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Abstract
Methods for Optical Flow (OF) estimation based on

Deep Learning have considerably improved traditional ap-
proaches in challenging and realistic conditions. However,
data-driven approaches can inherently be biased, leading to
unexpected under-performance in real application scenar-
ios. In this paper, we first observe that the OF estimation
accuracy varies with motion direction, and name this phe-
nomenon ‘OF sign imbalance’. The sign imbalance cannot
be assessed by means of the endpoint-error (EPE), the typ-
ical training and evaluation metric for Deep Optical Flow
estimators. This paper tackles this issue by proposing a new
metric to assess the sign imbalance, which is compared to
the endpoint-error. We provide an extensive evaluation of
the sign imbalance for the state-of-the-art optical flow esti-
mators. Based on the evaluation, we propose two strate-
gies to mitigate the phenomenon, i) by constraining the
model estimations during inference, and, ii) by constrain-
ing the loss function during training. Testing and training
code is available at: www.github.com/stsavian/
equivariant_of_estimation.

1. Introduction
Optical flow estimation is an essential task for a wide

range of real-world applications spanning across many ar-
eas of computer vision. Indeed, motion detection, object
tracking, video compression [26], video interpolation [1],
deblurring [38], structure-from-motion [36], simultaneous
localization and mapping (SLAM) [39], surveillance [24],
medical imaging [40], to mention a few, explicitly make use
of optical flow. The OF is also used implicitly, to ensure
that the models properly learn frame by frame relationships
[41].

The most recent works on OF estimation are based on
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Deep Learning [35, 11, 33, 15]. These frameworks im-
proved the OF estimation in typically challenging condi-
tions, e.g. large displacements, non-rigid motion and illu-
mination changes. However, the early works were still not
performing on par with the more traditional variational and
iterative methods [28]. More recent Deep Learning methods
bridge this gap by embedding well-established traditional
principles for OF estimation [35, 11], and, by identifying
and mitigating different training bias of data-driven models
[4].

This paper is motivated by the observation that there ex-
ists a common bias to all SOTA OF estimators, leading to
substantially different estimates depending on motion direc-
tion. We name this phenomenon sign imbalance bias. The
sign imbalance bias manifest itself when the same quantity
of groundtruth motion is estimated differently depending on
the direction of motion. Figure 1 shows the relevance of
this problem. We experienced the sign imbalance bias on a
video coding application domain, where we observed a sig-
nificantly different signal-to-noise-ratio of the warped im-
age with the OF, varying on motion direction. We believe
the detection and mitigation of the sign imbalance to be very
important for many different application scenarios, includ-
ing the automotive domain, where a non-deterministic OF
estimation could mean a safety hazard. The sign imbalance
is detected by applying composable transformations (reflec-
tions) to the data and for this reason can be seen as a form of
equivariance lack [18]. The term equivariance refers to the
capability of the model to handle certain transformations of
the data. With a little abuse of notation, assuming that the
model can be represented by a function ϕ acting on an in-
put x, a model is equivariant under a transformation T , if
ϕ(T (x)) = T (ϕ(x)), [18, 7, 17]. We also note that the
commonly used training and testing metric, the endpoint-
error (EPE), by construction cannot properly detect the sign
imbalance. We will show that the sign imbalance is com-
pletely undetected, but accounts on average for about 50 %
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Figure 1: Sintel dataset [6] example. (a) Inputs Fn, Fn+1 overlay, (e) groundtruth OF (Middlebury Visualization [3]). (b,f)
RAFT [35] estimations from Fn, Fn+1, (c,g) RAFT estimations from the 180◦ rotated inputs T180◦(Fn), T180◦(Fn+1). The
estimations are then rotated accordingly to allow for a comparison with the original (non rotated) estimations, Sec. 3.2. (b,c)
are obtained by RAFT as originally trained by the authors (on FlyingThings3D [22]) (d) is the sign imbalance heatmap. (f,g)
use our proposed loss function to limit the sign imbalance, and (h) corresponding sign imbalance heatmap. (f,g) are visually
much closer than (b,c). This can be easily observed in (d,h).

of the EPE magnitude and can also reach magnitudes higher
than the EPE, when trained on certain target data. For this
reason this paper proposes an unsupervised methodology
and metric to assess such phenomenon. This approach has
been used to test the SOTA OF estimation models and their
core components, showing that most of the SOTA OF esti-
mators can considerably display sign imbalance.

Thus, this paper helps answering in detail the following
questions: (RQ1) To which extent do the SOTA optical flow
estimators quantitatively display sign imbalance? (RQ2)
What are the main causing factors? (RQ3) Can such bias
be mitigated, and how? We firstly show that the SOTA deep
learning OF methods present a severe degree of sign imbal-
ance. This bias cannot be solved by augmenting the training
data with reflections, or by training using forward and back-
ward OF groundtruth data. To solve this issue, we propose
and extensively evaluate a novel loss function acting as a
damping mechanism to mitigate the sign imbalance, and an
ensemble technique to completely reduce the phenomenon
during inference. The proposed loss function is based on a
new metric and methodology designed to integrate the EPE
limitations. Results show a considerable sign imbalance re-
duction (more than 50% on average, around 5 times when
fine tuning on largely unbalanced data) when applying the
loss function to the top performing OF estimator. The paper
structure is as follow. Section 2 presents the related work,
Sec. 3, proposes the evaluation and mitigation methodolo-
gies. Section 4, shows the experimental results. Sec. 5
discusses the results and concludes this paper. Testing and
training scripts will be available online.

2. Related Works

This paper improves the OF estimation quality by assess-
ing and reducing the sign imbalance, a special case of lack
of equivariance of data-driven models. Thus, this section
addresses the related works as follows: SOTA models for

OF estimation, OF benchmarking, equivariance assessment
and mitigation for Deep Learning models.
State-of-the-art OF estimators. Traditionally, variational
optical flow methods estimate the OF by minimizing an en-
ergy functional with an additional regularization term [10].
Recently, a substantially different paradigm was introduced
by FlowNet [8]. FlowNet is the first Deep Learning model
trained end-to-end to estimate the OF. FlowNet could op-
tionally embed a correlation layer (FlowNetC) to produce a
cost volume between features of the input image pair. An
important contribution of FlowNet is FlyingChairs, a large
scale computer rendered dataset with OF groundtruth, com-
posed of planar motion, used for training. Another impor-
tant dataset is FlyingThings3D [22] which is composed of
rigid objects moving of 3D motion. FlyingChairs and Fly-
ingThings3D are very important datasets used by almost all
learnt models for OF estimation. PWC-Net is a lightweight
model improving FlowNet by introducing a pyramidal re-
finement of the optical flow, and the warping of the fea-
ture maps to build a cost volume. IRR [11] is a generally
applicable fixed resolution iterative refinement which im-
proves the estimates quality by iteratively improving the OF
produced by FlowNet or PWC-Net [11]. RAFT [35] con-
siderably improved the accuracy over the previous existing
OF models. RAFT relies on a classically inspired iterative
residual refinement of the estimated OF updated by a recur-
rent unit performing lookups on 4D correlation volumes.
Different works use RAFT as backbone: The global Mo-
tion Aggregation module [14], Deep Equilibrium Networks
[2], CRAFT [31]. Very recently, GMFlow [37] proposed
a Transformer network feature enhancement, the correla-
tion for global feature matching, and a self-attention layer
for flow propagation. Their formulation allows to reduce
the inference time, if compared to RAFT. Substantial steps
forward have also been achieved by improving the training
data, training schedule and data augmentation. Two notable
works analyzing the characteristics of the training data are
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Figure 2: Two scenarios of motion of a pixel in two consecutive frames are shown in (a) and (b), producing a horizontal
displacement of +2 and −2 respectively. Estimates of the horizontal displacement given by three hypothetical OF methods
are shown in (c) - correct estimate, (d) - wrong but unbiased estimate, and (e) - wrong and biased estimate. As it can be noted,
the endpoint errror (EPE) cannot account for the bias.

Mayer et al. [23] and Sun et al. [34]. Bar-Haim and Wolf,
proposed ScopeFlow [4], showing considerable improve-
ments by modifying the data sampling process by changing
the data augmentation zoom and cropping size. Finally Sun
et al show the importance of the training details on the mod-
els generalization, by retraining PWC-Net, IRR-PWC, and
RAFT with the same schedule [32].

Unsupervised methods estimate the OF without the need
of labelled groundtruth. One important SOTA unsupervised
model is Uflow [15] which analyses the key components
for unsupervised OF estimation, and embeds the best com-
ponents into their proposed model. The currently top per-
forming unsupervised method is SMURF [30], which uses
RAFT as backbone and relies on multi frame inputs. Other
SOTA unsupervised OF estimators are ARFlow [20] using
data transformations as indirect-supervision, and DDFlow
[21] using data distillation.
Optical flow benchmarking. The seminal work for OF
benchmarking is the “Yosemite” synthetic sequence [5].
The most recent benchmarks are KITTI 2012 [9], KITTI
2015 [25], and HD1K [16], focusing on the automotive do-
main. Sintel [6] is a very challenging computer rendered
dataset derived from the open source 3D animated short
film Sintel. While being known benchmarks in the area of
OF, none of the benchmarks described above have been de-
signed to test network equivariance.
Equivariance in Deep Learning. A common strategy to
improve equivariance is to train a neural network with data
augmentation [18, 29, 19]. A different work by Lenc and
Vedaldi [18], studies the equivariance and equivalence of
Convolutional Neural Networks (CNN) feature representa-
tions. A more theoretical work by Kondor and Trivedi [17]
proves that a convolutional structure is a necessary condi-
tion for assuring equivariance to the action of a compact
group. The closest work to this paper is Jeong et al [13]
which focuses on improving the OF consistency in presence

of occlusions, and additionally proposes a transformation
consistency loss. Instead, our work is rooted in the investi-
gation of the sign imbalance and targets solutions to solve
the bias. Finally, Savian et al, [27] originally observed the
sign imbalance bias. Their work is largely limited by the
usage of the EPE and do not propose solutions to the prob-
lem. Our work bridges this gap by providing a novel met-
ric, a comprehensive evaluation of the sign imbalance and a
number of strategies to mitigate it. This also give valuable
insights on the limitations of learnt models for OF estima-
tion and how to overcome them.

3. Methodology
We firstly show why the standard metric employed in

OF learning, the EPE, is limited for detecting the sign im-
balance bias – Sec. 3.1. Then, we present our proposed
methodology and metric to assess the sign imbalance – Sec.
3.2, and our strategy to constrain the loss function to miti-
gate the sign imbalance – Sec. 3.3 and Sec. 3.4.

3.1. Why the EndPoint-Error (EPE) cannot detect
the sign imbalance bias?

Suppose that F
′

n and F
′′

n in Fig. 2 are two identical white
3×7 pixel frames with a dark pixel in the center. Let the sin-
gle and double quotes superscript represent two scenarios of
motion, namely, Scenario I and Scenario II, respectively.

In Scenario I the dark pixel moves to the right by 2 pix-
els, whereas, in Scenario II the dark pixel moves to the left
by the same amount, as in Fig. 2 (b). This figure shows also
in (c), (d), and (e) three hypothetical OF estimates. Fig. 2
(c) shows a correct estimation; (d) shows an inaccurate es-
timation, where in both Scenario I and II the motion was
overestimated by the same amount; (e) shows an inaccurate
estimation, where in Scenario I the amount of motion was
overestimated, while in Scenario II it was underestimated
by the same amount. An optical flow estimator showing a
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(a) (b)

Figure 3: (a) block diagram to produce the horizontal sign imbalance matrix Iu, (b) pixelwise cartesian representation of the
EPE and of the Euclidean sign imbalance ||i||.

behavior like the one shown in Fig. 2 (e), i.e. an estima-
tor behaving differently given specific motion directions, is
an imbalanced estimator. Differently, if the behavior of the
optical flow estimator is like in Fig. 2 (c) or (d), the estima-
tor is a balanced estimator. Assuming an OF estimate o and
its groundtruth OF g for a single pixel, where the pedix u, v
represent respectively the horizontal and vertical directions
(throughout this paper), the EPE is formally defined as the
Euclidean distance between the estimate and groundtruth;
in other words, EPE =

√
(gu − ou)2 + (gv − ov)2. It is

worth noticing that the EPE, would produce the same values
for the dark pixel of the two scenarios represented in Fig. 2
in (d,e). Thus, such metric would not account for the two
different cases and the related sign imbalance. Therefore, to
evaluate imbalanced behavior of an OF estimator, a metric
and a different methodology is necessary.

3.2. A metric for assessing the sign imbalance bias

Figure 2 is limited to a single pixel moving. Figure 3 (a)
depicts our methodology to generalize this case to more pix-
els. In this figure, the dark object in frame Fn moves right
of three pixels in Fn+1. Assuming only horizontal motion,
scenario I is generated by estimating the OF starting from
Fn, Fn+1, and scenario II is obtained by applying a hori-
zontal reflection to the inputs for estimating the OF:

F
′

n = Fn, F ′
n+1 = Fn+1;

F
′′

n = Tlr(Fn), F
′′

n+1 = Tlr(Fn+1); (1)

where Tlr indicates a horizontal reflection of the data. The
estimation O = fO(Fn, Fn+1) defines a flow field O =
Ou, Ov . Let Olr = fO(Tlr(Fn), Tlr(Fn+1)). Let Ou and
Olr

u be two matrices representing the estimated horizontal
displacement of the pixels for Scenario I and Scenario II,
respectively. The relationship between Ou, and Olr

u , for
an unbiased estimator, is: Olr

u = −Tlr(Ou), (vertical ex-
tension later). At this point Eq. (1) could be generalized
to compute the sign imbalance for the estimated horizontal

displacements, as:
Iu = Ou + Tlr(O

lr
u ), (2)

This matrix contains the imbalance of the estimated hori-
zontal displacement for each pixel of Fn and Fn+1. The
same reasoning can be applied to the vertical component,
F ′′
n = Tud(Fn), and F ′′

n+1 = Tud(Fn+1), where Tud in-
dicates a vertical reflection of the data. Leading to Iv =
Ov+Tud(O

ud
v ). In the remainder of this paper, let Fn, Fn+1

be a generic frame pair. Thus, the previous equation and eq.
(2) could be rewritten explicitly as:

Iu =fOu(Fn, Fn+1) + Tlr(fOu(Tlr(Fn), Tlr(Fn+1)))
(3)

Iv =fOv(Fn, Fn+1) + Tud(fOu(Tud(Fn), Tud(Fn+1)))
(4)

Eq. (3),(4) show that it is possible to evaluate the extent
of imbalance for the estimated displacement by using two
consecutive frames, namely Fn, and Fn+1. A block dia-
gram representing the previous equation to estimate Iu(.),
is shown in Fig. 3 (a); the extension to the vertical case
is trivial. From a practical point of view, this process re-
quires to perform two estimations of the optical flow. Thus,
to evaluate the extent of the vertical and horizontal imbal-
ance behavior of an optic flow estimator three estimates are
needed.

We note that one 180◦ rotation equals to the composition
of vertical and horizontal reflections, meaning that the sign
imbalance matrix I = Iu, Iv , could be produced with two
forward propagations, as in:

I = fO(Fn, Fn+1) + T180◦(fO(T180◦(Fn), T180◦(Fn+1))) =

= O + T180◦(O
180◦) = O +O∗. (5)

Equation (5) shows that this procedure produces a ma-
trix I , composed by Iu, Iv . Every element i ∈ I will have
two entries iu, iv representing the sign imbalance. These
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values can be reduced to a layerwise mean Iu, Iv , (the over-
line indicates the arithmetic average). We average the pixel-
wise sign imbalance values using the Euclidean norm, this
allows for a direct comparison of the sign imbalance over
the groundtruth magnitude, or with the EPE. Figure 3 (b),
shows how the error e is computed given the groundtruth
vector g ∈ G, and the output vector o ∈ O for a single
pixel coordinate. The EPE is the L2-norm of the error e,
i.e. ||e||. Similarly, Fig. 3 (b) shows how the Euclidean im-
balance ||i|| is calculated, starting from the output o ∈ O,
and the transformed output o∗ ∈ O∗, (O∗ = O∗

u, O
∗
v). The

sign imbalance is equal to i = o + o∗, and the Euclidean
sign imbalance is the L2 norm of i, i.e. ||i||. Assuming P is
the set of all pixels p considered, the average Euclidean sign
imbalance can be evaluated with the arithmetic average and
is noted as ||I||:

||I|| = 1

P
∑
∀p∈P

||i(p)||. (6)

This metric has the advantage of directly allowing a com-
parison between ||i||, and the EPE.

3.3. Sign imbalance mitigation - ensemble inference

A straightforward approach to limiting the sign imbal-
ance bias is to average the estimates during inference [18].
We start with the following observation: if we average the
vectors o and −o∗ at inference time, om = o−o∗

2 , then the
sign imbalance is zero by definition. O∗ is here obtained
following the block diagram in Fig. 3a, but using the T180◦

transform. Moreover, the averaged EPE for the error should
be lower. This can be better explained with Fig. 4. Lets sup-
pose that we have a groundtruth displacement g, and two
estimates o1, o2, producing respectively the errors e1, e2.
The estimates o1, o2 can be written as:

o1 = g + e1; o2 = g + e2. (7)

If we take the average of o1, o2, we get:

om =
o1 + o2

2
=

g + e1 + g + e2
2

= g +
e1 + e2

2
. (8)

Equation, (8) shows that if we perform different esti-
mates using an optical flow model on the same, but trans-
formed inputs, and average them, the estimation needs to
present an lower error. Thus, assuming to any ||e1||, ||e2||
then the averaged error is bounded by:

||e1 + e2
2

|| ≤ max(||e1||, ||e2||). (9)

If ||e1|| = ||e2||, then: || e1+e2
2 || ≤ ||e1||. Meaning that

if the two errors present the same EPE, the averaged error
must present a lower EPE, Fig. 4 b).

Thus, if this strategy is applied without any assumption
on ||e1||, ||e2||, then the averaged error should be lower than

the maximum EPE. Thus, by using this strategy we could
jointly completely reduce the sign imbalance and improve
the EPE, at the cost of a doubled inference time. The en-
semble inference can also be used during training.

Figure 4: a) example of estimates averaged during infer-
ence. The groundtruth g is estimated by o1 and o2, produc-
ing the errors e1, e2, which in this case produce the same
EPE, as the two estimates lay in the same circumference. b)
by taking the average of the estimates o1 and o2, the error is
also averaged, and it must be lower than e1 and e2.

3.4. Sign imbalance mitigation - training loss func-
tion

Using the ensemble inference as described in Sec. 3.3,
results in a doubled inference time, and does not give in-
sights on the origin of the sign imbalance bias. In this sec-
tion we investigate how to integrate any loss function with
an additional loss, exploiting the developed framework and
metric, to constrain the models to produce balanced esti-
mates. The auxiliary loss should act as a damping mecha-
nism to mitigate unbalanced outputs: high values of sign
imbalance should be penalized by an imbalance loss in-
crease. However, the sign imbalance loss alone could lead
to inaccurate balanced estimates. For this reason the EPE
loss and sign imbalance loss should be weighed accord-
ingly, L = LE + βLI , where L is the total loss, LE is the
EPE loss, LI is the sign imbalance loss, and β is a weighing
hyperparameter. The sign imbalance loss LI is calculated
starting from I , obtained by taking the norm of eq. (5), as:
LI = |O + O∗|. (the choice of L1-Norm or L2-Norm de-
pends on the EPE training norm, Supplementary Sec. 3)

This process requires to obtain O∗ as defined in eq. (5),
using the methodology depicted in Fig. 3 (a) (extended to
the T180◦ transformation). To this extent, we propose Multi-
ple Forward Propagations (FWD suffix) of the input frames
and the transformed frames, (Fn, Fn+1, F

180◦

n , F 180◦

n+1 ), to
sequentially obtain O,O∗, for then computing the losses
LE ,LI and finally populate the gradient by backpropaga-
tion.

Algorithm 1, summarizes the approach for every train-
ing iteration. Fn, Fn+1 are forward propagated to obtain O.
After that, F 180◦

n , F 180◦

n+1 , are computed and forward prop-
agated into the same network to obtain O180◦ , and then
180◦rotated again to obtain O∗. The sign imbalance and
EPE loss are then computed, and the gradients are popu-
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Algorithm 1 Multiple forward propagations

1: procedure TRAINING-ITERATION(Fn, Fn+1, G)
2: O = inference(Fn, Fn+1)
3: if FWDs =⇒ detach gradients.
4: Generate F 180◦

n , F 180◦

n+1

5: O180◦ = inference(F 180◦

n , F 180◦

n+1 )
6: O∗ = T180◦(O

180◦)
7: Compute LE(O,G)
8: Compute LI (O,O∗)
9: L= LE+ β· LI

10: if FWDg =⇒ L= L/2
11: Compute gradients
12: Update learnable weights

lated by back-propagation. The double forward propagation
does not require the network input size to be changed and
can be applied to virtually any learnt OF estimator. How-
ever, the double forward propagation before the backward
pass changes how the dynamic graph to calculate the gra-
dient is computed. Stopping the gradient (FWDs), during
the second inference, set its computational graph differen-
tials to zero, (the symbol =⇒ in line 3 and 10 means
“then”). When letting the gradient flow, (FWDg), the gra-
dients during the second forward propagation are computed
and accumulated. This also requires to halve the total loss
L (line 9 in Alg. 1) to maintain the same gradient magni-
tude (supplementary Sec. 3). From a practical perspective,
FWDg strategies double the memory footprint during train-
ing, whereas FWDs strategies do not add memory overhead.
Finally, the loss function strategy can be combined with the
ensemble inference (Sec. 3.3) during training, to minimize
the averaged EPE.

4. Experiments
The experiments in this section benchmark the sign im-

balance for different OF estimators and their core compo-
nents. Sec. 4.1 describes the testing datasets, the models,
their training scheme and the terminology used in the exper-
iments. Section 4.2 presents the sign imbalance evaluation
results, while Sec. 4.3 shows how the sign imbalance can be
mitigated with our approach applied to the top performing
method for OF estimation.

Table 1: List of acronyms used.

Acronym Data Acronym Meaning
C FlyingChairs DF DDFlow

Co FlyingChairsOcc G GMA
C2 FlyingChairs2 IP IRR-PWC

C2f FlyingChairs2 (FWD) R RAFT
T FlyingThings ’ Retrained

Tf FlyingThings (FWD) o original
probabilityS Sintel

K KITTI -M 50 % probability

4.1. Experimental setting

Testing datasets. The Sintel [6] training subset is used as
our main testing benchmark. The models have been addi-
tionaly tested on Monkaa [22], and KITTI [25]. Results
on Sintel and Monkaa are comparable (tested with RAFT -
Supplementary Sec. 11 -). Detailed dataset statistics can be
found in the supplementary material, Sec. 6.
Models and training datasets. The SOTA networks con-
sidered are: RAFT (R) [35], GMA (G) [14], and IRR-PWC
(IP) [11], the current leading OF estimation methods based
on a single resolution iterative refinement. We also evaluate
DDFlow [21], (unsupervised method) based on PWC-Net.
IRR and DDFlow both include bi-directional flow estima-
tion to improve the estimates consistency. The acronyms
used can be found in table 1.
Training schedule. All networks follow the common pro-
cedure of pretraining on FlyingChairs (C) [8], (or sim-
ilarly FlyingChairs2 (C2) [12], or FlyingChairsOcc (Co)
[11] which also provide backward OF); then train on Fly-
ingThings3D (T) [22]. Eventually some models are then
fine-tuned on the target dataset. We use the acronyms in
table 1 and only report the last training dataset.
Experimental protocol. We perform ablation studies
on RAFT to evaluate the effects of: training mirroring
data augmentation, forward and backward OF groundtruth.
Moreover, we test the networks with our ensemble inference
strategy, and retrain RAFT using our developed sign imbal-
ance loss function. Models marked with a prime symbol (’)
have been retrained by us.

4.2. Benchmarking the sign imbalance

Sign imbalance dependence on training data. For all
models in table 2, ||I|| decreases with more training data,
except when fine tuning on KITTI. However, the training
data distribution has a limited impact on the sign imbalance
(despite the extreme cases), as the training is performed
on randomly cropped patches. Moreover, FlyingChairs and
FlyingThings3D, have a somehow uniform motion distribu-
tion. Sintel is more unbalanced, and KITTI is largely un-
balanced (supplementary Sec.6). For RAFT and IRR-PWC
the sign imbalance is reduced of 40% its original value with
the training on FlyingThings3D, this can be observed on
IP(Co), R-M’(C), and IP(T), R-M’(T). The models R-M’(S)
and IP(S) show that fine tuning on Sintel does not signifi-
cantly affect the sign imbalance. On the other hand, fine
tuning on KITTI leads to largely unbalanced models, mostly
for IP(K).
Sign imbalance and groundtruth magnitude compari-
son. The sign imbalance ||I|| and the EPE may vary de-
pending on the testing groundtruth average magnitude ||G||:
larger displacements on the test set lead to larger errors. For
this reason, we evaluate the ratio between sign imbalance
and groundtruth motion IG = ||I||/||G|| · 100 = [%]. Sin-

5093



Table 2: Network performance summary, organized by label, model, training data “DATA”, forward (FWD) or backward
(BCK) training optical flow direction, probability of applying horizontal reflections p(Tlr), and vertical reflections p(Tud).
“EPE” is the EPE(O,G), “EPE180 is EPE(O∗,−G)”, ||I|| is the Euclidean sign imbalance. Evaluating the mirroring data
augmentation for FlyingChairs, for FlyingThings3D. The “x” means “True”, the label “-” means “False”.

Sintel clean Sintel final
label model DATA FWD BCK p(Tlr) p(Tud) EPE EPE180 ||I|| EPE EPE180 ||I||

DF(C) DDFlow C x x 0.5 0.5 3.85 3.87 1.66 4.93 4.93 2.06
IP(Co) IRR-PWC Co x x 0.5 0.5 2.34 2.36 1.3 3.96 4.05 2.09
Ro(C) RAFT C x - 0.5 0.1 2.15 2.23 1.27 4.44 4.45 2.35
G(T) RAFT T x x 0.5 0.1 1.3 1.36 0.73 2.73 2.75 1.32
IP(T) IRR-PWC T x x 0.5 0.5 1.87 1.86 0.92 3.46 3.46 1.35
Ro(T) RAFT T x x 0.5 0.1 1.47 1.44 0.84 2.71 2.8 1.4
IP(S) IRR-PWC S x - 0.5 0.5 1.91 1.87 0.98 2.5 2.43 1.32
Ro(S) RAFT S x - 0.5 0.1 0.74 1.01 0.7 1.19 1.7 1.17
IP(K) IRR-PWC K x - 0.5 0.5 7.41 7.09 7.07 8.07 7.72 6.05

RAFT for different mirroring data augmentation probabilities.
R’(C) RAFT C x - 0 0 2.25 2.29 1.49 4.36 4.31 2.74

R-M’(C) RAFT C x - 0.5 0.5 2.19 2.25 1.2 4.39 4.37 2.1
Ro’(C) RAFT C x - 0.5 0.1 2.19 2.17 1.22 4.24 4.49 2.39
R’(T) RAFT T x x 0 0 1.54 1.52 1.13 2.8 2.77 1.46

Ro’(T) RAFT T x x 0.5 0.1 1.58 1.44 0.95 2.83 2.95 1.47
R-M’(T) RAFT T x x 0.5 0.5 1.42 1.39 0.78 2.73 2.84 1.33

RAFT trained on forward and backward optical flow.
R-M’(C2) RAFT C2 x x 0.5 0.5 2.15 2.11 1.11 3.5 3.61 1.75
R-M’(C2f) RAFT C2f x - 0.5 0.5 2.14 2.12 1.19 3.7 3.73 2.08
R-M’(Tf) RAFT Tf x - 0.5 0.5 1.45 1.49 0.77 2.75 2.75 1.32

R-M’(C2-T) RAFT C2-T x x 0.5 0.5 1.43 1.59 0.91 2.71 2.68 1.39
RAFT fine tuned models.

R-M’(S) RAFT S x - 0.5 0.5 0.83 0.79 0.55 1.36 1.33 0.73
R’(S) RAFT S x - 0 0 0.56 1.24 1.05 0.87 2.31 2.05
R’(K) RAFT K x - 0 0 4.63 4.83 5.24 6.91 6.91 8.27

Ro’(K) RAFT K x - 0.5 0.1 4.43 4.19 4.27 6 6.05 6.23
R-M’(K) RAFT K x - 0.5 0.5 3.95 3.95 4.03 5.6 6.14 5.93

tel ||G|| ≈ 13.5 px. The mean ratio IG for all networks
trained on FlyingChairs, or FlyingChairs-FlyingThings3D,
and tested on Sintel is between 10%, and 20%. When fine
tuning on KITTI and testing on Sintel the imbalance is very
large, IG =52%.

Sign imbalance and EPE comparison. Overall, models
with lower EPE exhibit lower ||I||. However, this is not
always true. Among the models trained on FlyingChairs,
DDFlow shows a higher EPE, if compared to IP(Co). How-
ever, IP(Co) and DF(C) show a similar ||I||. This should
not depend on to the forward and backward optical flow
consistency check, as both network perform forward and
backward consistency check for occlusion reasoning. Thus,
it might be due to the unsupervised loss. This can be bet-
ter observed by evaluating the ratio IR = 100 · ||I||/EPE.
On average, the imbalance is around 60% of the EPE, for
all networks (trained on C or C-T). However, on Sintel,
DDFlow display the lowest IR ≈ 40%.

Mirroring data augmentation effect on sign imbalance.
The yellow and green highlighted models in Tab. 2 help
evaluate the training mirroring data augmentation effects.
RAFT (Ro) has an uneven mirroring probability distribu-
tion. This is counterintuitive, but it can be explained by
observing the EPE. Among the RAFT trainings on Fly-
ingChairs, Ro, obtains the lowest EPE, however if we ex-
tend the evaluation to the EPE180 and to the sign imbal-
ance, Ro is not the best model. This might be due to the fact
that Sintel motion distribution is slightly unbalanced (sup-
plementary Sec.6), and could positively reward a moderate
sign imbalance. In fact, the models fine tuned on Sintel ob-
tain a lower EPE when the data augmentation is not applied,
R’(S). Applying the mirroring data augmentation, R-M’(S),
significantly decreases the sign imbalance but also increases
the EPE in certain cases. When RAFT is trained on Fly-
ingThings3D, the best retrained model, R-M’(T), uses mir-
roring.
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Table 3: Sign imbalance mitigation. “Ens. Testing” refers to the ensemble inference used during testing, “Ens. training”
refers to ensemble inference applied during training (Sec. 3.3) , “GRAD” indicates the gradient aggregation type (Sec. 3.4);
β loss weighing hyperparameter. Results show: the ensemble testing completely solve the sign imbalance bias and reduces
the EPE. Models retrained with the loss function reduce the sign imbalance. Lower values of β improve accuracy. Our
retrained models also obtain the lowest EPE. “x” means “presence of.”, “-” means “absence of.”.

Sintel clean Sintel final
label model data β GRAD Ens. Training Ens. Testing EPE EPE180 ||I|| EPE EPE180 ||I||

DF(C) DDFlow C - - - x 3.78 3.78 0 4.82 4.82 0
IP(Co) IRR-PWC Co - - - x 2.27 2.27 0 3.87 3.87 0
IP(T) IRR-PWC T - - - x 1.81 1.81 0 3.4 3.4 0
R’(T) RAFT T - - - x 1.35 1.35 0 2.7 2.7 0

Ro’(T) RAFT T - - - x 1.45 1.45 0 2.8 2.8 0
R-M’(T) RAFT T - - - x 1.36 1.36 0 2.71 2.71 0
R-M’(T) RAFT T 0.3 FWDs x - 1.28 1.28 0.54 2.6 2.64 1.02
R-M’(T) RAFT T 0.6 FWDg x - 1.42 1.38 0.43 2.66 2.7 0.77
R-M’(T) RAFT T 1 FWDg x - 1.6 1.63 0.37 2.78 2.79 0.54
R-M’(T) RAFT T 0.3 FWDs x x 1.25 1.25 0 2.57 2.57 0
R-M’(T) RAFT T 0.6 FWDg x x 1.39 1.39 0 2.65 2.65 0

4.3. Mitigating the sign imbalance

In this section we evaluate our proposed methods to re-
duce the sign imbalance. Table 3 shows the effect of our
ensemble inference and loss function strategies.
Ensemble inference. Table 3 results show that the ensem-
ble inference strategy proposed in Sec. 3.3 completely re-
duce the imbalance, and always improves the EPE on all the
testing datasets, if compared with the same models in table
2. This comes at the cost of a doubled inference time.
Sign imbalance loss. Overall, when training on Fly-
ingChairs, very large values of β, considerably decrease
||I||, and considerably decrease the EPE on Sintel final
(supplementary Sec. 10-11). When fine tuning on Fly-
ingThings3D, reducing the sign imbalance is more difficult.
For this training dataset; large values of β do not signifi-
cantly reduce the EPE on Sintel. Values of β ≤ 0.6 re-
duce the imbalance and the EPE slightly; β = 1 provide
a strong sign imbalance mitigation, but can show a slight
EPE penalty Sintel clean. Instead, when fine tuning on
strongly unbalanced datasets, such as KITTI, the loss func-
tion can dramatically reduce the sign imbalance (Supple-
mentary Sec. 11). The FWDs and the FWDg strategies
perform similarly. FWDg shows a higher imbalance reduc-
tion for the same values of β, but shows an overall slightly
higher EPE on Sintel clean. However, there is a complex
interplay between our loss strategies and the mirroring data
augmentation, on a high level, FWDs strategies obtain a
lower EPE without mirroring augmentation (Supplementary
Sec.10-11).
Best models. Applying the ensemble method during train-
ing together with our loss function leads to the best per-
formance. Table 3 shows that the models showing the
lowest EPE and sign imbalance: is R-M’(T) trained with
β = 0.3 and tested with the ensemble inference. The sec-

ond best model in terms of EPE is R-M’(T) trained with
β = 0.3, without using the ensemble inference during
testing. (Please note that the previous two models listed
seem to outperform the very recent deep equilibrium net-
works [2], on Sintel training). Increasing β to 0.6 still leads
to an EPE lower than the baseline and leads roughly to a
60% sign imbalance decrease. Increasing β to 1.0 increase
the imbalance mitigation, but starts to increase the EPE on
Sintel clean.

5. Discussion and conclusion
In this paper we provide a methodology and metric to

measure and mitigate the sign imbalance, a special case
of lack of equivariance, for optical flow estimators. Sup-
ported by the experimental evidence we answer the three
questions raised in the introduction (RQ1): To which ex-
tent do the SOTA OF estimators quantitatively display sign
imbalance? We tested the top performing optical flow es-
timators based on challenging leaderboards and measured
the amount of sign imbalance. We found that almost all the
tested models show sign imbalance to a considerable extent,
and that more accurate models lead to a lower sign imbal-
ance. (RQ2) What are the main causing factors? We ana-
lyzed different components in the Deep Learning pipeline:
the training and testing data, the architecture, the data aug-
mentation. We tested different models relying on consid-
erably different architectures. Mirroring the training data,
or using forward and backward optical flow provides only a
marginal sign imbalance mitigation: the EPE training met-
ric cannot account for the sign imbalance by design, leading
to unbalanced estimates. (RQ3) Can such bias be mitigated,
and how? The sign imbalance can be completely mitigated
at the cost of a doubled inference time, or partially miti-
gated, without any increase in inference time. Reducing the
sign imbalance also reduces the EPE.
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