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Abstract

Understanding the finer details of a 3D object, its con-
tours, is the first step toward a physical understanding of
an object. Many real-world application domains require
adaptable 3D object shape recognition models, usually with
little training data. For this purpose, we develop the first
automatically generated contour labeled dataset, bypassing
manual human labeling. Using this dataset, we study the
performance of current state-of-the-art instance segmenta-
tion algorithms on detecting and labeling the contours. We
produce promising visual results with accurate contour pre-
diction and labeling. We demonstrate that our finely labeled
contours can help downstream tasks in computer vision,
such as 3D reconstruction from a 2D image.

1. Introduction
Computer Vision is filled with many different appli-

cations, like 3D shape understanding, segmentation, and
robotic hand object interaction. For example, in the robot
hand object interaction domain, robots have to adapt to learn
how to pick up, sort, and grasp objects, which is a 3D seg-
mentation and estimation problem. An understanding of
the finer contextual details of these objects, even before
training of the robot, could potentially be very impactful.
Specifically, learning the contact points between a hand and
an object is entirely dependent on an object’s contours and
junctions. Labelling the convexity of each contour and lo-
cating the junctions provides greater insight into the basic
understanding of an object; it is like learning a vocabulary
of simple words that make up larger sentences. This addi-
tional intuition can greatly aid in recognizing novel shapes,
reducing the need for arduous human labelling of real ob-
jects with similar shapes. The primary problem is that no
line labelled datasets currently exist. Thus, our main ob-
jective is to create the first 2D line labelled dataset, using
information from 3D models.

*Equal contribution. Ordering determined at random.

The rules for convexity line labelling are mainly theoret-
ical [30][12][20], making the actual implementation quite
cumbersome and challenging. To bridge the gap in the lit-
erature and create a novel 2D line labelled dataset, we must
formulate a new set of rules such that in practice implemen-
tation is feasible. Consequently, we generate an algorithm
for automatic line labelling, that does not require human
manual labelling power. The algorithm, which assumes
as input a 3D STL mesh model, consists of three unique
stages: contour extraction, contour classification, and con-
tour grouping. We base the Huffman-Clowes [16][9] line
labelling on the Thingi10K dataset [37], due to its rich va-
riety of 3D printed models, compared to other benchmark
datasets like ShapeNetCore [3]. With our automated algo-
rithm, we generate 6,275 labelled 2D instances, originat-
ing from the genus 0 and genus 1 subsets of the Thingi10K
dataset [37]. We convey a method of generating 2D line la-
bels from 3D CAD models, that results in a novel dataset
which can be used for downstream applications.

To illustrate our dataset’s potential, we analyze the
benchmark performance on state of the art segmentation ar-
chitectures, like Mask2former [4] and SOLOv2 [31]. We
also experiment with endpoint prediction in SOLOv2 [31]
and Bézier curve early fusion with Mask2former [4]. Addi-
tionally, for models with no STL meshes where labelling is
not possible, generalization of our 2D segmentation mod-
els is highly important. As a result, we show an ablation
study on seen vs unseen objects in our dataset. We em-
phasize that with only 6,275 data instances, we are able to
achieve promising levels of segmentation performance. To
verify the use of our dataset, we demonstrate the utility for
a 3D reconstruction task. Using the 3DR2N2 RNN based
architecture [7], we show the increase in performance with
the addition of our convexity labels as input to a separate
encoder. Our performed experiments suggest that the uti-
lization of our novel 2D line labelled dataset can be highly
beneficial in downstream tasks in vision.

The main contributions of this paper are summarized as fol-
lows:

3136



Table 1. Dataset statistics

(1) We propose a novel, dataset creating algorithm that
takes as input a 3D STL mesh and outputs 2D extracted,
classified, and grouped contours. This entire process is fully
automated, with no human labelling power required. With a
3D STL mesh, and some additional hyperparameter tuning,
an unlimited amount of 2D labelled data can be generated.

(2) We generate a novel line labelled dataset, consist-
ing of 6,275 labelled instances from the genus 0 and genus
1 subsets of Thingi10K [37]. To our knowledge, this is
the first 2D convexity line labelled dataset. The generated
scenes have various contours, from straight lines to complex
curves, with convexity line labels.

(3) We explore the performance of state of the art
segmentation algorithms, such as Mask2former [4] and
SOLOv2 [31], on our dataset. We study certain ablations
of these architectures as well. Additionally, we show the
results on seen and unseen objects from our dataset.

(4) We verify the utility of our labels by incorporating
them into a 3D reconstruction model, and show the im-
proved performance with the addition of an encoder to an
RNN based architecture [7].

2. Related Work

There is very limited work on the creation of line labelled
datasets. One main work, [15], uses a method to extract
face, edge, visibility, and convexity-concavity information
from a standard BREP CAD format of 3D models [21].
However, rendering of these models at different viewpoints
requires a great deal of processing power and lacks support
in Blender software. As a result, the convexity information
in 2D cannot easily be determined. To aid in this venture
and create an accessible dataset, we develop the faster run-
time, novel methodology described in Section 3 that takes
as input 3D STL meshes.

To understand the benchmark performance on our datset,
we study CNN based contour detectors. For example, [19]
uses a neural network to learn details at multiple scales for
edge boundary prediction. Other CNN based work has fo-
cused on optimized training for contour prediction, and on
classification of difficult edges, like shadows, illumination
differences, and depth edges [25][28]. Fast-RCNN type of
contour detectors also exist. Specifically, Mask-RCNN [14]
has been used to accurately label the boundary of images, in
order to improve segmentation performance [6]. Addition-
ally, SOLOv2 [31] predicts masks by learning a kernel for

Table 2. Automated Labelling errors. Extraction error is computed
over total number of contours extracted. Labelling and grouping
errors are computed over correctly extracted contours.

every grid cell location. Segmentation architectures, like
SOLOv2, are especially advantageous because they allow
us to not only locate contours from our dataset, but also to
classify their convexity type.

We also explore transformer based architectures for our
benchmark study. Transformers are well known for their
high levels of performance in natural language processing
[32][17][27] and vision, due to their self-attention mecha-
nism [18] [22]. For instance, ViT [10] embeds an image as
a sequence of patches and removes convolutions altogether
for image recognition. For object detection, DETR [1] uses
a bipartite matching loss that ensures distinct predictions.
A line detection transformer architecture, LETR [34], uses
a multi-scale encoder and decoder, with a bipartite loss and
distance loss, to accurately classify straight lines in the York
Urban dataset. Moreover, the first edge detection trans-
former, EDTER [26], uses a global transformer to under-
stand higher level details and a local transformer to under-
stand finer details. Finally, for segmentation, Mask2former
[4] uses masked attention and a pixel decoder for quality
mask prediction. As mentioned for SOLOv2, we are es-
pecially motivated by Mask2former, as it can additionally
predict our convexity labels.

We explore related works in 3D reconstruction that take
advantage of invariant geometric properties across 2D view-
points or perform estimation of priors, like depth and sil-
houette to improve reconstruction. For example, [35] en-
forces consistency between perspective transformations of
a predicted 3D shape and its corresponding 2D input obser-
vation. Additionally, [33] is an end-to-end trainable model
that estimates depths, normals, and silhouettes from 2D im-
ages to predict a 3D shape, followed by a reprojection con-
sistency loss. In another work, Front2Back [36] induces
structure and geometric constraints to accurately predict re-
flective symmetry and consistent silhouette from 2D im-
ages. El Banani et al. [11] propose a 3D geometry aware
feature bottleneck for estimating novel viewpoints. Inspired
by these works, we utilize contour properties from our pro-
posed dataset for 3D object reconstruction from single and
multiview images.

3. Dataset

In this section, we describe the process by which we cre-
ate our 2D line labelled dataset, with labelled contours rang-
ing from basic straight lines to complicated curves. Our
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Figure 1. An overview of our dataset pipeline that consists of (I) Contour Extraction, (II) Contour Classification, and (III) Contour Grouping.

fully automated algorithm, as shown in Fig. 1, begins from
3D printed meshes and ends with 2D scenes that contain ex-
tracted, classified, and grouped contours. The final dataset
consists of 6,275 shapes, with the distribution of convexity
in rendered viewpoint images as shown in Table 1. Ad-
ditionally, Table 2 shows error metrics for each stage of the
automated dataset creation pipeline based on a random sam-
ple of 100 images.

3.1. Preliminaries

The Huffman and Clowes line labelling scheme encodes
contour convexity information that is integral for under-
standing 3D scenes [16] [9] [29][24] [2]. Moreover, an en-
tire scene can be fully depicted by the following contours:
(i) Concave: Contours occur when two faces form a val-
ley with respect to the camera. (ii) Convex: Contours occur
when two faces form a ridge with respect to the camera. (iii)
Obscuring: Contours are the combination of occluding and
limb contours. Occluding contours occur when one visible
face with respect to the camera intersects with another face
that is out of view of the camera. Limb contours occur when
a visible surface curves out of view of the camera [23].

3.2. Contour Extraction

Since the CAD models in Thingi10K are presented as
STL models that are defined with 3-dimensional triangular
meshes, we must first develop a method for extracting 3D

contours. Initially, we posit that the intersection of adjacent
triangles forms the set of prospective 3D contours. Note
many of the meshes, especially ones that define cylindrical
and spherical surfaces, contain triangles whose intersection
does not signify the visible presence of a contour. Thus, we
use a surface normal discontinuity to filter these out. Let A
represent the initial set of prospective contours formed from
the intersection of adjacent triangles, and let S represent the
contours in A that adhere to θdisc < 0.2, where θdisc repre-
sents the angle between the surface normals of two adjacent
triangles. Additionally, since we aim to locate the 3D con-
tours that contribute to accurate 2D line labelling, we must
consider cases where a 2D contour results only due to pro-
jection. For instance, the projection of the lateral surface of
a cylinder yields two obscuring (specifically limb) 2D con-
tours that only occur due to projection. Consequently, we
denote the set of 3D contours P , such that P ∈ A, P ̸∈ S,
with P adhering to the rules prescribed for an obscuring
contour. The combination of S and P form the total set of
3D contours.

The software Blender allows us to render 3D models
into 2D scenes, by varying the camera placement and light
source for scene capturing. Naturally, the rendering can re-
sult in cases of occlusion; a point on a 3D contour is con-
sidered occluded, if it is not seen from the camera’s vantage
point. To aid in occlusion detection, we introduce a built-in
Blender function, called ray cast, that determines if a ray
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can travel from the camera to a destination point on a 3D
contour without obstruction. The simplest, yet most time-
consuming method, would be to sample every point along
the 3D contour and determine if it is occluded. Due to time
constraints, we seek a faster run-time solution. An addi-
tional assumption we can make, due to empirical study of
the renderings, is that only one occlusion occurs per con-
tour. As a result, we identify the following main cases of
occlusion for linear Contour C with endpoints c1 and c2: (i)
both endpoints are visible, yet the contour is fully occluded,
(ii) right endpoint occluded, with visible portion of con-
tour containing left endpoint, (iii) left endpoint occluded,
with visible portion of contour containing right endpoint,
(iv) both endpoints are visible, yet occlusion occurs some-
where between c1 and c2.These occlusions are not exhaus-
tive, but are the main ones we saw in genus 0 and genus 1
of Thingi10K.

The formal algorithm is listed as follows. Moving from
left to right along the curve, use a search to locate the first
visible and last visible point, with the ray cast function.
We perform the search by testing Nglobal = 8 points first,
and then performing a confined search, Nlocal = 30, in the
interval where the visibility of the points change. In the
forward search, let ˆc1f be the first visible point and ˆc2f be
the last visible point. Additionally, we perform the same
search in the opposite direction, resulting in ĉ1b as the first
visible point and ĉ2b as the last visible point. We summarize
the cases as follows:

(1) ˆc1f = ˆc2f = c1 and ĉ1b = ĉ2b = c2 → both end-
points are visible, but the full segment is occluded.

(2) ˆc1f = c1 and ˆc2f ̸= c2, and c2 is not visible → right
endpoint occluded, while left part of contour is visible.

(3) ĉ1b = c2 and ĉ2b ̸= c1, and c1 is not visible → left
endpoint occluded, while right part of contour is visible.

(4) ˆc1f = c1, ˆc2f ̸= c2, and ĉ1b = c2, ĉ2b ̸= c1 →
occlusion occurs somewhere between 2 endpoints, resulting
in two contours.

3.3. Contour Classification

In order to classify the Huffman-Clowes contours, we
first subdivide the problem to differentiate between obscur-
ing contours and concave/convex contours. From the pro-
vided convexity definitions, the main discriminator between
the two types are the triangular faces that intersect to form
the contour. If both faces are visible (partially or fully) to
the camera, then the contour is concave/convex. If either
one of the faces is hidden, then the contour is obscuring.
Therefore, determining the visibility of a triangle, amounts
to learning important information about a contour’s convex-
ity.

A brute force solution for determining a triangle’s visi-
bility is by analyzing the ability for an incident ray, from the
camera center, to strike every point within the triangle. As

Figure 2. An example result of the resulting ground truth classifi-
cations (top row) and corresponding groupings (bottom row). In
the top row, ’obscuring’ contours are yellow, ’concave’ contours
are blue, and ’convex’ contours are green.

mentioned in Section 3.2, a ray cast method like this would
be time consuming. As a result, we delineate points along
each angle bisector, as a representative set of points to sam-
ple to determine triangle visibility. Formally, let s1 . . . sn
illustrate sample points along each angle bisector. Consider
again the ray cast function, that returns 1 if the incident
ray can strike point si within the triangle. Consequently,
triangle T is hidden if

∑n
i=1 ray cast(si) = 0, because not

a single ray from the camera was able to strike any point
within the triangle. Otherwise, the triangle is visible. This
method allows us to differentiate completely between ob-
scuring and concave/convex contours.

Next, we follow the Extended Convexity Criterion in the
work by Stein et al. [8] to differentiate between concave
and convex contours. We establish vectors from the camera
origin to each triangle centroid, as vectors x⃗1 and x⃗2. More-
over, the unit displacement vector, d⃗ = x⃗1−x⃗2

||x⃗1−x⃗2|| , and trian-
gle unit normals, n⃗1 and n⃗2, fully establish the convexity of
the contour, as a convex contour occurs when n⃗2 · d⃗ < n⃗1 · d⃗
otherwise it is concave [8]. Final example results of classi-
fication are shown in Fig. 2.

3.4. Contour Grouping

The contours extracted are solely linear, as the curves in
our dataset, to this point, are approximated with finite lines.
In later downstream tasks, like contour detection, this is a
challenge as state of the art segmentation algorithms cannot
detect such small segments. In order to fully leverage the
potential of our line labelled dataset, we group the smaller
linear segments that form a particular curve. Formally, we
construct a weighted graph G = (V, E), where each contour
is a node and each junction connecting two contours is an
edge. The associated cost for each edge is the local curva-
ture, which is measured by the angle between the two con-
tours’ unit normals. The objective is to link graph nodes, in
such a way that minimizes the total cost, in order to formu-
late the minimum spanning tree (MST) [13]. The specifics
of the grouping algorithm are defined as follows:

- We initialize a heap that designates each contour’s
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Metric Seen - mAP
mAP obscuring convex concave

SOLOv2 22.79 30.24 27.54 10.37
SOLOv2 + endpoint 23.54 31.68 29.82 12.65

Mask2former 27.3 37.43 33.87 12.19
Mask2former + earlyfusion 29.37 42.31 30.38 15.04

Table 3. Quantitative mAP results for seen models.

Metric Unseen - mAP
mAP obscuring convex concave

SOLOv2 17.46 27.73 20.47 5.15
SOLOv2 + endpoint 20.19 24.15 29.82 7.70

Mask2former 22.3 27.15 26.93 12.34
Mask2former + earlyfusion 23.1 28.21 27.80 11.23

Table 4. Quantitative mAP results for unseen models.

grouping priority, which is dependent on its number of
neighbors and local curvature. The need for this ordering is
essential, as we are more inclined to group ”easier” contours
that have little curvature differences, rather than ”harder”
contours closer to junctions. As each contour is popped off
the heap, we deem if linking with its neighbors is necessary.
We link contours A and B iff:

cost(A,B) =

{
0 l(A) = l(B), θAB < Cthresh

1 otherwise
(1)

where l(·) returns the contour’s label, θAB is the angle be-
tween contours A and B’s unit normals, and Cthresh is a
grouping threshold that determines if grouping is necessary.
In order to minimize the total cost, the first condition must
be satisfied for grouping to occur.

- The linking of two contours, A and B, results in super
contour AB with unit normal ˆcAB , which is the mean of ĉA
and ĉB , and label l(AB) = l(A) = l(B). Future linking
of super contours must adhere to the cost expression, with
grouping for a super contour with its neighbor concluding
when the cost for linking is 1. Overall grouping is con-
cluded, when super contours can no longer be combined.

- We further link super contours at a local level, as the or-
der of initial grouping influences group generation. To this
end, we introduce the following criteria to perform addi-
tional grouping for super contours X and Y : (i) The labels
must match, l(X) = l(Y ). (ii) If Y is X’s right neigh-
bor and X is Y ’s left neighbor, then Y must be the only
right neighbor and X must be the only left neighbor. (iii)
For given contours x ∈ X and y ∈ Y , such that x and y
are direct neighbors, the angle between their respective unit
normals, θxy , must adhere to the condition θxy < Cthresh2.
Final example results of grouping are shown in Fig. 2.

4. Contour Labelling by Prediction

Consider 2D scenes, where 3D models do not exist for
automated labelling. To analyze the convexity in these new
scenes, we need a generalizable segmentation algorithm
trained on our novel dataset. In this section, we aim to
(1) understand the SOTA segmentation performance on our
dataset and (2) analyze the performance on seen and unseen
models, for understanding generalizability.

4.1. Approach

In order to formulate this as a segmentation problem,
each contour C is dilated to form mask M , which has a
thickness of 6 pixels wide. Since humans are able to clas-
sify the contour type by merely looking at the local context
around a contour, the dilated masks preserve features like
shading and reflectance. Moreover, each mask M is given
a label of concave, convex, or obscuring. In order to avoid
memorization of the boundaries and enhance generalization
performance, we add ImageNet images as background clut-
ter to the rendered 2D images.

We choose SOLOv2 [31] and Mask2former [5] as our
state of the art architectures. These architectures are the
top performing baselines and are representative of architec-
tures that perform dynamic and attention based mask learn-
ing. Specifically, SOLOv2 [31] predicts a mask by learn-
ing a kernel for every location in a grid cell. Mask2former
[4] uses masked attention to extract context features and
a high quality pixel decoder that provides high resolution
features for quality mask prediction. Furthermore, we per-
form ablation studies on these two architectures, as we seek
to incorporate more contour specific information. For ex-
ample, we add an endpoint regression step to SOLOv2
[31], which not only predicts the segmentation, like base-
line SOLOv2 does, but it also predicts the endpoints of
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Figure 3. Visualization results for Mask2former [5] with early fusion. ’og’ represents obscuring, ’cx’ represents convex and ’ce’ represents
concave.

the contours. The idea is to provide a bottom up signal
for potential downstream tasks, and also reduce confusion
near junctions. For Mask2former [4], we experiment with
early fusion with Bézier curve data. Contrary to baseline
Mask2former, which is trained on just RGB 3 channel in-
puts, this Mask2former is trained with an additional chan-
nel representing the Bézier curve masks. The Bézier mask,
in the new 4 channel input, provides a positional prior that
can aid in finding the location of curved contours. Also, the
Bézier masks are generated solely on the foreground ob-
jects and not with background clutter. Ultimately, Bézier

curve analysis and Transformers are rooted in token-based
symbolic reasoning, making them suitable for an integrated
fusion in the computation path.

4.2. Experiments

In this subsection, we evaluate the regression ability of
the instance segmentation frameworks, on both seen and un-
seen objects.

Dataset - We generate two types of data: 1)Unseen mod-
els - Data is randomly split such that each split has a disjoint
set of models, (2) Seen models - Data is randomly split such
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Figure 4. Modified Architecture of 3DR2N2 [7], for single view, with latent encoder fusion.

that the splits have overlapping models.
Metrics - Mean Average Precision(mAP) and Contour

Accuracy(CA) are used as metrics for evaluation. mAP is
the mean Average Precision metric commonly used in in-
stance segmentation frameworks. We calculate a labelwise
mAP metric too. CA is calculated as the IoU overlap be-
tween the detected contour mask and ground truth contour
mask, after matching detections to the groundtruth.

Results - The obtained results are given in Tables 3 and
4. For SOLOv2 [31], it is observed that adding an endpoint
regression loss improves performance, compared to base-
line SOLOv2. In Mask2former [5], early fusion with Bézier
data also helps improve performance, compared to baseline
Mask2former. Also, concave and convex contour predic-
tions generalize well, as the unseen and seen mAP num-
bers across architecture are very similar. Finally, comparing
the mAP from both tables, we observe that Mask2former
+ earlyfusion has the best performance for contour predic-
tion in both seen and unseen cases. For further analysis,
we compute the CA metric on the Mask2former + early fu-
sion model. For seen objects, the CA is 0.81, whereas for
unseen objects the CA is 0.74. The numbers denote signif-
icant overlap with the ground truth mask, indicating a high
quality of predictions. Visualizations of contour predictions
on both categories are shown in Fig 3. Through this analy-
sis, we determine that (1) Mask2former + earlyfusion is the
best performing SOTA method and (2) its performance is
better on seen data than on unseen data, revealing its gener-
alization performance.

5. Application for 3D Reconstruction

In this section, we demonstrate the utility of our gener-
ated dataset to improve performance for a 3D reconstruction
task on Thingi10K [37].

5.1. Approach

For our task, we adapt the framework in 3DR2N2 [7],
a recurrent neural network based model that takes as in-
put a sequence of image viewpoints, or a single view-
point, and outputs a 3D voxelized reconstruction. Since
other algorithms use either point-cloud or mesh represen-
tations, and require engineering for additional input modal-
ities, 3DR2NR allows us to directly quantify the impact of
our dataset. In order to incorporate our labels, we mod-
ify the architecture as shown in Fig. 4, with a single view-
point as input for illustration. Instead of a single encoder,
we propose two encoders to account for the difference in
the modality type of the inputs. Thus, the input to the first
encoder is V , or up to 10 randomly sampled unique view-
points for a particular model. The input to the second en-
coder is C, or a 3 channel binary mask image, where each
channel is a binary mask for the label type. After initial
processing, the output latent vectors from the encoders are
fused together to encode both the shape and local contour
features. The resulting vector is then decoded using a 3D
Convolutional LSTM and a 3D Convolutional Decoder to
output voxel occupancy probabilities.

In [7]’s experiments involving ShapeNet [3], each cate-
gory consists of over 1000 views available for training. In
our case, we are limited to around 10 views per model, with
rarely any overlap in model category. Since we have fewer
viewpoints, we aim to improve generalization performance
by applying various types of transformations to our input,
such as random crop, resize, flip, and rotation.

5.2. Experiments

To validate our approach, we choose the 3D-LSTM-3 ar-
chitecture in [7] as the baseline. Our experiments aim to
address two questions - 1)How does the proposed dataset
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Model I:256, V:32 I:256, V:64 I:128, V:32 I:128, V:64
seen unseen seen unseen seen unseen seen unseen

3DR2N2 0.45 0.23 0.47 0.27 0.43 0.21 0.33 0.18
3DR2N2 + contour labels 0.53 0.31 0.55 0.40 0.51 0.26 0.50 0.25

Table 5. Iou for varying input image size and varying output voxel sizes for baseline vs modified architecture.

Figure 5. Visualization comparison of 3DR2NR with labels (Ours), 3DR2N2 (Baseline), and Ground Truth. The first 2 columns are for
seen objects and the latter 2 columns are for unseen objects.

perform in the task of 3D reconstruction? and 2)How does
the proposed dataset affect generalization to different view-
points for both seen and unseen objects?

Dataset - We use the same dataset written in Section 4.1,
but with splits (80/10/10 %).

Metric - We use the Intersection over Union (IoU) metric
to evaluate our 3D reconstruction performance. IoU calcu-
lates the voxel similarity between the thresholded prediction
and groundtruth voxel.

Results - As shown in Table 5, we see that our added
labels improve IoU performance across every input image
size and voxel size, for both seen and unseen models. This
is consistent with prior works that use geometry informa-
tion to improve reconstruction. Specifically, in our case
we encode contour convexity information in 3DR2NR to
remove some ambiguity in reconstruction [36] [33]. A vi-
sual comparison of the improvement with our added labels
is shown in Fig.5. Clearly, quantitatively and qualitatively,
our added convexity information is highly beneficial. This
is especially impressive because Thingi10K is a challeng-
ing dataset for reconstruction, because it consists of very
diverse shapes, varying in size, appearance, and geometry.
Such an improvement in a challenging task illustrates the

utility of our 2D contour labelled dataset, and highlights the
importance of its creation.

6. Conclusion
With an entirely automated algorithm, we create the first

ever 2D line labelled dataset that requires no human man-
ual labelling power. Assuming a 3D STL mesh as input, we
demonstrate the ability to generate rendered 2D scenes that
contain extracted, classified, and grouped contours. Our
6,275 instance dataset, formed from a subset of genus 0 and
genus 1 of Thingi10K, is especially advantageous for its po-
tential use in other vision downstream tasks. For situations
where 3D CAD models do not exist, a 2D contour detection
framework is valuable. We are able to demonstrate good
performance of state of the art segmentation algorithms for
predicting contour labels on our line labelled dataset. Fi-
nally, we show the utility of our dataset for a 3D reconstruc-
tion task. We believe that our line labelled dataset serves as
a foundational tool for greater object understanding.
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