t

∣∣
|Oi

s|
(15)

sp = ξsb (16)

Since the bounding boxes of the real-world scanned objects,
through occlusions at the time of scanning, do not necessar-
ily cover the whole size of the model, a learnable parameter
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ξ ∈ R3 is introduced. This results in the final scaling esti-
mation sp ∈ R3, seen in Eq. 16.

5.5. Spherical Gaussian Loss

Since the registration method is supervised, the esti-
mated Rp is directly used in the loss function LR shown
in Eq. 17 and compared to the ground truth Rg . Further, the
mean isotropic error (MIE) of [50] is added. While there
is no significant reduction in rotation error through MIE, it
reduces the time of convergence.

LR =
∥∥RT

g Rp − I3×3

∥∥2
2
+ MIE(Rg,Rp) (17)

The translation loss LT is calculated using the mean
square error between the ground truth and the prediction.

For the scaling loss LS , the L1 loss between the pre-
dicted scaling sp and the ground-truth scale is calculated.

Lastly, the chamfer distance is used as the distance loss
Ld to gain further information on the distance between the
point clouds.

Finally, the loss of the 9DoF registration pipeline can be
summarized to

L = αLd + βLT + γLR + δLS (18)

with α, β, γ and δ used as optional weighting factors to
allow for trade-off optimization.

The loss L is used by the gradient-descent algorithm to
update the SG kernel GR, the initial λ of the SG represen-
tation and the scaling variable ξ. The parameters of GR are
initialized as random and both λ and ξ are set to 0.5 in the
initialization phase.

6. Evaluation
Datasets. We evaluate SGPCR-based CAD to scan

alignment on two synthetic datasets ModelNet40 [49] and
ShapeNet [9] and one real-world Scan2CAD [3] dataset.

On synthetic data, the evaluation of registration and
retrieval will focus on point cloud data containing zero-
intersection noise as defined in [31]. The zero-intersection
noise approach simulates a cross-source environment,
which is the most common occurrence for the scan-to-CAD
approaches as the CAD object can not easily be sampled
with the same density distribution of an RGB-D indoor scan
such as ScanNet [15]. Thus, this allows for a more realistic
comparison to the state-of-the-art on synthetic data.

For retrieval tasks on synthetic data, we either follow
[27] on ModelNet40 or [54] on ShapeNet and sample 2048
points from the surface of each object. For registration tasks
on synthetic data, we evaluate our work on ModelNet40 fol-
lowing [31], thus uniformly sampling the surface of the ob-
jects to generate 1024 points.

As Scan2CAD was one of the first works to use data from
ShapeNet to replace objects from a real-world scan taken

from ScanNet, we use it to evaluate our method by follow-
ing the evaluation approaches of [3] and [54].

Metrics. For registration, we use root rotation mean
square error RRMSE, translational root mean square error
RMSE(t), chamfer distance dC and inference time R. Fur-
ther, we evaluate the number of parameters #Params in a
small study.

For retrieval tasks we evaluate the Precision@10 [27],
Percision@M=0.1n [54] and the chamfer distance of the
Top-1 retrieved model. Precision@10 shows that the cor-
rect object is among the top 10 retrieved models, while
Percision@M=0.1n, shows that the correct object is among
the top 0.1n, with n the size of the test dataset.

Finally, for scan-to-CAD approaches, we use the popular
Scan2CAD benchmark [3]. Here the average of all models
that fulfill 1 [Rerr ≤ 20◦ ∧ terr < 20cm ∧ serr < 20%] is
evaluated. Further, we follow [54] and evaluate using Rerr

and the one-sided chamfer distance dSC.
Training. For optimization, we use ADAM [28] with

β1 = 0.9, β2 = 0.999 and a learning rate of 10−3. The
representation is trained for 300 epochs and contains a step
scheduler reducing the learning rate by 10−1 every 60 iter-
ations. At test time, the trained parameters are reused and
made non-trainable.

6.1. ModelNet40

To evaluate ModelNet40 for registration tasks, we fol-
low the approach of DeepUME [31] and compare SGPCR-
based registration to other state-of-the-art methods for zero-
intersecting noise. Following DeepUME, we remove 1024
points from point cloud Xc,m and then remove the remain-
ing points of Xc,m from the corresponding Y c,k.

In Table 1 we show the effect of different number of
samples on the final alignment. Even with a low amount
of samples (or SGs), the RRMSE stays stable. The number
of samples also correlates with the number of parameters.
For reference, DeepUME [31], which uses a Transformers-
based backbone, uses at least 310720 parameters.

Table 2 extends this study and shows the stabilization ef-
fect of the number of nearest neighbors (#k) in the k-nearest
neighbors algorithm on the amplitude parameter a. Here
we further notice that increasing #k too much achieves an
inverse effect and reduces alignment quality.

Table 3 shows the comparision to other state-of-the-art
methods. In addition, we show SGPCR results using dif-
ferent spherical sampling strategies: i) the introduced Vo-
gel sampling, ii) equirectangular distant sampling (ED), and
iii) random sampling. We also introduce a PointNet-based
(PN-Base) baseline that replaces SG representation and SG-
Conv with a PointNet backbone. We use a attained by the
spherical sampling as input for PointNet. Comparison with
PN-Base shows that SG representation of point clouds com-
pared to PointNet leads to a higher alignment quality. Ta-
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#SG dC RRMSE RMSE(t) R(ms) #Params

32 0.0014 10.50 0.0077 0.0016 515
64 0.0011 9.47 0.0053 0.0016 1027
128 0.0010 8.96 0.0042 0.0016 2051
256 0.0010 8.60 0.0036 0.0017 4099
512 0.0010 8.57 0.0034 0.0017 8195
1024 0.0010 8.48 0.0034 0.0022 16387

Table 1: Study on different sample densities (#SG). The
alignment of zero-intersecting ModelNet40 data shows that
even with a low amount of parameters SGPCR attains sta-
ble results in the alignment. The number of parameters is
shown for a batch size of 1 and 1024 number of points.

#k d−4
C RRMSE RMSE(t) R(ms)

1 10.19 8.61 0.0034 0.00173
2 10.14 8.58 0.0034 0.00170
8 10.04 8.57 0.0034 0.00177
32 10.04 9.01 0.00351 0.00250
128 10.52 11.08 0.00362 0.00600
512 16.69 37.02 0.00553 0.02035

Table 2: Study on the number of nearest neighbors (#k).
This study shows that the choice of #k for #SG=512, while
not being major, still has an important impact on the final
solution.

ble 3 shows that our SGPCR-based approach outperforms
comparable methods in terms RRMSE, RMSE(t) and dC.
For R, SGPCR achieves similar results to comparable meth-
ods. Figure 4 shows qualitative comparison with DeepGMR
[51] and DeepUME. As noise-free point clouds with exist-
ing point-to-point correspondences are highly implausible
for the intended use case, they are not considered in our
evaluation.

Finally, SGPCR-based retrieval is evaluated on Model-
Net40 as in PCRP [27]. Table 4 shows the improvements
given by our method for pre-aligned and arbitrary poses.
While the one-shot retrieval and registration yielded fruit-
ful results, the evaluation of pre-aligned objects does not
simulate real-world problems. For the arbitrary poses, im-
provements are visible but again the Top-1 metric shows
that there still exists a lot of possibility for growth.

6.2. ShapeNet

Following the evaluation of CORSAIR [54], we
show the results of the retrieval task on the ShapeNet
dataset. Table 5 shows the improvment of SGPCR on
ShapeNet retrieval compared to comparable methods on the
Percision@M=0.1n metric [54]. Since SGPCR not only re-
trieves objects but also aligns the retrieved object the Top-1
dC results show lower values compared to the competitors.

Model dC RRMSE RMSE(t) R(ms)

PointNetLK [1] 0.028 80.858 1.023 -
DCP [47] 0.059 93.221 0.014 -
RGM [19] 0.254 100.97 0.388 -
DeepGMR [51] 0.026 67.282 0.010 0.0025
DeepUME [31] 0.011 70.818 0.009 0.0375
PN-Base 0.0258 46.23 0.0068 0.0521
R + SGPCR 0.0088 34.10 0.0129 0.0017
ED + SGPCR 0.0010 8.75 0.0035 0.0017
Vogel + SGPCR 0.0010 8.57 0.0034 0.0017

Table 3: Registration results on ModelNet40 with zero-
intersection noise trained on data with no sampling noise,
thus following the same training/testing method as [31].
Our SGPCR-based registration approach results in signifi-
cantly lower RMSE(R) and RMSE(t) values. This shows
that SGPCR-based point cloud representation generalizes
better for zero-intersecting models. Here and for all further
results, we used 512 #SGs and #k=8.

(a) DeepGMR [51] (b) DeepUME [31] (c) SGPCR

Figure 4: Qualitative comparison between non-
intersecting data on ModelNet40. This shows qualita-
tively the results of Table 2. Our registration results in a
more stable alignment compared to the state of the art.

Model
Pre-aligned objects Arbitrary poses
P@10 Top-1 dC P@10 Top-1 dC

PointHop [53] 58.23 0.129 19.71 0.211
FPFH [40] 53.23 0.164 52.12 0.160
PointNet [38] 60.66 0.121 53.40 0.145
CORSAIR [54] 61.28 0.106 61.24 0.107
PCRP [27] 63.23 0.101 63.07 0.111
SGPCR 100.0 0.0076 86.41 0.020

Table 4: Retrieval evaluation on ModelNet40. SGPCR-
based retrieval on the ModelNet40 following the results of
[27] outperforms competitors by a great margin.
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Model
Chair Table

P@M Top-1 dC P@M Top-1 dC

FCGF [13] 31.83 0.132 36.19 0.135
CORSAIR [54] 51.47 0.115 57.77 0.112
SGPCR 76.20 0.014 75.15 0.016

Table 5: Retrieval evaluation on ShapeNet. Following
the results and approach of [54], the improvements through
SGPCR-based retrieval are shown.

Model Chair Sofa Table

Baseline [21] 42.02 27.70 18.52
Scan2CAD [3] 44.26 30.66 30.11
E2E [4] 73.04 76.92 48.15
MCSS [21] 74.32 78.70 24.28
SGPCR 77.39 86.69 55.69

Table 6: Evaluation on Scan2CAD benchmark. Evalua-
tion of object alignment on the Scan2CAD benchmark [3].
Similar to [21] we do not compare ourselves to SceneCad
[5], as it uses relationships between objects and layouts,
which we do not have access to.

6.3. Scan2CAD

Additionally, SGPCR is evaluated on the Scan2CAD [3]
dataset. For comparison, we take the results from MCSS
[21], which also contains a baseline. For 3D object de-
tection, we use the results of VoteNet [37] followed by
SGPCR-based retrieval and registration, which structurally
matches the baseline of [21]. Table 6 shows that a consider-
able improvement can be observed by using SGPCR while
evaluating on the Scan2CAD benchmark. MCSS [21] uses
an optimization algorithm in the proposal part to improve
the scan-to-CAD procedure. While MCSS improves the
scan-to-CAD method, high inference times (approximately
15 min) make it not real-time capable. Further, it is to con-
sider that E2E [4] uses a symmetry-aware method which
can also be used to extend SGPCR and further improve the
results on the Scan2CAD benchmark. The results of Table 6
show that SGPCR outperforms both E2E and MCSS on all
three classes. Figure 5 shows a qualitative evaluation.

Finally, Table 7 shows the results of the one-shot re-
trieval and registration procedure of SGPCR compared to
CORSAIR [54]. For the given results even though SG-
PCR does not consider point cloud symmetry it outperforms
CORSAIR on dSC and Rerr < 45◦.

7. Conclusion

We propose SGPCR, a novel rotation-equivariant ap-
proach for representing point clouds by using Spherical

Model C dSC Rerr < 45◦

CORSAIR [54] w/o sym
Chair

0.0753 86.4
CORSAIR [54] w/ sym 0.0681 88.9
SGPCR 0.0054 90.89
CORSAIR [54] w/o sym

Table
0.0906 52.9

CORSAIR [54] w/ sym 0.0714 57.0
SGPCR 0.0150 76.59

Table 7: Retrieval and registration on the Scan2CAD
dataset following the training and evaluation of [54].

(a) MCSS [21] (b) SGPCR (c) GT

Figure 5: Qualitative comparison on the Scan2CAD
dataset. MCSS [21] is able to attain more CAD objects,
even though those are not in the ground truth dataset. Still
through Table 6 and the given qualitative results SGPCR
shows overall improvements.

Gaussians. Using the proposed rotation-equivariant repre-
sentation and the trainable rotation-invariant convolution,
we can create a more stable representation of point clouds.

Our experiments show that this form of representation
improves alignment and retrieval between point clouds with
zero point-to-point correspondences, especially in the con-
text of scan-to-CAD applications. While our evaluation sig-
nificantly improves alignment on synthetic data, improve-
ments on scan-to-CAD tasks still suffer due to the multi-
stage approach required to achieve these results.

Since SGPCR has been shown to significantly improve
alignment quality with fewer parameters, we hope that it
will serve as a replacement for PointNet or Transformers in
cross-source point cloud registration applications.
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