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Abstract

Indirect Time-of-Flight (iToF) cameras are a widespread
type of 3D sensor, which perform multiple captures to ob-
tain depth values of the captured scene. While recent ap-
proaches to correct iToF depths achieve high performance
when removing multi-path-interference and sensor noise,
little research has been done to tackle motion artifacts. In
this work we propose a training algorithm, which allows to
supervise Optical Flow (OF) networks directly on the re-
constructed depth, without the need of having ground truth
flows. We demonstrate that this approach enables the train-
ing of OF networks to align raw iToF measurements and
compensate motion artifacts in the iToF depth images. The
approach is evaluated for both single- and multi-frequency
sensors as well as multi-tap sensors, and is able to outper-
form other motion compensation techniques.

1. Introduction
Time-of-Flight (ToF) cameras are sensors that aim to

capture depth images by measuring the time the light needs
to travel from a light source on the camera to an object and
back to the camera sensor. Apart from direct ToF cam-
eras, such as LiDAR, which register the time of incoming
reflections of a light pulse at a high temporal resolution, an-
other common and cost-efficient approach are indirect ToF
(iToF) cameras, which do not require as precise measur-
ing devices. One realization of iToF devices are Amplitude
Modulated Continuous Wave (AMCW) ToF sensors, as for
example used in the Kinect system. These sensors contin-
uously illuminate the scene with a periodically modulated
light signal and aim to retrieve the phase offset between the
emitted and the retrieved signal, which gives information
about the travel time of the signal [11]. In order to retrieve
the phase offset it is necessary to perform multiple captures,
which makes this approach sensible to movements of both,
the camera and the objects in the illuminated scene. As
the measurements are taken with differing sensor settings,
so called multi modality, standard Optical Flow (OF) al-
gorithms achieve only low performance, and hence require

adaptation. While there are works that investigate the com-
pensation of motion using OF, they are only applicable to
specific sensor types [18, 12] or require carefully designed
datasets [9] to train OF networks. Hence, it is still a com-
mon approach to merely detect motion artifacts and mask
the affected pixels in the final depth image, as is for example
realized by the LF2-algorithm [27] for the Kinect sensor.

In this work, we propose a training algorithm for OF net-
works which allows to supervise the flow prediction using
the ToF depth image, without the need to directly supervise
the predicted flow, see Fig. 1. To this end, we analyze the
ToF depth computation to provide reliable and stable gra-
dients during training. Further, we introduce a set of reg-
ulatory losses, which guide the network towards predicting
flows, that are consistent with the underlying images.

2. Technical Background

In this section, we briefly describe iToF cameras.

ToF Working Principle. An AMCW iToF camera emits
a modulated light signal s(t), which is correlated at the sen-
sor with a phase shifted version of the emitted signal s(t+θ)
during the exposure time. The resulting measurement m
is repeated sequentially for different phase shifts θ, from
which the distance d is retrieved indirectly by estimating
the phase shift ∆φ of the signal s when arriving at the sen-
sor. In the common case of four measurements m0, . . . ,m3

at θ ∈ {0, π/2, π, 3π/2}, the distance d is retrieved as

∆φ = arctan

(
m3 −m1

m0 −m2

)
, (1)

dToF =
c ·∆φ

4πf
, (2)

where c is the speed of light, and f is the modulation fre-
quency of the signal s [11]. Due to the periodic nature of
Eq. (1), the reconstructed dToF is only unambiguous up to
a maximum distance of

dmax = c/(2f), (3)
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Figure 1. Illustration of the flow estimation. Given iToF measurements at subsequent time steps, a network is used to predict optical flows,
in order to align the images to the reference image (bottom row). From the warped measurements a ToF depth image can be reconstructed.
We propose to supervise the training directly on this ToF depth, and propagate gradients through the ToF depth computation. This figure
shows the single frequency, single-tap case with four measurements. Note the modality change in the input due to different phase shifts θ.

specifically, dToF = d mod dmax, where the distance d
is referred to as depth, as is common practice in the area
of ToF imaging. The so called phase wrapping of dToF

is typically resolved by using additional measurements at
different frequencies f [11].

However Eq. (2) is based on the assumptions that, (a)
only the direct reflection s(t+∆φ) is captured and (b) the
scene is static between the different captures. While (a) has
been dealt with to a large extent in recent work on correcting
iToF depths [1, 20, 23], only little research has been done
to reduce motion artifacts stemming from (b).

Multi-Tap Sensors. A realization of iToF sensors are so
called multi-tap sensors, which are able to capture multi-
ple measurements of mθ in parallel. The most widespread
approach are two-tap sensors, which allow the capture of
mA,i = mi and mB,i = mi+2 at the same time, by sort-
ing the electrons generated by incoming photons into two
quantum wells using a modulated electric field [24]. Inter-
nally, these two measurements are used to compensate for
hardware inaccuracies and reduce noise [12] by computing:

mi = mA,i −mB,i. (4)

In order to make direct use of mA,mB in Eq. (1), it is neces-
sary to calibrate the differences in the photo responses [24]

mA,i = rθ(mB,i+2), (5)

which doubles the effective frame rate, and reduce, but not
eliminate, motion-artifacts. Recently also prototypes for
four-tap sensors have been developed [5, 15], which in the
future might eliminate motion artifacts in single-frequency
captures, but not in multi-frequency sensors.

3. Related Work
This section briefly summarizes previous work on re-

lated fields.

ToF Motion Artifact Correction. Early methods on mo-
tion compensation used detect-and-repair approaches [24,
11], e.g. by performing bilateral filtering [19]. One of the
first methods to resolve movement artifacts using optical
flow was introduced by Lindner et al. [18] who aim to tackle
the cross modality through a correction scheme to compute
intensity images from two-tap captures, which can be used
as input to a standard OF algorithm. Based on this method,
Hoegg et al. [12] derived optimizations for the OF predic-
tion algorithm by incorporating motion detection and re-
fining the spatial consistency to achieve real-time perfor-
mance. The performance of these approaches was further
improved with the calibration of Gottfried et al. [8]. In
contrast we integrate the entire computational flow, from
raw iToF measurement to depth reconstruction into our op-
timization pipeline.

The first learned approach was presented by Guo et
al. [9], who provide methods to correct errors for the
Kinect2 sensor, including an encoder-decoder network for
OF prediction. To enable the supervised learning of mo-
tion compensation, a specific dataset is generated, which al-
lows for simulating linear movements in the image domain,
while separating the motion of foreground and background.
Contrarily, we propose a weakly supervised training, which
does not require flow labels, and instead uses ToF depths for
supervision, which are available in existing iToF datasets.

Optical Flow. Recent works on OF regression rely on
neural networks, which have proven to outperform tradi-
tional approaches [26]. The typical design, using shared
image encoders and a latent cost volume, was first intro-
duced Dosovitskiy et al. [7] in their FlowNetC architecture,
alongside the FlowNetS network, which uses a encoder de-
coder architecture. Subsequent, a large literature on various
applications [29, 17] and formulations [2, 13] in the field
of motion estimation emerged. In order to reduce the com-
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putational costs, Sun et al. [26] introduced a hierarchical
architecture with coarse-to-fine warping in their Pyramid-
Warping-Cost-volume (PWC) network. This design was
further refined by Kong et al. [16] in their FastFlowNet
(FFN) architecture, which reduced the computational com-
plexity and achieves fast inference times.

To overcome the need of generating ground truth flows
for a supervised training, unsupervised approaches [14, 22,
28, 13] optimize the photometric consistency between im-
ages and apply regularizations to refine the flow prediction.

ToF Correction. The occurrence of Multi-Path-
Interference (MPI) is the main source of errors in
iToF depth reconstructions. Consequently, existing works
on correcting iToF data focus on removing MPI artifacts.
As with OF prediction, 2D neural networks have proven to
achieve high noise removal performance [1, 20, 25, 9, 6].
However, also other learned approaches have been in-
vestigated recently, such as reconstructing the transient
response [4, 10] or using 3D point networks [23].

4. Method
In this work we propose a weak supervision of an OF

network using the ToF-depth dToF as label, without pro-
viding ground truth flow vector fields. In order to enable
training using depth labels, the phase wrapping discontinu-
ities in Eq. (1) of the arctan function require consideration,
and regularizations on the flow prediction need to be estab-
lished to predict consistent flows without direct supervision.

We consider an OF network g : ({mi}N−1
i=0 ,mN ) →

{Vi}N−1
i=0 , which predicts a set of optical flows Vi for a set

of measurements mi, in order to align them to a measure-
ment mN taken at the reference time step. The standard
photometric loss in this setting would be given as

m̂i = warp(mi, Vi) (6)

Lphoto =
∑
i

∥m̂i −mGT
i ∥1, (7)

where mGT
i is taken at the same time step as mN .

Instead, we propose to supervise the network g indirectly
on the reconstructed depth using the ToF depth dToF with-
out motion as target. To increase the numerical stability we
formulate the reconstructed depth d̂ as

s = sign(m̂0 − m̂2) (8)

d̂ =
c

4πf
arctan

(
m̂3 − m̂1

m̂0 − m̂2 + s · ϵ

)
, (9)

LToF = ∥d̂− dToF ∥1, (10)

which avoids singularities as the denominator in Eq. (9) is
strictly positive for ϵ > 0. The implementation of Eq. 10 on

commonly used learning packages with auto-differentiable
features, such as Pytorch [21] or JAX [3], allows to train the
flow network g in a weakly-supervised fashion.

4.1. Phase Unwrapping

The phase wrapping in the above formulation can be
tackled by generating multiple candidate depths d̂k = d̂ +
k · dmax and using the one closest to the label as prediction

d̂k = d̂+ k · dmax (11)

LToF,PU = min{∥d̂k − dToF ∥1
∣∣ k ∈ Z}. (12)

As both d̂ and dToF are in the range of [0, dmax), the candi-
date space is reduced to k ∈ {−1, 0, 1} and the minimiza-
tion in Eq. (12) can be realized by a simple lookup table

d̂− dToF ∈ (−dmax, dmax/2] : k = −1, (13)

d̂− dToF ∈ (−dmax/2, dmax/2] : k = 0, (14)

d̂− dToF ∈ (dmax/2, dmax) : k = 1. (15)

However, during training only the gradients of LToF,PU are
relevant, which can be derived from the lookup table as

∇LToF,PU =

{
∇LToF , 0 ≤ LToF < dmax/2,

−∇LToF , LToF ≥ dmax/2,

(16)

and can thus be directly computed from Eq. (10). This al-
lows a computational cheap and elegant implementation of
the phase unwrapping, by only adjusting the gradients of
LToF , Eq. (10), based on the conditions in Eq. (16) in the
backpropagation step during the training of g.

4.2. Regularization

By regularizing the predictions, additional constraints
for the predicted flows Vi are established, which enables
the network to produce coherent predictions without using
flow labels. We use two additional regularization losses, a
smoothing loss Lsmooth and an edge-aware loss Ledge.

For smoothing we adapt the formulation of Jon-
schkowski et al. [14] to our setting

Lsmooth =
∑
i,j

exp

(
−λ

∣∣∣∣∂mi

∂xj

∣∣∣∣) ·
∣∣∣∣∂Vi

∂xj

∣∣∣∣ , (17)

where λ is an edge weighting factor and x0, x1 are the two
image dimensions. This loss penalizes high gradients on Vi

in homogeneous regions of mi, i.e. regions where mi has
small gradients. The intuition of Lsmooth is that homoge-
neous regions are expected to move in the same direction.
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Figure 2. Overview over the loss functions used in this work. Our main loss is the ToF-loss LToF (right), which is computed on the
reconstructed ToF depth using a differentiable operation, and is adapted to provide phase unwrapped gradients. To constrain the flow
prediction the loss Lsmooth (top) is used to regularize the flow, and an additional regularization on the warped image mi is given through
the loss Ledge (center). Finally, the loss Lsim aims to create consistency between the latent representations inside the network. Note: The
losses LToF and Lsim are computed over all i. This figure shows the single-tap case, where only one measurement is taken per time step.

To further regularize the network to predict correctly
aligned object boundaries, we introduce an edge-aware loss

Ledge =
∑
i,j

exp

 −1

ϵ+
∣∣∣∂mN

∂xj

∣∣∣
 · 1∣∣∣∂m̂i

∂xj

∣∣∣+ s
, (18)

where ϵ is a small constant for numerical stability and the
shift s is used to provide an upper bound on the gradients
of Ledge. This loss penalizes small gradients in the warped
measurements m̂i in regions where mN has large gradients,
i.e. regions where mN has edges. The intuition of Ledge is
that boundaries of objects can be expected to create edges
in the measurements independent of the modality.

Note that Lsmooth acts on the flows Vi whereas Ledge is
computed on the warped measurements m̂i, see Fig. 2.

4.3. Cross Modality

To guide the network towards learning latent representa-
tions Fi, see Fig. 2, that are robust to the input modality, we
make use of a latent similarity loss on the column vectors
Fi(k, l) of the latent representation in g(mi), inspired by
the formulation of contrastive learning

Lsim =
∑
i̸=j

∑
k,l

L

(
Fi(k, l), Fi(k, l)

)
, (19)

where L is a similarity loss, e.g. L1, L2, the cosine-
similarity or a cost function.

During training we optimize the similarity loss on static
scenes, without motion. An overview of all losses and their
integration in the computational flow are shown in Fig. 2.

4.4. Network Architecture

As OF backbone we investigate two networks with dif-
ferent architectures, the Motion Module (MOM), which
was introduced by Guo et al. [9] for ToF motion correction,
and the FFN of Kong et al. [16] which is a lightweight net-
work with on-par performance to State-of-the-Art OF net-
works. The MOM network is an encoder-decoder network
based on FlowNetS [7], while the FFN integrates a latent
cost volume and is based of the PWC network. Both net-
works allow for fast evaluation times and low memory con-
sumption which enables us to predict multiple flows.

While the flow prediction of the MOM network is rather
straightforward, i.e. it takes the set {mi}Ni=0 as input and
predicts all flows {Vi}Ni=0 at once, we will briefly describe
how we execute the FFN in the following. Please note, that
the computations of FFN are realized on a hierarchical fea-
ture pyramid, but for compact notation we neglect the hier-
archy levels in the following description.

The FFN consists of the common building blocks, an im-
age encoder E, a cost volume computation C and a flow
prediction decoder D. Given the measurements {mi}Ni=0,
we encode each measurement mi into a latent vector Fi =
E(mi). The latent vectors are then used to compute cost
volumes for each pairing with the last measurement mN ,
i.e. ci = C(Fi, FN ) for i = 1, . . . , N − 1. The decoder
then predicts the flows using pairs of cost volumes and la-
tent vectors as input Vi = D(Fi, ci), the process for a single
image pair is also shown on the left of Fig. 2. After warp-
ing the measurement mi, parts of the image might remain
empty, as no pixels were warped to this region, these regions
are referred to as masked.
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Figure 3. Motion compensation results in the single frequency single tap case. Both pre-trained networks and our method resolve the
motion artifacts, however our method improves performance over the pre-trained networks. Moreover, the UFlow method is not able to
correct the motion artifacts. However, while the camera is static and only the center object is moving, all methods have some tendency to
move the background, which introduces additional artifacts. (Empty regions after warping are shown in black.)

In this formulation the network only considers the two
measurements mi,mN to compute Vi. Although the other
measurements contain additional information about the
movement, the above formulation allows to share the en-
coder and decoder networks for all measurements and does
not increase the number of parameters.

We further apply an instance normalization to the input
of the network, as also used in the ToF error correction ap-
proach of Su et al. [25], which does not affect the depth
reconstruction in Eq. (2), as it is invariant to uniform scal-
ing and translation of the measurements.

In case of multi-tap sensors we change the input dimen-
sion of the encoder E such that it receives all measurements
captured at the same time step as input.

5. Experiments
In our experiments we train instances of both FFN and

MOM using the loss functions described in Sec. 4. In the
case of the MOM network we do not use the similarity loss
Lsim, as the network does not produce latent vectors Fi due
to its different architectural design. We compare against
using pre-trained instances on RGB data of FFN and and
also the larger PWC [26], which needs ≈8 times the com-
pute [16]. In the case of multi-tap sensors we additionally
compare against the Lindner method [18] in combination
with the pre-trained instances of FFN and PWC. Further, we
compare against the UFlow method [14], which is a method
to train OF networks in an unsupervised fashion, and uses
the PWC as backbone. We train the UFlow method on the
same dataset as our method.

Dataset. We conduct the experiments on the CB-dataset
of Schelling et al. [23], as it contains raw measurements

Method Lphoto LToF mask

SF
1T

ap
Input 50.09 16.87 -
FFN 54.21 14.63 12.40%
PWC 49.16 13.70 4.12%
UFlow 58.71 12.76 3.24%

Ours(MOM) 34.64 7.64 0.97%
Ours(FFN) 23.27 5.81 1.60%

SF
2T

ap

Input 34.45 5.93 -
FFN 29.83 5.44 6.18%
PWC 19.77 4.03 3.55%
UFlow 38.22 4.90 2.07%
Lindner (FFN) 21.01 4.22 2.35%
Lindner (PWC) 18.11 3.85 2.12%

Ours(MOM) 24.67 3.25 0.73%
Ours(FFN) 17.22 3.66 0.56%

Table 1. Results for single frequency single-tap (SF 1Tap) and two
tap (SF 2Tap). The pre-trained networks, FFN and PWC, and the
unsupervised UFlow method achieve only low correction rates in
most cases. The Lindner method reduces the error notably, espe-
cially when using the larger PWC as backbone, still it is outper-
formed by our proposed method on smaller backbones.

mi for three different frequencies. It consists of 143
scenes each rendered from 50 viewpoints along a camera
trajectory, which allows to simulate real movements that
change the point of view. As the CB-Dataset only incor-
porates static scene geometries we generated 14 additional
scenes with moving objects using the same data simula-
tion pipeline, to increase the variation of movements in the
dataset. We divide the dataset using the original training,
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Figure 4. Motion compensation results in the multi frequency four-tap case, for a scene with moving camera. Our method achieves the best
motion compensation, followed by Lindner’s method on the more powerful backbone PWC, although Lindner’s method introduces more
additional errors. Both the pre-trained PWC and the UFlow method fail in this case. (Empty regions after warping are shown in black.)

validation and testing split, and further divide the additional
scenes into 10 training scenes, and 2 each for testing and
validation, whereby we use the 20MHz measurements.

5.1. Single Frequency Motion Compensation

For the single frequency experiment we also use the
20MHz measurements of the datasets. In the case of single-
tap we take the four measurements from four subsequent
time steps, in the case two-tap we take the pairs (m0,m2)
and (m1,m3) from two times steps. We measure LToF ,
the photometric loss Lphoto and the percentage of masked
pixels after warping, and report results on the test set in
Tab. 1. We find that the networks trained with our method
achieve better results than the pre-trained OF networks and
the UFlow method. Results for the single tap case can be
seen in Fig. 3. The results of Lindner’s method come close
to our method, but only when using the larger backbone
network PWC. On the same backbone FFN the gap in per-
formance is larger. Additionally, in the simple setting of
two-taps, and thus also two time steps, the simple MOM
backbone results in better performance than the more com-
plex FFN backbone, both trained with our method.

Further, we observe that the UFlow method increases
the photometric loss, which we attribute to the fact that the
method aims to minimize the photometric loss between the
images of different modalities. Additionally, UFlow has a
tendency to mask out areas affected by motion, as is shown
in Fig. 4, which leads to a reduced ToF loss, without cor-
recting the errors.

5.2. Multi Frequency Motion Compensation

For the multi frequency experiment we use the three fre-
quencies 20MHz, 50MHz and 70MHz of the datasets. In the
case of single-tap, we take the twelve measurements from

Method Lphoto LToF mask

M
F

1T
ap

Input 113.73 19.68 -
FFN 124.88 25.06 10.76%
PWC 83.15 16.01 8.91%
UFlow 136.55 13.86 7.76%

Ours(MOM) 65.91 11.92 1.43%
Ours(FFN) 80.43 13.77 0.34%

M
F

2T
ap

Input 69.06 8.17 -
FFN 78.33 9.71 5.90%
PWC 49.23 7.51 4.02%
UFlow 81.45 5.95 4.82%
Lindner (FFN) 40.26 5.60 2.55%
Lindner (PWC) 35.24 5.16 1.80%

Ours(MOM) 44.68 4.98 0.64%
Ours(FFN) 30.71 4.43 0.32%

M
F

4T
ap

Input 40.42 5.26 -
FFN 57.54 6.93 0.06%
PWC 31.09 5.41 0.06%
UFlow 51.10 4.17 1.96%
Lindner (FFN) 27.52 3.94 0.06%
Lindner (PWC) 22.17 3.49 0.06%

Ours(MOM) 29.64 3.11 0.48%
Ours(FFN) 27.14 3.03 0.08%

Table 2. Results for multi frequency single-tap (MF 1Tap), two-tap
(MF 2Tap) and four-tap (MF 4Tap). In this setting with stronger
modality changes pre-trained networks fail in most cases. Our
method is again closely followed by Lindner on the larger PWC.

twelve subsequent time steps. In the two-tap case, we take
pairs (m0,m2) and (m1,m3) from six time steps. Lastly,
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Method MAE Rel. Error

SF
1T

ap

Input 39.49 100.00%
CFN 19.39 49.10%
CFN + Ours(FFN) 11.47 29.05%
DeepToF 16.65 42.17%
DeepToF + Ours(FFN) 15.11 38.26%

M
F

2T
ap

Input 10.65 100.00%
CFN 6.71 63.01%
CFN + Ours(FFN) 5.54 52.02%
E2E 10.44 98.03%
E2E + Ours(FFN) 8.27 77.65%
RADU 11.21 105.26%
RADU + Ours(FFN) 8.00 75.12%

Table 3. Results of motion, multi-path-interference and sensor
noise compensation, for the single frequency single tap (SF 1Tap)
and the multi frequency two-tap (MF 2Tap) case. All methods
benefit from the motion correction using our method.

in the case of four-tap, we use three time steps, one per
frequency. The results on the test set for both LToF and
the photometric loss Lphoto are reported in Tab. 2, and are
shown for the four-tap case in Fig. 4.

The findings from the single frequency experiment can
also be observed in this setting, with our approach achiev-
ing the best performance followed by Lindner’s method.
Further, the FFN trained with our method, while still out-
performing the other methods, achieves rather low perfor-
mance in the single tap setting, which is arguably the hard-
est case with the highest number of time steps, and thus
the largest motion, and additionally the lowest input dimen-
sionality of only one tap, which might make it harder for
the encoder E to extract modality invariant features.

Additionally, the pre-trained OF networks have a ten-
dency to fail in these settings, especially the FFN, which
might come from the larger modality gap of measurements
taken at different frequencies, as can also be seen in Fig. 4.

5.3. Motion Compensation and Error Correction

To measure the influence on downstream error compen-
sation techniques, we train instances of ToF correction net-
works on the output of our model. For this experiment, the
single frequency single tap case and the multi frequency
two-tap case are considered. We use the single frequency
approaches DeepToF [20] and an adapted CFN [1] in the
single frequency case, and the multi-frequency approaches
CFN, E2E [25] and RADU [23] in the multi frequency
case. For comparison we also train instances of the net-
works without performing motion compensation, and report
results on the test set in Tab. 3

We observe, that all methods benefit from motion com-
pensation in their input. We further observe that the 2D
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Figure 5. Results of combined motion and MPI correction using
the CFN network. Without additional motion compensation, the
motion artifacts are only partially corrected. In combination with
method they are restricted to the object boundaries.

networks that frame the task as denoising handle motion ar-
tifacts quite well, see Fig. 5, whereas the more complex ap-
proaches E2E, which formulates a generative image trans-
lation task, and RADU, which operates on 3D point clouds,
struggle in this setting. It is to be remarked, that none of the
approaches were designed to correct motion artifacts.

5.4. Ablations

This section provides ablations on the loss components.

5.4.1 Component Ablation

To investigate the influence of each loss component sep-
arately, we train instances of the FFN network while dis-
abling individual components. Further, we replace the ToF
loss LToF with the photometric loss Lphoto and addition-
ally train an instance using only the ToF loss as baselines.
The results on the validation set are reported in Tab. 4

From the results it can be seen that the combination of all
losses achieves the best performance, and that each com-
ponent reduces the loss. Out of the regulatory losses the
smoothing loss Lsmooth has the highest impact, followed
by the edge-aware loss Ledge and finally the latent similarity
loss Lsim. Further, the ToF loss yields a large performance

Method Lphoto LToF

Input 70.39 23.71

Lphoto + Lsmooth + Ledge + Lsim 38.65 12.43
LToF 38.42 10.17
LToF + Ledge + Lsim 35.94 9.67
LToF + Lsmooth + Lsim 34.65 8.54
LToF + Lsmooth + Ledge 32.57 7.87

LToF + Lsmooth + Ledge + Lsim 28.76 7.21

Table 4. Ablation on the loss components in the single frequency
single-tap case, using the FFN as OF backbone.
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gain compared to the photometric loss, and even without
regularizations achieves a better performance.

5.4.2 Similarity Loss Function

As the definition of the latent similarity loss Lsim in
Eq. (19) was kept general, it allows for the usage of dif-
ferent similarity measures L. We investigate the standard
L1 and L2 distances, the cost function that is used in the
cost volume computation and the cosine similarity

Lp : ∥Fi(k, l)− Fj(k, l)∥p, p = 1, 2 (20)
Cost: − Fi(k, l) · Fj(k, l), (21)

Cosine :
−Fi(k, l) · Fj(k, l)

∥Fi(k, l)∥2∥Fj(k, l)∥2
, (22)

where · denotes the scalar product. We consider the single
frequency single tap and the multi frequency two-tap case
in this ablation, and train instances of the FFN using the
above similarity measures, together with all other loss com-
ponents. Further, we train an instance using no similarity
loss as a baseline, and, in the case of two taps, compare
to using Lindner’s features as input instead of a similarity
measure. From the results, which can be seen in Tab. 5, we
find that the cosine similarity achieves the best performance
in both cases. Additionally, in the multi frequency two-tap
case, the cosine similarity is the only measure that improves
over not using a similarity loss at all, including Lindner’s
method. Consequently, both the use and the choice of the
similarity measure needs careful consideration.

6. Limitations
Although, both backbone OF networks achieve good re-

sults, we experience cases that escape our regularization
losses. For example, the smoothing loss Lsmooth ensures a
continuous flow for an object, however objects are detected
based on their homogeneous appearance, which can fail on
high frequency details. While the edge loss Ledge can re-
solve most of the cases, still sometimes wrong parts of the
images are matched, especially when nearby image patches
have a similar appearance, see Fig. 6. We attribute this to

Input (detail) Reference After warp

Figure 6. Example of an object, where our regularizations fail. The
high frequency pattern prevents Lsmooth from enforcing a consis-
tent flow for the object. Due to the repetitive pattern, the network
matches the yellow region in the input image with the cyan region
in the reference image, and the object gets distorted.

SF 1Tap MF 2Tap
Method Lphoto LToF Lphoto LToF

Input 70.39 23.71 93.17 11.98

Lindner - - 45.59 7.48
None 32.57 7.87 48.13 7.36
L1 32.15 7.97 54.27 7.88
L2 34.37 7.61 54.32 7.78
Cost 41.88 10.73 53.98 7.87
Cosine 28.76 7.21 45.49 6.67

Table 5. Ablation on different loss function for Lsim, using FFN
as backbone. On validation set.

the fact that without access to ground truth flows, such cases
present a local minima during training.

Moreover, while we demonstrated our method on the
largest available iToF dataset [23], this work is restricted
to a synthetic setting as no real world data set containing
raw iToF measurements is currently available. Lastly, the
choice of the backbone network impacts the performance
in different settings, i.e. MOM clearly outperforms the FFN
backbone in the multi frequency single tap setting. Addi-
tionally, as our contribution is a training algorithm, the ex-
ecution time is given by the execution time of the underly-
ing OF network, while it is almost constant in the different
settings for the MOM network, it grows linearly with the
number of predicted flows for the FFN. As a consequence
it would be desirable to have a OF network for iToF motion
correction with a constant high performance in this multi-
modality multi-frame flow prediction problem.

7. Conclusion
In this work, we presented a training method for OF net-

works to align iToF measurements in order to reduce the
motion artifacts in the reconstructed depth images. To this
end we enable the weakly supervised training on the ToF
loss LToF using a phase unwrapping scheme for gradi-
ent correction. In combination with the regularizing losses
Lsmooth and Ledge which regulate the flow predictions, and
the similarity loss Lsim to resolve the multi-modality, our
method enables training without the need of ground truth
flow labels. The experiments indicate that our method is
able to compensate motion artifacts for both single and
multi frequency settings as well as single and multi tap sen-
sors. Further, our training method was demonstrated for
two backbone OF networks, with different architectures,
and was able to outperform existing methods.
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