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Abstract

Learning an effective outfit-level representation is crit-
ical for predicting the compatibility of items in an outfit,
and retrieving complementary items for a partial outfit. We
present a framework, OutfitTransformer, that uses the pro-
posed task-specific tokens and leverages the self-attention
mechanism to learn effective outfit-level representations en-
coding the compatibility relations between all items in the
entire outfit for addressing both compatibility prediction
and complementary item retrieval. For compatibility pre-
diction, we design an outfit token to capture a global out-
fit representation and train the framework using a classifi-
cation loss. For complementary item retrieval, we design
a target item token that additionally takes the target item
specification (in the form of a category or text description)
into consideration. We train our framework using a pro-
posed set-wise outfit ranking loss to generate a target item
embedding given an outfit, and a target item specification
as inputs. The generated target item embedding is then used
to retrieve compatible items that match the rest of the out-
fit. Additionally, we adopt a pre-training approach and a
curriculum learning strategy to improve retrieval perfor-
mance. Experiments show that our approach outperforms
state-of-the-art methods on compatibility prediction, fill-in-
the-blank, and complementary item retrieval tasks.

1. Introduction
Two main tasks for a fashion outfit recommendation

system are fashion compatibility prediction and large-scale
complementary item retrieval. For compatibility prediction
(CP), the task is to determine whether a set of fashion items
in an outfit go well together. For complementary item re-
trieval (CIR), the task is to complete a partial outfit by find-
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Figure 1. OutfitTransformer learns an outfit-level representation
for a set of outfit items to address the CP and CIR tasks. For CIR,
it learns a single embedding encoding overall compatibility of the
partial outfit, and a target item description that is used to retrieve
compatible items cohesively matching the entire outfit using KNN
search. For CP, it learns an outfit-level representation capturing
overall outfit compatibility to predict a compatibility score.

ing a compatible item from a large database. Given an out-
fit, we want to predict how well its constituent items go to-
gether. Also, given a partial outfit with different items (such
as a bag, shoes, and pants) and a target item description
(e.g., “top”), we want to retrieve compatible items to com-
plete the outfit. Figure 1 illustrates our proposed method.

Prior work such as [28, 27, 25, 22, 34] addresses the pair-
wise item-level compatibility problem and achieves state-
of-the-art results but does not explicitly model outfit-level
compatibility. Some methods optimize for compatibility at
an outfit-level [9, 6, 11, 12, 5]. However, these approaches
are mainly designed for classification tasks: compatibility
prediction and fill-in-the-blank (FITB) but they do not ad-
dress the large-scale CIR task. CSA-Net [16] proposes a
method for large-scale CIR, but it does not learn an outfit-
level representation that can explicitly capture compatibility
of a target item to the outfit as a whole. It searches compat-
ible items for each item in the outfit at a paired-category
level (e.g., top to shoe, bottom to shoe) and fuses the rank-
ing scores for the query items to obtain the final rankings.

Instead, our idea is to learn an outfit-level representation
for both compatibility prediction and large-scale retrieval of
complementary items. Here, we investigate a transformer-
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based architecture to learn the outfit-level embeddings for
the CIR task, as this architecture shows better outfit com-
patibility prediction performance than the Bi-LSTM [9] and
GCN-based [6] architectures (cf. Table 1). Specifically for
CIR, the target item should cohesively match all the ex-
isting items in an outfit. Using outfit-level representations
can more effectively capture complex feature correlations
among multiple items in the outfit, as opposed to consider-
ing pairs of items at a time. Additionally, users may spec-
ify their preference for the target item in the form of a tar-
get category (e.g., top) or the text descriptions (e.g., full
sleeve shirt with floral design), and our system is able to re-
trieve the complementary items that match it. We design our
framework to learn a target item embedding that operates at
the outfit-level and encodes both the overall compatibility
of a partial outfit, and the target item specification. We pose
this as a set-to-item compatibility learning problem where
we model the outfit as a set of items, and extract a single
target item embedding to search for complementary items.

The outfit representation learnt for both tasks is invariant
to the order of the items, i.e., permutation of the order of the
outfit items should generate the same representation. The
transformer is a suitable choice for our framework because
it captures the higher-order relationships (beyond pairwise)
between all constituent items in the outfit and is able to take
unordered items as input.

For the task of CP, we train the OutfitTransformer with
a classification loss and design an outfit token to capture
a global outfit representation that encodes the compatibil-
ity relationships among all the items in the outfit. For CIR,
we design a target item token that encodes both the com-
patibility of the partial outfit and a target item description
to generate the embedding of the target item. This embed-
ding is used to retrieve compatible items from a database.
We train our framework using a proposed set-wise outfit
ranking loss, which encourages compatible items to be em-
bedded closer to the overall representation of a set of outfit
items. Our design allows extraction of a single target item
embedding enabling large-scale indexing and retrieval. 1

Directly training on the retrieval task leads to poor per-
formance, since the network does not have any prior knowl-
edge regarding compatibility of the partial outfit. To alle-
viate this problem, we facilitate OutfitTransformer to learn
compatibility relationships by pre-training it on the CP task.
We find that this improves retrieval performance signifi-
cantly (cf. Table 4(a)). In addition, we propose a cur-
riculum learning strategy to hierarchically sample more in-
formative negative examples which further boosts retrieval
performance (cf. Table 4(b)).

1The framework needs to be designed in a way such that it allows indi-
vidual item embedding extraction (which should not depend on the query
image during indexing like SCE-Net [22]) to support large-scale indexing
for KNN search. (cf. Sec 3.2.3).

We evaluate our method on the public Polyvore Out-
fits dataset [25]. Experimental results show that our ap-
proach outperforms state-of-the-art techniques in compat-
ibility prediction, fill-in-the-blank (FITB), and complemen-
tary item retrieval tasks. In Section 4, we demonstrate that
our framework can retrieve complementary items based on
the target item category or description.

In summary, our main technical contributions are:

• We propose a new framework, OutfitTransformer, that
effectively learns outfit-level representations, which is
shown experimentally to outperform state-of-the-art
methods on both compatibility prediction (CP) and
complementary item retrieval (CIR) tasks.

• We propose task-specific tokens to support both CP
and CIR. For CP, the outfit token is designed to capture
a global outfit representation. For CIR, the target item
token additionally takes the target specification (in the
form of category or free-form text) into account.

• Our framework learns a single embedding that enables
large-scale indexing and retrieval for complementary
items, and has smaller indexing size than previous ap-
proaches ([16, 25]) which use subspace embeddings.

• We provide in-depth analysis of different design
choices (pre-training and curriculum learning) to im-
prove retrieval performance.

2. Related Work
Outfit Compatibility Prediction. Prior work on fash-

ion outfit compatibility often considers pairwise item com-
parisons and aggregates item-level scores to predict the fi-
nal compatibility score [28, 27, 25, 22, 34]. To add global
constraints, a number of methods [9, 6, 12, 5] aggregate
inputs from all constituent items. Han et al. [9] use a BiL-
STM to model outfit composition as a sequential process,
considering outfits as ordered sequences. However, out-
fit compatibility should be invariant to the order of items.
Some recent approaches [6, 7] use a graph convolutional
network (GCN) for CP. Cucurull et al. [6] train a GCN that
generates embeddings conditioned on the representations of
neighboring nodes and predict the outfit compatibility but
require large neighbor information for best performance,
which is impractical for new items as mentioned in [16].
Cui et al. [7] model an outfit as a graph, where each node
represents a category and each edge represents interaction
between two categories. Chen et al. [5] (hrta. POG) pro-
pose a transformer-based encoder-decoder architecture for
generating compatible outfits that are specifically designed
for personalization based on historical clicks data. All these
approaches [9, 6, 7, 5] are mainly designed for classification
tasks (CP and FITB [9]) but do not address large-scale CIR.
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Outfit Complementary Item Retrieval. Although the CP
score in prior methods can be used for ranking items, it is
impractical to do so in a large-scale setting. The framework
must support indexing to avoid linearly scanning the entire
database. Lin et al. [16] addresses large-scale CIR and re-
trieves items by considering compatibility between the tar-
get item and every item in an outfit in a pairwise manner,
and then aggregating the scores. However, they do not con-
sider the outfit as a whole and only use attention at a paired-
category level. In contrast, we use a transformer model
to capture interactions between all the items in an outfit to
learn a global outfit representation. Also, our method has a
much smaller indexing size than [16] which is important for
practical applications (cf. Section 3.2.3). Lorbert et al. [17]
use a single layer self-attention based framework for outfit
generation but do not explicitly model compatibility.
Attention-Based Methods and Vision Transformers
(ViT): Transformers have been used in a wide variety of
computer vision tasks [3, 30, 18, 32]. ViT [8] and related
models [24, 33, 4] decompose each image into an ordered
sequence of smaller patches to learn image representation of
a single image. On the contrary, we model outfits as an un-
ordered set of different item images and use a transformer-
based architecture to learn a global outfit representation that
captures overall outfit compatibility. As discussed earlier,
attention mechanisms [16, 23, 5, 17] have also been used in
fashion recommendation systems. [16, 23] use attention to
understand complementary relationships in a pairwise man-
ner. In contrast, we use a transformer model to learn inter-
actions between all the items in an outfit, which attends to
higher-order compatibility relationships [13] beyond pair-
wise [25, 16, 22]. Both POG [5] and [17] use pretrained
ImageNet embeddings, while we learn fashion-specific fea-
tures by training in an end-to-end manner.
Distance Metric Learning: CIR is different from visual
similarity search because the complementary item is from a
different category and is visually dissimilar from the other
items in an outfit. We specifically design a negative sam-
pling strategy for CIR where we sample negatives from the
same category as positives, unlike [20, 21]. Also, in con-
trast to [22, 25, 16], which consider pair-wise compatibility
between target items and each individual item in the out-
fit, we propose a set-wise outfit ranking loss that compares
target items with a single embedding for the entire outfit.

3. Proposed Approach
Figure 2 illustrates the overview of our framework. Our

framework takes as input each outfit’s constituent item im-
ages and their text descriptions. For CP, we train the trans-
former encoder to generate a global outfit representation
that can capture higher-order compatibility relationships be-
tween all items in the outfit beyond pairwise relationships.
This global outfit representation can then be used to predict

an outfit compatibility score (details in Section 3.1).
For CIR, given a partial outfit and a target item descrip-

tion (e.g., product category or description), we train the
transformer encoder to generate a target item embedding,
which can be used to retrieve items that are compatible with
the partial outfit and match the target item description. The
framework is trained using a proposed ranking loss that en-
forces the target item embedding to move closer to the pos-
itive item and further apart from the negative items. The
positive item matches the global style of the overall outfit,
whereas the negatives are incompatible with the outfit (de-
tails in Section 3.2).

We investigate different training strategies to improve
retrieval performance. We employ a pre-training strategy
where we first train the model on the CP task as mentioned
in Section 3.2.1. We also adopt curriculum learning to se-
lect more informative negative samples in different training
stages. The details are presented in the Section 3.2.2.

3.1. Fashion Outfit Compatibility Prediction

The compatibility prediction task predicts the compat-
ibility of all the items in an outfit. Given an outfit O =
{(Ii,Ti)}Li=1, where Ii is the image, Ti is the correspond-
ing text description for an item i. We learn a non-linear
function that predicts a compatibility score in [0, 1], where
1 indicates perfect compatibility.

As shown in Figure 2 (a), the item images and their text
descriptions are fed into an image (Eimg) and text encoder
(Etext) respectively to extract the image and text feature
vectors (see Section 3.3 for details about the image and text
encoder architecture). We concatenate the extracted image
and text feature vectors to generate an item feature vector
ui = Eimg (Ii) ∥ Etext (Ti), where ∥ denotes a concatena-
tion operation. The set F = {ui}Li=1 represents the feature
vectors of all the items in an outfit.

Since the goal of ViT [8] is to produce a classification
score for an image, a classifier token is typically used to
capture a single image representation from the input image
patches. In contrast, we introduce the outfit token whose
state at the output of the transformer encoder serves as the
global outfit representation. The goal of introducing this to-
ken is to learn a global outfit representation that captures
compatibility relationships between items in the outfit us-
ing the self-attention mechanism. We model outfits as an
unordered set of items as the overall outfit compatibility is
invariant to the order of the items. Thus, positional encod-
ings used in NLP [26] and ViT [8] are not required for us.

The outfit token (xOutfit) is a learnable embedding that
is prepended to the set of outfit feature vectors F and fed
into the transformer encoder Etrans. The state of the outfit
token at the output of the transformer encoder serves as the
global outfit representation which is subsequently fed into
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(a) Compatibility prediction (b) Complementary item retrieval
Figure 2. System overview of our framework for compatibility prediction and complementary item retrieval. We model outfits as an
unordered set of items. We use an image encoder (Eimg) and a text encoder (Etext) to extract the image and text features. (a) For
compatibility prediction, we train the transformer encoder using a focal loss [15] and learn a global outfit representation to predict an outfit
compatibility score. (b) For complementary item retrieval, given an outfit and a target item description, we train the transformer encoder
to learn a target item embedding that can be used for retrieving compatible items to complete an outfit. We train the framework using the
proposed set-wise outfit ranking loss in an end-to-end manner. The details of set-wise ranking loss are explained in Section 3.2.2.

the MLP that predicts an overall outfit compatibility score:

c = MLP (Etrans (xOutfit, F )) (1)

Our framework (Etrans, Eimg, Etext) is trained end-to-
end using focal loss [15].

3.2. Complementary Item Retrieval

The complementary item retrieval task is to retrieve an
item that is both compatible with the partial outfit and
matches a specified item description to complete the out-
fit. Specifically, given a set of partial outfit items and a user
provided target item specification, the goal is to generate
a target item embedding that can be used to retrieve com-
patible items. Our framework is trained with a proposed
set-wise outfit ranking loss (details in Section 3.2.2).

The target item token s (cf. Figure 2 (b)) includes an item
description T for the target item that we want to retrieve,
and an empty image represented by xImg. The target item
token is defined as s = xImg ∥ Etext (T).

The intuition behind designing the target item token in
this manner is that, during inference, the target image is
unknown but users can provide a description for the item
they are searching for. We simulate a similar setting when
training the framework for the retrieval task. We introduce
the target item token whose state at the output of the trans-
former encoder serves as the target item representation that
explicitly takes into consideration both compatibility with

the partial outfit, and the target item description. Our frame-
work is generic and the target item description can be pro-
vided in different forms such as category, text, tags, etc.

The transformer encoder takes as input the set of feature
vectors F of the partial outfit, and the target item specifica-
tion s, which is subsequently fed into a MLP that generates
the target item embedding.

t = MLP (Etrans (s,F )) (2)

To learn this target item embedding, we train our frame-
work with a proposed set-wise outfit ranking loss which is
discussed in Section 3.2.2.

3.2.1 Pre-training on Compatibility Prediction

We pre-train the framework on the CP task and use the
learned weights to initialize the transformer, image and
text encoder for complementary item retrieval. This choice
leads to a significant improvement for CIR (cf. Table 4(a)).

We conjecture that the reasons might be: 1) the pre-
trained transformer encoder captures compatibility relation-
ships, which is helpful for encoding them into the target
item embedding to retrieve compatible items, and 2) the
image encoder captures fashion-specific features, which is
used to extract better feature vectors for positive and nega-
tive samples in the set-wise outfit ranking loss.
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Figure 3. Comparison of pair-wise outfit ranking loss [16] and our
set-wise outfit ranking loss. Our framework generates a single tar-
get item embedding that captures the compatibility of the entire
outfit and does not need pairwise computations with individual
items in the outfit as in [16].

3.2.2 Set-wise Outfit Ranking Loss

Previous approaches ([25], [22]) use a triplet loss to learn
relationships only between a pair of items but do not con-
sider the relationship between all items in the outfit. To
address this, the outfit ranking loss [16] is proposed which
considers the pairwise compatibility of target items with all
the items in the outfit, as shown in Figure 3 (a). In contrast,
our approach generates a single target item embedding t that
already captures the compatibility relations for a set of out-
fit items and hence does not require pairwise comparisons
with individual outfit items, as shown in Figure 3 (b).

In practice, only legitimate outfit samples are provided
in the dataset, and there are no annotated negative samples.
Given an outfit we randomly pick an item as positive and
the remaining items as the partial outfit. Here, we investi-
gate a curriculum learning approach to gradually increase
the difficulty of negatives for training. Specifically, we train
the model in two stages. In the first stage, we sample the
negatives from the same high-level category as the posi-
tive item. Subsequently in the second stage, we sample
harder negatives from more fine-grained categories. Note
that since CIR is different from visual similarity search, our
negatives are different from the conventional way of con-
structing triplets (e.g., [20, 21]), where negatives are sam-
pled from other classes.

The set-wise outfit ranking loss is designed to optimize
relative distances between samples such that the target item
embedding moves closer to the positive embedding and far-
ther apart from the negative embeddings. Note that we use
the pre-trained image and text encoders (cf. Sec. 3.2.1)
to extract the positive and negative embeddings. Because
we have a single target item embedding that encodes the
compatibility of the entire outfit, we can directly train our
set-wise ranking loss using triplets without requiring pair-
wise computations as [16]. The set-wise outfit ranking loss
is defined as:

L (t, p,N) = L(t, p,N)All + L(t, p,N)Hard (3)

L(t, p,N)All =
1

|N |

|N |∑
j=1

[
d (t, fp)− d

(
t, fN

j

)
+m

]
+

L(t, p,N)Hard =

[
d (t, fp)− min

j=1...|N |
d
(
t, fN

j

)
+m

]
+

where []+ is the hinge loss, t is the target item embedding,
fp is the positive embedding, fN

j is the jth negative embed-
ding from the pool of negatives in N , and m is the margin.

The loss has two components as shown in Equation (3).
The first component L(t, p,N)All considers all the sam-
pled negatives for the outfit, while the second component
L(t, p,N)Hard considers the hard negative samples (e.g.,
[31, 21]). This allows the model to learn discriminatory fea-
tures to distinguish between items that might have very sub-
tle differences between them. We empirically find that this
loss formulation and the hard negative sampling strategy
improves complementary item retrieval performance signif-
icantly (cf. Tables 4(b), 5). There are other sampling meth-
ods that could potentially be used (e.g., [29]), but the inves-
tigation thereof is outside the scope of this paper.

3.2.3 Indexing and Retrieval of complementary items

Not all the methods for CP can support indexing for re-
trieval. For example, SCE-Net [22] requires pairs of im-
ages as inputs, which does not allow single item embed-
ding extraction for indexing. We design our framework in
a way that allows extraction of individual item feature vec-
tors during indexing and generate a single item embedding
during inference. Based on our design, we can use off-the-
shelf KNN search tools (e.g., [1, 2]) to perform indexing
and retrieval, which makes the search very efficient even
for a large database (e.g., with millions of items). Specif-
ically, during indexing, we use the trained image and text
encoder to extract the item features. This does not depend
on the query images unlike [22]. During inference, given
the partial outfit and a target item description, our frame-
work generates a single target item embedding, which is
then used to search for compatible items from the database
using KNN search.

Our framework offers two advantages as compared to
prior works. First, we require smaller indexing size com-
pared to previous approaches that use subspace embed-
dings. For indexing, Type-aware [25] and CSA-Net [16]
generate multiple embeddings of each item for each of
the target categories and therefore the indexing size grows
linearly with the number of categories. Because we are
not learning subspaces, our approach is independent of
the number of categories. Second, in [16], for each item
in the outfit, a target category-specific embedding is ex-
tracted, which is used to retrieve compatible items from the
database. This has to be repeated exhaustively for each item
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Method Features PO-D PO

BiLSTM + VSE [9] ResNet-18 + Text 0.62 0.65
GCN (k=0) [14] ResNet-18 0.67 0.68
SiameseNet [25] ResNet-18 0.81 0.81
Type-Aware [25] ResNet-18 + Text 0.84 0.86
SCE-Net [22] ResNet-18 + Text - 0.91
CSA-Net [16] ResNet-18 0.87 0.91

OutfitTransf. (Ours) ResNet-18 0.87 0.92
OutfitTransf. (Ours) ResNet-18 + Text 0.88 0.93

Table 1. Comparison of our model with state-of-the-art methods on
the CP task using the AUC metric [9]. The methods are evaluated
on Polyvore-Outfits (where -D denotes the disjoint dataset).

in the query outfit. In contrast, our framework can retrieve
items in a single step regardless of outfit length.

3.3. Implementation Details

The image encoder uses a ResNet-18 initialized with Im-
ageNet pre-trained weights. The text encoder uses a pre-
trained SentenceBERT [19], on top of which we add a fc
layer. During training, we finetune the weights of the im-
age encoder and the fc layer of the text encoder. We ex-
tract a 64-dimensional image and a 64-dimensional text em-
bedding and concatenate them to generate 128-dimensional
item embeddings before feeding them into the transformer
encoder. We use a six-layer transformer encoder with 16
heads. For the retrieval task, we set the margin m for the
set-wise outfit ranking loss as 2 and sample 10 negatives for
each outfit. We use a batch size of 50 and optimize using
ADAM with an initial learning rate of 1e−5 and reducing
the learning rate by half in steps of 10.

4. Experiments

We compare our proposed approach with the state-of-
the-art baselines such as Bi-LSTM [9], GCN [6], Siame-
seNet [27], Type-aware [25] , SCE-Net [22] and CSA-Net
[16] on the Polyvore Outfits dataset [25]. For evaluation,
we compare our method with these state-of-the-art baselines
on three different tasks: (1) Compatibility Prediction (CP)
task that predicts the compatibility of items in an outfit. (2)
Fill in the Blank (FITB) task that selects the most compat-
ible item for an incomplete outfit given a set of candidate
choices (e.g., 4 candidates). (3) Complementary Item Re-
trieval (CIR) task that retrieves complementary items from
the database for a target category given an incomplete outfit.

The Polyvore Outfits dataset [25] has two sets, the dis-
joint and non-disjoint sets. In the disjoint set, the training
split items (and outfits) do not overlap with the validation
and test splits. In the non-disjoint set, the training split
items can overlap with those of validation and test splits, but
outfits do not overlap. The non-disjoint set contains 53306

training and 10000 test outfits, while the disjoint set com-
prises of 16995 training and 15154 test outfits.

For the standard compatibility prediction and FITB
tasks, we evaluate our model on the Polyvore Outfits
dataset. Since the Polyvore Outfits dataset does not provide
the annotations for the complementary item retrieval task,
we adopt a modified version of the Polyvore Outfits dataset
proposed by CSA-Net [16].

4.1. Outfit Compatibility Prediction (CP)

The goal of this task is to measure the compatibility of
an outfit. Our compatibility model in Figure 2 (a) predicts
a score that indicates the compatibility of the overall out-
fit. We compare the performance with the state-of-the-art
methods in Table 1 by using the standard metric AUC [9],
which measures the area under the receiver operating char-
acteristic curve.2 While Bi-LSTM models outfits as a se-
quence of items, SiameseNet, Type-Aware, CSA-Net and
SCE-Net learn pairwise compatibility of items and aggre-
gates the pairwise compatibility scores for all possible pairs
in an outfit to learn the compatibility. On the contrary, we
use self-attention to learn high-order compatibility relation-
ships between outfit items. We observe that using just image
features; we outperform other methods that use both image
and text features on the compatibility prediction task. Using
text features boosts performance further.

The methods [25, 22, 16] employ a pairwise model
where they require careful selection of negatives and data
augmentation. Our approach uses the outfit compatibility
data provided without using any additional strategies and
still outperforms the state of the art methods. From Table 1,
we observe that transformers can learn better compatibility
relationships than other methods [6, 9] that learn compati-
bility at an outfit-level.

4.2. FITB and Complementary Item Retrieval(CIR)

FITB and CIR tasks deal with completing an outfit.
While for FITB, the task is to select the best item among
a fixed set of choices that goes well with an outfit, for CIR,
the task is to choose the best item from the entire database.
For the FITB task we use accuracy and for retrieval we use
recall@top-k (abbreviated as R@k) as the metric.

Lobert et al. [17] propose to use pre-trained ImageNet
embeddings and category for retrieval using self-attention.
For evaluation, we adopt their strategy using our own imple-

2The authors do not report the performance of SCE-Net [22] on the
disjoint dataset. We report the performance of [6] from the paper [14]
as the authors report performance on Maryland Polyvore [9] but not on
Polyvore Outfits dataset [25]. [6] requires information from a large number
of neighbors in a catalog for best performance, which is impractical for
our setting because we do not have prior knowledge about connections
between each new item to the existing items, as mentioned in [16]. So, we
use k=0 (no neighbors) for a fair comparison.
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Method Polyvore Outfits-D Polyvore Outfits

FITB R@10 R@30 R@50 FITB R@10 R@30 R@50

Type-Aware [25] 55.65 3.66 8.26 11.98 57.83 3.50 8.56 12.66
SCE-Net Average [22] 53.67 4.41 9.85 13.87 59.07 5.10 11.20 15.93
CSA-Net [16] 59.26 5.93 12.31 17.85 63.73 8.27 15.67 20.91

OutfitTransformer (Ours) 59.48 6.53 12.12 16.64 67.10 9.58 17.96 21.98
Table 2. Comparison of our model with state-of-the-art methods on the FITB (using accuracy) and CIR tasks (using recall@top-k).

mentation using a transformer 3 and observe that their FITB
accuracy on the Polyvore Outfits dataset is 41.61%. We in-
vestigate several strategies such as pre-training on the com-
patibility prediction task, curriculum learning, a different
loss formulation and observe a significant improvement in
FITB performance. Our method yields a FITB performance
of 58.92% when using images and category and 67.10 %
using images and text.

For retrieval, we use the same testing setup as CSA-Net
[16], and compare the performance of our method with the

3 Their code is not publicly available and they did not report numbers
on the Polyvore Outfits dataset.

(a) Queries provided as category

(b) Queries provided as free-form text
Figure 4. For the partial outfit and the target category, (a) shows
the top-5 retrieved complementary items. The ground truth is indi-
cated by the green bounding box. Similarly, for each partial outfit
and a text-based query, (b) shows the top-5 retrieved items that are
both compatible with the outfit and matches the text query.

state of the art methods CSA-Net [16], Type-aware [25] and
SCE-Net average [22]4 For evaluation, we use the category
as our target item description for retrieving complementary
items and use recall@top-k metric that measures the rank
of the ground-truth item similar to [16].

From Table 2, we observe that we outperform all the
methods on the non-disjoint dataset. On the disjoint dataset,
our performance on recall@top-10 is better than CSA-Net,
but is slightly worse on recall@top-30 and recall@top-50.
We conjecture that the reason for the performance drop
might be because there are fewer outfits on the disjoint set,
and transformers typically require large amounts of train-
ing data to generalize well. Also, the authors in CSA-
Net discuss that the rank of the ground truth is not a per-
fect measure for evaluating the retrieval performance since
the database can contain many complementary items to the
query outfits – some of which may be judged by human ex-
perts to be equally-good or even better stylistic matches, as
can be seen in Figure 4(a). We validated the quality of our
results using a user study via Amazon Mturk and observed
that users find our retrieved items equally compatible with
the outfit as the ground truth. For details of the user study
please refer to the supplement.

Example retrieval results using our framework are shown
in Figure 4. OutfitTransformer can retrieve compatible
items using either target category as shown in Figure 4(a)
or text descriptions as shown in Figure 4(b). We show more
visualization results in the supplement.

4.3. Ablation studies

Effect of end-to-end training on CP: We compare the ef-
fect of end-to-end training and using different input modal-

4 Type-aware and SCE-Net were adapted for retrieval as reported in
[16]. The performance of [10] is not directly comparable to ours, as their
method needs to train attributes on another dataset (Shopping100k).

Training strategy for CP task CP-AUC

ResNet-18 (pre-trained ImageNet) 0.82
ResNet-18 (end-to-end) 0.91
ResNet-18 (end-to-end) + Category 0.92
ResNet-18 (end-to-end) + Text 0.93

Table 3. Effect of end-to-end training and different modalities.
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Dataset (a) Pre-training on CP task (b) Ranking Loss Components

without with LAll LAll + LHard

Polyvore Outfits-D 49.15 59.48 55.34 59.48
Polyvore Outfits 53.96 67.10 64.48 67.10

Table 4. Comparison of pre-training and different components of the set-wise outfit ranking loss for the FITB task (using accuracy)

Negative sampling Polyvore Outfits-D Polyvore Outfits

FITB R@10 R@30 R@50 FITB R@10 R@30 R@50

High-level category 55.54 5.14 10.21 14.15 63.33 7.26 13.60 17.78
Fine-grained category 59.48 6.03 12.20 16.51 67.10 9.29 16.94 21.82

Table 5. Comparison of different negative sampling strategies either from the same high-level or fine-grained category as the positive
exemplar for the CIR task.

ities on the CP task in Table 3. We experiment with using
pre-computed ResNet-18 image embeddings generated as
inputs to our transformer model, and observe that training
end-to-end improves performance by 9%. We hypothesize
that training end-to-end allows the image encoder to learn
better fashion-specific features. This allows the transformer
to capture visual relationships between items to learn com-
patibility better. Using category or text information boosts
performance further by 1% and 2%, respectively.

Pre-training: We compare different weight initialization
schemes in Table 4(a): 1) We train our framework for the
retrieval task where the transformer-encoder is trained from
scratch and the image encoder is initialized with pre-trained
ImageNet weights. 2) We first pre-train our framework on
the compatibility prediction task (CP) and then fine-tune our
model on the retrieval task. We see a significant improve-
ment in FITB accuracy with the pre-training.

Set-wise outfit ranking loss components: As mentioned
earlier in Section 3.2.2, the outfit complementarity loss has
two components. LAll optimizes the distances such that the
target item embedding is closer to the positive and well sep-
arated from the pool of negative samples while LHard fo-
cuses specifically on the hard negatives from the randomly
sampled pool. From Table 4(b), we observe that LHard im-
proves FITB performance by 3-4% on both datasets.

Negative sampling strategies: In Section 3.2.2, we pro-
posed a curriculum learning strategy where we first sam-
ple negatives from the same high-level category as the pos-
itive and subsequently sample harder and more informative

negatives from the same fine-grained category. This strat-
egy leads to stable training and improves both FITB and
complementary item retrieval performance substantially as
shown in Table 5. Directly training using the hardest nega-
tives from the beginning leads to poor performance.
Comparing different modalities used for retrieval: The
OutfitTransformer for retrieval is trained using image and
text information. Since the CIR task in [16] is designed for
retrieving items given a target category, we feed the cate-
gory information to our text encoder and use that for our
target item query. We experiment with different modali-
ties during inference, such as using an image with either
category or text description for the items in the partial out-
fit. From Table 6, we observe that when using category
information, our method outperforms CSA-Net on the non-
disjoint dataset, and using text boosts performance further.

5. Conclusion
We present a framework to learn outfit-level represen-

tations for compatibility prediction and complementary
item retrieval. Experimental results demonstrate that our
model outperforms several state-of-the-art approaches on
the Polyvore Outfits dataset in three established tasks. We
validate that our retrieved results are competitive with the
ground truth via a user study, and demonstrate qualitatively
that our framework retrieves compatible items using tar-
get category or text-based descriptions. In future work, we
plan to extend complementary item retrieval to sets of items
rather than one-at-a-time.

Method Input information used Polyvore Outfits-D Polyvore Outfits

Target Item Outfit Items R@10 R@30 R@50 R@10 R@30 R@50

CSA-Net [16] Category Image + Catgegory 5.93 12.31 17.85 8.27 15.67 20.91

OutfitTransformer (Ours) Category Image + Category 6.03 12.20 16.51 9.29 16.94 21.82
OutfitTransformer (Ours) Category Image + Text 6.53 12.12 16.64 9.58 17.96 21.98

Table 6. Comparison of performance using different input information during inference for the CIR task.
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