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Abstract

Shadow Removal is an important and widely researched
topic in computer vision. Recent advances in deep learning
have resulted in addressing this problem by using convolu-
tional neural networks (CNNs) similar to other vision tasks.
But these existing works are limited to low-resolution im-
ages. Furthermore, the existing methods rely on heavy net-
work architectures which cannot be deployed on resource-
constrained platforms like smartphones. In this paper,
we propose SHARDS, a shadow removal method for high-
resolution images. The proposed method solves shadow re-
moval for high-resolution images in two stages using two
lightweight networks: a Low-resolution Shadow Removal
Network (LSRNet) followed by a Detail Refinement Network
(DRNet). LSRNet operates at low-resolution and computes
a low-resolution, shadow-free output. It achieves state-of-
the-art results on standard datasets with 65x lesser net-
work parameters than existing methods. This is followed by
DRNet, which is tasked to refine the low-resolution output
to a high-resolution output using the high-resolution input
shadow image as guidance. We construct high-resolution
shadow removal datasets and through our experiments,
prove the effectiveness of our proposed method on them. It
is then demonstrated that this method can be deployed on
modern day smartphones and is the first of its kind solution
that can efficiently (2.4secs) perform shadow removal for
high-resolution images (12MP) in these devices. Like many
existing approaches, our shadow removal network relies on
a shadow region mask as input to the network. To com-
plement the lightweight shadow removal network, we also
propose a lightweight shadow detector in this paper.

1. Introduction

Shadow Removal from images is a complex problem
in computer vision. Prevalence of shadows in an image
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Figure 1. a. Existing shadow removal methods produce artefacts or
leave shadow traces for high-resolution images. b. Model compar-
ison in terms of performance, model parameters and computation
with existing methods.

can adversely affect other computer vision tasks like ob-
ject recognition. In addition, shadow removal has its ap-
plication in image editing softwares like Adobe Photoshop
where professional photographers relight the shadow areas
for shadow removal. This is a cumbersome process and re-
quires domain expertise.

Recent advances in deep learning based approaches [18,
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21] have achieved remarkable results in shadow removal.
However, a limitation of all the existing approaches is that
they work only on low-resolution (<1MP) images. This can
be attributed to the fact that CNNs, based on which these
networks are built, usually have a limited receptive field.
Techniques to increase the receptive field of the network in-
volve adding deeper layers thus increasing the network pa-
rameters and effectively making them harder to train. Fur-
thermore, in the context of high-resolution images, it may
lead to computational and hardware constraints. In addition,
many of these approaches [4, 12] rely on heavy network
backbones that cannot be adopted in resource-constrained
platforms like smartphones. Thus shadow removal for high-
resolution images remains an extremely challenging task
and absence of high-resolution datasets adds to the prob-
lem.

To address these limitations, we propose a novel shadow
removal method that can remove shadows even from high-
resolution images. Specifically, this is achieved using a
dual stage approach with two lightweight networks LSR-
Net and DRNet. To elaborate, given a high-resolution
shadow image, the first network (LSRNet) is trained to re-
move the shadow from the image at low-resolution. Solv-
ing the shadow removal problem at low-resolution ensures
that the network has a large receptive field to efficiently
aggregate global context from shadow-free regions to re-
light shadow regions in a consistent manner. To restore
the details in the low-resolution output, the second network
(DRNet) is trained to retrieve the details using the high-
resolution shadow image as guidance. In this work, we
demonstrate that the proposed LSRNet achieves state-of-
the-art performance on the challenging ISTD [21] shadow
removal dataset with significantly lesser number of network
parameters than existing methods proving that earlier tech-
niques have not been designed keeping network efficiency
into consideration. In addition, we also create new high-
resolution shadow datasets to prove the effectiveness of
our proposed architecture on high-resolution images. In
Figure 1, we show a sample result of our proposed net-
work compared against existing state-of-the-art shadow re-
moval methods on a high-resolution shadow image. While
our method is able to remove the shadow completely other
methods struggle on high-resolution images due to their
limited receptive field. Additionally, in Figure 1, we com-
pare the performance of the proposed method against exist-
ing methods [4, 12, 6, 15, 16] in terms of model parameters,
computation and shadow removal quality (RMSE metrics).
Our network outperforms the existing techniques while be-
ing significantly more parameter and computation efficient.

Our proposed shadow removal architecture also uses a
shadow mask as an input to the networks. To this ef-
fect, we propose a fast and efficient shadow detection net-
work. We demonstrate that the proposed shadow detec-

tor network performs comparably against existing networks
even though it has less network parameters. Finally, due
to the lightweight nature of the shadow detection and re-
moval networks, we show that the proposed architecture can
be deployed on latest smartphones and achieve extremely
fast shadow removal with processing time of approximately
2.4secs for 12MP (4032x3024) images.

To summarize, the major contributions of this work
are: 1. We propose SHARDS, a novel shadow removal
method for high-resolution images using two lightweight
networks and prove the effectiveness of the method on high-
resolution images.
2. We also demonstrate that on existing low-resolution
benchmark ISTD dataset, our shadow removal network
achieves state-of-the-art performance with a magnitude of
order less parameters and computations than the existing
networks.
3. We also propose a fast and efficient shadow detection
network that achieves comparable performance with state-
of-the art methods with lesser network parameters.
4. Additionally, we demonstrate that the proposed method
can be deployed on modern smartphone devices and
achieves extremely fast shadow removal (2.4 secs) for high-
resolution (12MP) images.

2. Related Works

2.1. Shadow Removal

Early traditional works on shadow removal were aimed
to model the physical properties of shadow, based on image
decomposition of shadow and shadow-free layers [5], or
a color transfer from the non-shadow region to the shadow
region [19]. With the availability of larger datasets, a num-
ber of deep-learning based shadow removal techniques have
been proposed. In DeShadowNet [18] by Qu et al., the net-
work is trained to remove shadows in an end-to-end man-
ner by predicting the shadow matte. Wang et.al [21] use
two stacked cGANs to jointly train a shadow detector and
shadow removal model. DHAN [4] uses attention and hier-
archical aggregation of features to address the boundary ar-
tifacts termed ‘ghosting’ observed in earlier techniques. In
Mask-ShadowGAN [7], the CycleGAN [25] framework is
used to train the model in an unsupervised manner. In [12],
Le et al. propose SID, which uses two networks to predict
the shadow parameters and shadow-matte respectively. The
predictions are combined using a linear illumination model
to get the final shadow-free output. Although SID claims to
adapt to high-resolution images using the matte interpola-
tion technique, the simple linear model proposed produces
visible artefacts around very detailed shadow boundaries
which is further pronounced when scaled to high-resolution
images as shown in Figure 1. In [6]. Fu et al. proposes
shadow removal as a multi-exposure image fusion problem
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(AEF). The simple illumination based models proposed in
SID and AEF [12, 6] ignore or constrain the spatially-
variant properties of shadows thus limiting their general-
ization capability. While dual stage networks [2, 14] exists
for other tasks like image segmentation and matting, they
cannot be directly adopted for the shadow removal task.

2.2. Shadow Detection

Similar to shadow removal, early works on shadow de-
tection also relied on physical models of illumination. Re-
cent deep learning based methods have outperformed these
early techniques and achieved remarkable results. Vicente
et al. [20] use a stacked CNN approach with noisily an-
notated data. Nyugen et al. [17] incorporate a sensitivity
parameter in the scGAN network for shadow detection. Le
et al. [13] use GANs to generate adversarial training sam-
ples to improve the shadow detection performance. Zheng
et al. [24] propose incorporating distraction semantics to the
network to predict false positives and false negatives and the
distraction features are fused to each layer for better predic-
tion. Hu et al. in DSCNet [9] and FSDNet [8] uses RNN
to incorporate direction-aware features in four directions for
better context aggregation. FSDNet [8] is among the first
networks designed specifically to be efficient for mobile de-
ployment.

3. Proposed Method
3.1. Shadow Removal

Like many recent works [4, 7] in Shadow Removal, the
proposed network is trained using the GAN framework in
which two networks, the Generator and the Discriminator
are jointly trained in an adversarial setup. We treat shadow
removal as an image-to-image translation problem where
the shadow images and the shadow free images constitute
the two domains. Specifically, in the proposed architecture,
shadow removal on high-resolution images is carried out
using two lightweight networks that we denote by LSRNet
and DRNet. Given a shadow image and the correspond-
ing shadow mask, LSRNet is trained to output the shadow-
free image at low-resolution similar to existing methods.
At low-resolution the network has a large receptive field to
capture non-local contextual cues from shadow-free regions
which is important to relight the shadow regions. DRNet
is trained independently of LSRNet to restore the details
into a low-resolution shadow-free image. We propose that
since the high-frequency details are already present in the
high-resolution input shadow image, it can act as a guid-
ance to the DRNet. Specifically, the network takes an up-
sampled low-resolution shadow-free image along with the
high-resolution shadow image and shadow mask as inputs,
and is trained to reproduce the ground-truth high-resolution
shadow-free image. In addition, since the primary task of

shadow removal is solved at a low-resolution by LSRNet,
it allows DRNet to have an extremely lightweight architec-
ture. The proposed dual stage architecture is depicted in
Figure 2.

LSRNet is based on an encoder-bottleneck-decoder ar-
chitecture as shown in Figure 3. Employing four strided
convolutions in the encoder, it downsamples the feature
space to 1/16th of the input resolution thereby capturing
rich and deep features. This design replaces the heavy back-
bones (like VGG, ResNext) in some of the SOTAs (DHAN
[4], SID [12]). We argue that effective shadow removal
requires extensive non-local information to maintain con-
sistency between the shadow region and shadow-free re-
gion in the output. The lack of it could lead to conspic-
uous artefacts. To overcome this, we propose to use self-
attention in the residual bottleneck module. The decoder
uses skip connections and upsampling convolutions to scale
the output back to the original resolution. In addition, we
use Convolution Block Attention (CBAM) [23] layers in
the decoder to let the network dynamically weigh the rele-
vant channels and spatial locations. To adapt to different
shadow intensities, we append three additional inputs by
doing gamma correction on the input image with different
gammas γ = 0.7, 0.5, 0.35, converting them to LAB color
space and taking their (L) channels. Finally, we add a multi-
level perceptual loss to improve the output quality. The
discriminator is a slightly modified multi-scale patch im-
plementation [11] with each scale housing a self-attention
layer. DRNet uses a similar network architecture to that
of LSRNet with the exception of self-attention and CBAM
layers. To train both the networks, triplets of shadow image,
shadow mask and the corresponding ground truth shadow
free image are needed. Let Ihrs , Ihrm , Ihrsf and Is, Im and
Isf be such a high-resolution and corresponding downsam-
pled low-resolution triplet in the dataset. LSRNet is trained
to transform Is to a shadow free image I ′sf expressed as,

I ′sf = LSRNet(Is, Isγ , Im) (1)

We perform gamma correction on the input shadow image
to get Isγ as described above and provide it as an additional
input to LSRNet. The Generator LSRNet and Discrimina-
tor DLR are trained to jointly optimize the following objec-
tive function,

LGAN (LSRNet, DLR) = EIsf [log(DLR(Isf ))] +

EIs,Isγ ,Im [log(1−DLR(LSRNet(Is, Isγ , Im)))]
(2)

Along with the adversarial loss, an additional multi-layer
perceptual loss Lpercep is used for the Generator and is rep-
resented as,

Lpercep =

5∑
k=0

λk||ϕk(I
′
sf )− ϕk(Isf )||1 (3)

1811



Upsample

High Resolution 
Shadow-Free Output 

Concatenate

LSRNet

DRNet

Low-Res
Output

Shadow Mask 

Inputs

Shadow Image 

Gamma

Figure 2. Proposed Shadow Removal using Dual Stage (SHARDS) Network architecture for high-resolution images.
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Figure 3. Architecture of Proposed LSRNet for shadow removal at
low-resolution

where ϕ is the pre-trained VGG-19 feature map and the
loss is calculated for layers Convk 2 for (k = 1, 2, 3, 4, 5).
For (k = 0), it is the pixel-wise difference between I ′sf
and Isf , the generated and the ground-truth shadow free
image weighted by λk. To improve the shadow removal
quality, we also force the output from bottleneck block to
be shadow-free by using the above perceptual loss formu-
lation. We use a 3-channel convolutional layer followed
by TanH activation to first map the output from bottleneck
block to RGB space. An appropriately downsampled ver-
sion of the original shadow-free image is then used as a
ground-truth. This results in a multi-level perceptual loss
setting with weights of λhigh and 1 − λhigh for the final
and bottleneck outputs respectively. Thus, the overall loss
function for the network is expressed as,

Ltotal = LGAN + θLpercep multilevel (4)

We use θ = 1 in our experiments. A similar setup is used
to train DRNet as well. Specifically, DRNet is trained to
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Figure 4. Proposed Shadow Detector Network Architecture.

transform Isf to a high-resolution shadow-free image Ihr
′

sf

using Ihrs and Ihrm as guidance, which is expressed as,

Ihr
′

sf = DRNet(Isf , I
hr
s , Ihrm ) (5)

3.2. Shadow Detection
Like many previous works [12, 6] the proposed shadow

removal method takes a shadow mask as input. Most
shadow detection networks [26, 24, 9, 3] rely on heavy
network backbones and cannot be deployed in an embed-
ded device like smartphone due to their high computational
complexity. We propose a lightweight shadow detector net-
work that complements the proposed shadow removal net-
work. Our network consists of an encoder, ASPP and de-
coder module similar to the DeepLabV3 [1] architecture.
We adopt the efficient MobileNetV2 backbone as the en-
coder, followed by the ASPP module to extract features at
multiple scales and to incorporate global context. Finally,
the decoder consists of three convolution layers followed by
upsampling at each stage to predict the shadow mask. At
only 3.2 million parameters, the network has significantly
less parameters than existing methods. Figure 4 shows the
architecture of the proposed network. Recently in [8] Hu et
al. proposed FSDNet, a lightweight shadow detection net-
work with only 4.4M network parameters. We outperform
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FSDNet across all datasets and show that FSDNet with its
direction-aware spatial context module (DSC) having RNN
formulation does not offer any additional context than the
ASPP module. To train the network we use the weighted
cross entropy loss (WCE). Let pi be the probability of the
shadow for the i-th pixel as predicted by the network where
yi is the ground-truth (yi = 1, if it is a shadow pixel and
yi = 0 otherwise). The WCE loss for an image is then
calculated by,

Lwce =
∑
i

(− Nn

Nn +Np
yi log(pi)−

Np

Nn +Np
(1− yi) log(1− pi))

(6)

where, Np and Nn denote the summation of false positives
and false negatives in the image.

4. Experimental Results
4.1. Shadow Removal

In this section, we thoroughly examine our method and
ablate on the individual components used. We then com-
pare our work with relevant state-of-the-arts from recent lit-
erature and demonstrate the effectiveness of our lightweight
shadow removal network. All our experiments are trained
only on the baseline dataset and do not use any additional
synthetic data. Finally, we demonstrate the superiority of
our dual stage architecture for high-resolution shadow re-
moval.

4.1.1 Network Implementation

Both LSRNet and DRNet can be divided into the following
three conceptual blocks – encoder, bottleneck and decoder.
The encoder consists of five convolutional layers – first with
a kernel of 7x7 and the rest four with 3x3 kernels. The num-
ber of channels used in the five convolutional layers are [32,
64, 128, 128, 256]. The bottleneck block uses a series of 9
bottleneck residual blocks. The latter five of these blocks
use self-attention. The decoder mirrors the encoder and
maps the output back to 3 channel RGB space at the input
resolution. The decoder has concatenation skip connections
with CBAM attention layers. We use Batch Normalization
[10] and ReLU activation in both the networks with TanH
as the last activation layer.

4.1.2 Datasets

ISTD: The Image Shadow Triplets Dataset or ISTD [21]
is a large-scale dataset containing 1870 triplets of shadow,
shadow mask and shadow-free images at a resolution of
640x480, split into 1330 training and 540 testing triplets.
We resize the images to 400x400 before training but retain

Figure 5. Sample shadow images from Shadow Food-HQ (SFHQ)
dataset.

the original resolution for testing. To reduce the illumina-
tion and color discrepancies arising in the paired-image cap-
ture, we adopt pre-processing step from [12]. Due to a lack
of publicly available high-resolution datasets, we created
ISTD-HQ to test our high-resolution inference framework.
We use the super-resolution network from [22] and produce
upscaled images at 2560x1920 resolution from the original
ISTD images. Although this might not match a dataset cap-
tured in high-resolution, we believe it will be useful in es-
tablishing the applicability of the proposed method.

Shadow Food-HQ (SFHQ): We constructed a new
Shadow Triplet dataset comprising of high-resolution food
images captured at 12MP (4032x3024) resolution. It con-
sists of 14520 shadow triplets. Shadow mask ground-truths
are manually annotated to include externally cast shadows
only. The images consist of diverse scenes captured with
varying lighting conditions and perspectives. The dataset is
divided into 14K training and 520 testing triplets. Similar
to ISTD dataset, we use 400x400 images for training and
testing. Sample shadow images from the dataset are shown
in Figure 5.

4.1.3 Training Details

We train both our networks for 220K iterations with a batch
size of 4 using Adam optimizer with a beta 1 of 0.5 and
beta 2 of 0.999. We start with a learning rate of 0.0002
and reduce it by half every 80K iterations. We update our
generator and discriminator alternatively. During training,
we randomly flip the images with 50% probability and add
color jitter to augment the data. For LSRNet, the training
takes a little over two and a half days on an Nvidia Tesla
P40 GPU and three days for DRNet.

4.1.4 Evaluation Metrics

For evaluating Shadow Removal performance, we use Root
Mean Squared Error (RMSE) metric. We compute RMSE
on the whole image and on shadow region individually and
report our numbers in the Lab color space.
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Figure 6. Shadow Removal result comparison of proposed network
with SOTA methods SID [12], DHAN [4] and AEF [6] on ISTD
and SFHQ. (Zoom-in for better visualization).

Method Dataset Shadow Non-Shadow Whole
SID ISTD 4.788 3.175 3.482
DHAN ISTD 4.649 3.137 3.426
AEF ISTD 3.465 2.11 2.388
Ours ISTD 3.164 1.606 1.955
SID SFHQ 7.497 3.558 4.755
DHAN SFHQ 6.826 2.207 3.767
AEF SFHQ 7.572 3.182 4.582
Ours SFHQ 6.017 1.928 3.32

Table 1. Quantitative result comparison of our proposed network
against SID [12], DHAN [4] and AEF [6] in terms of Lab color
space RMSE on ISTD and SFHQ dataset.

Configuration Params ISTD SFHQ
Base Network 1.97M 3.32 6.55
+ Gamma Augmentation 1.973M 3.31 6.52
+ CBAM 2.0M 3.18 6.42
+ Self-Attention 2.371M 3.14 6.19
+ Discriminator Attention 2.371M 3.16 6.02

Table 2. LSRNet: Ablation Study – Number of network param-
eters, Shadow RMSE in Lab color space in ISTD and SFHQ
datasets.

4.1.5 Qualitative Comparison

We first provide qualitative image comparison on low-
resolution images between our proposed LSRNet and ex-
isting state-of-the-art shadow removal methods SID [12],
DHAN [4] and AEF [6] in Figure 6. Results are shown

on standard ISTD dataset and resized low-resolution images
from SFHQ dataset. As depicted in the figure our method
produces artefact-free results across different scenarios.

In Figure 7, we provide qualitative image comparison
between our proposed method and existing state-of-the-art
shadow removal methods on progressively increasing image
resolutions (256x256, 512x512, 1024x1024, 2048x2048).
As shown in the figure the shadow removal quality deterio-
rates gradually as we increase the image resolution proving
that existing methods do not adapt well to high-resolution
images. In contrast, our proposed dual-stage approach us-
ing LSRNet and DRNet can reliably scale to high-resolution
images.

In the inference phase for ISTD dataset we obtain the
shadow masks using the proposed shadow detector for our
method. For SID, DHAN and AEF, low resolution ISTD
results and metrics are obtained using the official models
and results released by the authors. High-resolution ones
are inferred using the official weights shared. For SFHQ
dataset the models are trained using the default parame-
ter choices of the respective code-bases. Additionally, to
ensure fairness, for testing on SFHQ dataset, ground-truth
shadow masks is used for all the methods including ours.

4.1.6 Quantitative Comparison

In Table 1, we provide quantitative evaluation between our
proposed method and existing shadow removal methods.
The proposed LSRNet outperforms existing methods on
both ISTD and SFHQ datasets. In addition, at 2.4 million
parameters and 18 GFLOPs our proposed method is signifi-
cantly lightweight and computationally efficient than exist-
ing methods.

4.1.7 Ablation Study

In this ablation study, we analyze the effects of our network
components and benchmark them on the ISTD [21] and
SFHQ datasets. For each design, we provide the network
parameter count and the RMSE values for shadow regions
in Lab color space. Our baseline network without any atten-
tion blocks and without using any gamma augmented im-
ages has an RMSE of 3.32 and 6.55 respectively on these
datasets. Adding three gamma augmented images to the in-
put improves the numbers marginally while also not affect-
ing the complexity much. Adding Convolution Block At-
tention [23] in the decoder brings down the shadow RMSE
by 4% and 1.5% respectively. With self-attention in the gen-
erator and discriminator networks, on the SFHQ dataset the
model sees an improvement of 6% in the shadow region
whereas on the ISTD dataset it improves by 1%. The results
are summarized in Table 2 with qualitative results shown in
Figure 8.
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Figure 7. Visual comparison showing shadow removal results at
progressively increasing image resolutions (left to right)(256, 512,
1024, 2048). While shadow removal quality degrades as we in-
crease the resolution for other methods it remains consistent for
our proposed method. (Zoom-in for better visualization).

Network Params FLOPs(G)
256 512 1024 2048

LSRNet 2.37M 17.73 73.0 326.78 1859.76
DRNet 0.49M 5.34 21.28 85.53 342.12

Table 3. Computation efficiency comparison between LSRNet
and DRNet in terms of GFLOPs at different input resolutions of
(256x256), (512x512), (1024x1024) and (2048x2048)

In Figure 9, we show the effect of using only LSRNet for
shadow removal at different resolutions. As described ear-
lier having a large receptive field in the network is important
to obtain shadow-remnant free outputs. At low-resolution
the receptive field of the network is the largest and as the
resolution increases the output quality degrades progres-
sively as shown in the figure. Moreover, in the proposed
2-stage approach as DRNet is only used for detail refine-
ment of the shadow-free output, the network at only 0.49M
parameters is computationally more efficient than LSRNet.
As shown in Table 3, more than 5x computational gain is
achieved with DRNet over LSRNet for high-resolution im-
ages (2048x2048). This also helps in deploying the solu-
tion in resource constrained environments like embedded
devices.

4.2. Shadow Detection

4.2.1 Training Details

The proposed shadow detection network is trained for 35k
iterations with a learning rate of 0.005, batch size of 16 and
SGD optimizer with a momentum of 0.9.

Method Parameters FLOPs (G) SBU ISTD
A+D Net 54.41M 22.31 5.37 3.23
DSC 79.03M 212.87 5.59 3.42
DSDNet 58.16M 106.43 3.45 2.17
BDRAR 42.46M 117.56 3.64 2.69
MTMT-Net 44.12M 142.32 3.15 1.77
FSDNet 4.4M 8.74 8.8 3.67
Ours 3.2M 8.54 5.59 2.23

Table 4. Quantitative comparison of our Shadow Detection method
against state-of-the-art methods in terms of BER.

4.2.2 Evaluation Metrics

We evaluate our network using one of the standard and
largest publicly available shadow datasets, namely SBU
[20] in addition to ISTD. Quantitative evaluation for the
shadow detection performance is done by calculating the
BER (Balanced Error rate) between the ground truth mask
and predicted shadow mask.

BER = (1− 1

2
(

TP

TP + FN
+

TN

TN + FP
)) ∗ 100 (7)

Where TP , TN , FP and FN are true positives, true nega-
tives, false positives and false negatives respectively. Lower
BER values indicate better shadow detection result.

4.2.3 Results

We compare our proposed network with several shadow de-
tection techniques: BDRAR [26], DSDNet [24], DSC [9],
MTMT-Net [3] and FSDNet [8] and across different
datasets. We obtain BER of all networks except FSDNet
by directly taking the results from the authors’ and for FS-
DNet by training the network ourselves. As depicted in
Table 4, although some of the recent techniques such as
DSDNet and MTMT-Net are better in BER metrics when
compared to our proposed network, it comes with a cost in
efficiency due to the number of network parameters used.
FSDNet and our proposed network are the only lightweight
networks with 4.4M and 3.2M training parameters respec-
tively. Our method outperforms FSDNet in accuracy across
different datasets with 36% and 39% improvement in BER
on SBU and ISTD dataset respectively. Sample results com-
paring our network qualitatively with some of the existing
state-of-the-art techniques are shown in Figure 10.

4.3. On-device implementation

We deploy the proposed architecture consisting of
shadow detection and shadow removal networks on a lat-
est Android Smartphone device (Samsung Galaxy S22)
powered by the Qualcomm Snapdragon 8 Gen 1 chipset
and having 12GB of RAM. The networks are converted to
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Figure 8. Visual results showing the effect of the different network components in the proposed shadow removal network.

Input LSRNet(512) LSRNet(1024) LSRNet(2048) LSRNet(512)+DRNet(2048) 

Figure 9. Qualitative result comparison to demonstrate the rela-
tionship between resolution and shadow removal quality. Using
only LSRNet, results progressively degrade with increase in reso-
lution. With the proposed dual-stage approach (LSRNet + DRNet)
the output quality is retained at high-resolution. (Zoom-in for bet-
ter visualization).

Figure 10. Qualitative results of our proposed Shadow Detection
method, compared with other shadow detection methods.

Network Execution Count Total (ms)
Time (ms)

Detector 70 1 70
LSRNet 290 1 290
DRNet 170 12 2040
Total - - 2400

Table 5. On-device performance on latest Smartphone device for
12MP (4032x3024) resolution image using the proposed shadow
detection and removal networks.

Tensorflow-Lite format and GPU delegation is used during
inference. We report the execution numbers with the pro-
posed shadow removal architecture on a 12MP (4032x3024)
image. In the on-device implementation, for DRNet, we use
the image tiling approach and perform multiple inferences
(12 tiles for 12MP image) to reduce memory and computa-
tion footprint. As shown in Table 5, the end-to-end execu-
tion time is around 2.4 secs on a modern smartphone device
proving the efficiency of the proposed technique.

5. Conclusion

In this paper, we have proposed a novel shadow re-
moval architecture SHARDS, that can perform shadow re-
moval on high-resolution images. The proposed archi-
tecture, even though has lesser network parameters than
existing techniques, outperforms them on existing low-
resolution datasets and can further adapt to high-resolution
images as well. In addition, we propose an efficient and
lightweight shadow detection network that compares favor-
ably against existing techniques. It is also shown that the
proposed method can be efficiently deployed in a modern
smartphone device to remove shadows from high-resolution
images proving the real-world applicability of the proposed
solution. Like other similar methods, the requirement of
a paired dataset limits the generalization of the approach.
However, the ideas proposed are equally applicable to un-
paired methods as well. While the existing datasets are very
simplistic, real world shadows often involve self-cast shad-
ows removing which would not be ideal. The detection
and removal methods should be robust against these which
would be explored in a future work.

1816



References
[1] Liang-Chieh Chen, G. Papandreou, Florian Schroff, and H.

Adam. Rethinking atrous convolution for semantic image
segmentation. ArXiv, abs/1706.05587, 2017.

[2] Wuyang Chen, Ziyu Jiang, Zhangyang Wang, Kexin Cui,
and Xiaoning Qian. Collaborative global-local networks for
memory-efficient segmentation of ultra-high resolution im-
ages. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, 2019.

[3] Zhihao Chen, Lei Zhu, Liang Wan, Song Wang, Wei Feng,
and Pheng-Ann Heng. A multi-task mean teacher for semi-
supervised shadow detection. In CVPR, 2020.

[4] Xiaodong Cun, Chi-Man Pun, and Cheng Shi. Towards
ghost-free shadow removal via dual hierarchical aggregation
network and shadow matting gan. Proceedings of the AAAI
Conference on Artificial Intelligence, 34(07):10680–10687,
Apr. 2020.

[5] Graham D. Finlayson, Steven D. Hordley, and Mark S. Drew.
Removing shadows from images. In Anders Heyden, Gunnar
Sparr, Mads Nielsen, and Peter Johansen, editors, Computer
Vision — ECCV 2002, pages 823–836, Berlin, Heidelberg,
2002. Springer Berlin Heidelberg.

[6] Lan Fu, Changqing Zhou, Qing Guo, Felix Juefei-Xu,
Hongkai Yu, Wei Feng, Yang Liu, and Song Wang. Auto-
exposure fusion for single-image shadow removal. In 2021
IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), pages 10566–10575, 2021.

[7] Xiaowei Hu, Yitong Jiang, Chi-Wing Fu, and Pheng-Ann
Heng. Mask-shadowgan: Learning to remove shadows from
unpaired data. 2019 IEEE/CVF International Conference on
Computer Vision (ICCV), Oct 2019.

[8] Xiaowei Hu, Tianyu Wang, Chi-Wing Fu, Yitong Jiang,
Qiong Wang, and Pheng-Ann Heng. Revisiting shadow de-
tection: A new benchmark dataset for complex world. arXiv
preprint arXiv:1911.06998, 2019.

[9] X. Hu, L. Zhu, C. Fu, J. Qin, and P. Heng. Direction-
aware spatial context features for shadow detection. In
2018 IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition, pages 7454–7462, 2018.

[10] Sergey Ioffe and Christian Szegedy. Batch normalization:
Accelerating deep network training by reducing internal co-
variate shift. CoRR, abs/1502.03167, 2015.

[11] P. Isola, J. Zhu, T. Zhou, and A. A. Efros. Image-to-image
translation with conditional adversarial networks. In 2017
IEEE Conference on Computer Vision and Pattern Recogni-
tion (CVPR), pages 5967–5976, 2017.

[12] Hieu Le and Dimitris Samaras. Shadow removal via shadow
image decomposition. In 2019 IEEE/CVF International
Conference on Computer Vision (ICCV), pages 8577–8586,
2019.

[13] Hieu Le, Tomas F. Yago Vicente, Vu Nguyen, Minh Hoai,
and Dimitris Samaras. A+D Net: Training a shadow detec-
tor with adversarial shadow attenuation. In Proceedings of
European Conference on Computer Vision, 2018.

[14] Shanchuan Lin, Andrey Ryabtsev, Soumyadip Sen-
gupta, Brian Curless, Steve Seitz, and Ira Kemelmacher-
Shlizerman. Real-time high-resolution background matting.

In 2021 IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), pages 8758–8767, 2021.

[15] Zhihao Liu, Hui Yin, Yang Mi, Mengyang Pu, and Song
Wang. Shadow removal by a lightness-guided network with
training on unpaired data. IEEE Transactions on Image Pro-
cessing, 30:1853–1865, 2021.

[16] Zhihao Liu, Hui Yin, Xinyi Wu, Zhenyao Wu, Yang Mi, and
Song Wang. From shadow generation to shadow removal.
In 2021 IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition (CVPR), pages 4925–4934, 2021.

[17] V. Nguyen, T. F. Y. Vicente, M. Zhao, M. Hoai, and D. Sama-
ras. Shadow detection with conditional generative adver-
sarial networks. In 2017 IEEE International Conference on
Computer Vision (ICCV), pages 4520–4528, 2017.

[18] L. Qu, J. Tian, S. He, Y. Tang, and R. W. H. Lau. Deshad-
ownet: A multi-context embedding deep network for shadow
removal. In 2017 IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), pages 2308–2316, 2017.

[19] Yael Shor and Dani Lischinski. The shadow meets the mask:
Pyramid-based shadow removal. Computer Graphics Forum,
27(2):577–586, 2008.

[20] Tomás F. Yago Vicente, Le Hou, Chen-Ping Yu, Minh Hoai,
and Dimitris Samaras. Large-scale training of shadow de-
tectors with noisily-annotated shadow examples. In Bas-
tian Leibe, Jiri Matas, Nicu Sebe, and Max Welling, edi-
tors, Computer Vision – ECCV 2016, pages 816–832, Cham,
2016. Springer International Publishing.

[21] Jifeng Wang, Xiang Li, and Jian Yang. Stacked conditional
generative adversarial networks for jointly learning shadow
detection and shadow removal. In CVPR, 2018.

[22] Xintao Wang, Ke Yu, Shixiang Wu, Jinjin Gu, Yihao Liu,
Chao Dong, Yu Qiao, and Chen Change Loy. Esrgan: En-
hanced super-resolution generative adversarial networks. In
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