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Abstract

Few-shot models aim at making predictions using a min-
imal number of labeled examples from a given task. The
main challenge in this area is the one-shot setting where
only one element represents each class. We propose Hy-
perShot - the fusion of kernels and hypernetwork paradigm.
Compared to reference approaches that apply a gradient-
based adjustment of the parameters, our model aims to
switch the classification module parameters depending on
the task’s embedding. In practice, we utilize a hypernet-
work, which takes the aggregated information from support
data and returns the classifier’s parameters handcrafted for
the considered problem. Moreover, we introduce the kernel-
based representation of the support examples delivered to
hypernetwork to create the parameters of the classification
module. Consequently, we rely on relations between em-
beddings of the support examples instead of direct feature
values provided by the backbone models. Thanks to this ap-
proach, our model can adapt to highly different tasks. *

1. Introduction

Current Artificial Intelligence techniques cannot rapidly
generalize from a few examples. This common inability
stems from the fact that most deep neural networks must be
trained on large-scale data. In contrast, humans can learn

*The source code is available at: https://github.com/gmum/
few-shot-hypernets-public.

†Denotes equal contribution.

new tasks quickly by utilizing what they learned in the past.
Few-shot learning models try to fill this gap by learning
how to learn from a limited number of examples. Few-shot
learning is the problem of making predictions based on a
small number of labeled examples. The goal of few-shot
learning is not to recognize a fixed set of labels but to learn
how to quickly adapt to new tasks with a small amount of
training data. After training, the model can classify new
data using only a few training examples.

Two new Few-shot learning techniques have recently
emerged. The first one is based on the kernel method and
Gaussian processes [20, 31, 39]. The universal deep kernel
has enough data to generalize well to unseen tasks without
over-fitting. The second technique makes use of the Hyper-
networks [10, 22, 21, 40, 43, 44], which allow to aggregate
information from the support set and produce dedicated net-
work weights for new tasks.

The above approaches give promising results but also
have some limitations. Kernel-based methods are not flexi-
ble enough, since they use Gaussian processes on top of the
models. Moreover, it is not trivial to use Gaussian processes
for classification tasks. On the other hand, Hypernetworks
must aggregate information from the support set, and it is
hard to model the relation between classes as opposed to
classical feature extraction.

This paper combines the Hypernetworks paradigm with
kernel methods to realize a new strategy that mimicks the
human way of learning. First, we examine the entire sup-
port set and extract the information in order to distinguish
objects of each class. Then, based on the relations between
their features, we create the decision rules.
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Kernel methods realize the first part of the process. For
each of the few-shot tasks, we extract the features from the
support set through the backbone architecture and calculate
kernel values between them. Then we use a Hypernetwork
architecture [10, 39] – a neural network that takes kernel
representation and produces decision rules in the form of
a classifier. In our approach, the Hypernetwork aggregates
the information from the support set and produces weights
of the target model dedicated to the specific task, classifying
the query set.

Our model, dubbed HyperShot, inherits the flexibility
from Hypernetworks and the ability to learn the relation be-
tween objects from the kernel-based methods.

We perform an extensive experimental study of our ap-
proach by benchmarking it on various one-shot and few-
shot image classification tasks. We find that HyperShot
demonstrates high accuracy in all tasks, performing com-
parably or better than the other recently proposed methods.
Moreover, HyperShot shows a strong ability to generalize,
as evidenced by its performance on cross-domain classifi-
cation tasks.

The contributions of this work are three-fold:

• In this paper, we propose a model which realizes the
learn how to learn paradigm by modeling learning
rules which are not based on gradient optimization and
can produce completely different decision strategies.

• We propose a new approach to solve the few-shot
learning problem by aggregating information from the
support set by kernel methods and directly producing
weights from the neural network dedicated to the query
set.

• We propose HyperShot, which combines the Hyper-
networks paradigm with kernel methods to produce the
weights dedicated for each task.

2. HyperShot: Hypernetwork for few-shot
learning

In this section, we present our HyperShot model for few-
shot learning.

2.1. Background

Few-shot learning The terminology describing the few-
shot learning setup is dispersive due to the colliding defi-
nitions used in the literature. For a unified taxonomy, we
refer the reader to [4, 38]. Here, we use the nomenclature
derived from the meta-learning literature, which is the most
prevalent at the time of writing. Let:

S = {(xl,yl)}Ll=1 (1)

be a support-set containing input-output pairs, with L ex-
amples with the equal class distribution. In the one-shot

scenario, each class is represented by a single example, and
L = K, where K is the number of the considered classes in
the given task. Whereas, for few-shot scenarios, each class
usually has from 2 to 5 representatives in the support set S.
Let:

Q = {(xm,ym)}Mm=1 (2)

be a query-set (sometimes referred to in the literature as a
target-set), with M examples, where M is typically one or-
der of magnitude greater than K. For ease of notation, the
support and query sets are grouped in a task T = {S,Q}.
During the training stage, the models for few-shot applica-
tions are fed by randomly selected examples from training
set D = {Tn}Nn=1, defined as a collection of such tasks.

During the inference stage, we consider task T∗ =
{S∗,X∗}, where S∗ is a support set with the known class
values for a given task, and X∗ is a set of query (unlabeled)
inputs. The goal is to predict the class labels for query in-
puts x ∈ X∗, assuming support set S∗ and using the model
trained on D.

Hypernetwork In the canonical work [10], hyper-
networks are defined as neural models that generate weights
for a separate target network solving a specific task. The au-
thors aim to reduce the number of trainable parameters by
designing a hyper-network with a smaller number of param-
eters than the target network. Making an analogy between
hyper-networks and generative models, the authors of [32]
use this mechanism to generate a diverse set of target net-
works approximating the same function.

2.2. HyperShot - overview

We introduce HyperShot – a model that utilizes hyper-
networks for few-shot problems. The main idea of the pro-
posed approach is to predict the values of the parameters
for a classification network that makes predictions on the
query images given the information extracted from support
examples for a given task. Thanks to this approach, we can
switch the classifier’s parameters between completely dif-
ferent tasks based on the support set. The information about
the current task is extracted from the support set using a
parameterized kernel function that operates on embedding
space. Thanks to this approach, we use relations among the
support examples instead of taking the direct values of the
embedding values as an input to the hypernetwork. Con-
sequently, this approach is robust to the embedding values
for new tasks far from the feature regions observed during
training. The classification of the query image is also per-
formed using the kernel values calculated with respect to
the support set.

The architecture of HyperShot is provided in Fig. 1. We
aim to predict the class distribution p(y|S,x), given a query
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Figure 1. The general architecture of HyperShot. First, the examples from a support set are sorted according to the corresponding class
labels and transformed by encoding network E(·) to obtain the matrix of ordered embeddings of the support examples, ZS . The low-
dimensional representations stored in ZS are further used to compute kernel matrix KS,S . The values of the kernel matrix are passed to the
hypernetwork H(·) that creates the parameters θT for the target classification module T (·). The query image x is processed by encoder
E(·), and the vector of kernel values kx,S is calculated between query embedding zx and the corresponding representations of support
examples, ZS . The kernel vector kx,S is further passed to target model T (·) to obtain the probability distribution for the considered classes.

image x and set of support examples S = {(xl, yl)}Kl=1.
First, all images from the support set are grouped by their
corresponding class values. Next, each of the images xl
from the support set is transformed using encoding net-
work E(·), which creates low-dimensional representations
of the images, E(xl) = zl. The constructed embeddings
are sorted according to class labels and stored in the ma-
trix ZS = [zπ(1), . . . , zπ(K)]

T, where π(·) is the bijective
function, that satisfies yπ(l) ≤ yπ(k) for l ≤ k.

In the next step we calculate the kernel matrix KS,S , for
vector pairs stored in rows of ZS . To achieve this, we use
the parametrized kernel function k(·, ·), and calculate ki,j
element of matrix KS,S in the following way:

ki,j = k(zπ(i), zπ(j)). (3)

The kernel matrix KS,S represents the extracted infor-
mation about the relations between support examples for a
given task. The matrix KS,S is further reshaped to the vec-
tor format and delivered to the input of the hypernetwork
H(·). The role of the hypernetwork is to provide the param-
eters θT of target model T (·) responsible for the classifica-
tion of the query object. Thanks to that approach, we can
switch between the parameters for entirely different tasks
without moving via the gradient-controlled trajectory, like
in some reference approaches like MAML.

The query image x is classified in the following manner.
First, the input image is transformed to low-dimensional
feature representation zx by encoderE(x). Further, the ker-
nel vector kx,S between the query embedding and sorted
support vectors ZS is calculated in the following way:

kx,S = [k(zx, zπ(1)), . . . , k(zx, zπ(K))]
T. (4)

The vector kx,S is further provided on the input of target
model T (·) that is using the parameters θT returned by hy-
pernetwork H(·). The target model returns the probability
distribution p(y|S,x) for each class considered in the task.

The function π(·) enforces some ordering of the input
delivered to T (·). Practically, any other permutation of
the classes for the input vector kx,S . In such a case, the
same permutation should be applied to rows and columns of
KS,S . As a consequence, the hypernetwork is able to pro-
duce the dedicated target parameters for each of the possible
permutations. Although this approach does not guarantee
the permutation invariance for real-life scenarios, thanks to
dedicated parameters for any ordering of the input, it should
be satisfied for major cases.

2.3. Kernel function

One of the key components of our approach is a kernel
function k(·, ·). In this work we consider the dot product of
the transformed vectors given by:

k(z1, z2) = f(z1)
Tf(z2), (5)

where f(·) can be a parametrized transformation function,
represented by MLP model, or simply an identity operation,
f(z) = z. In Euclidean space this criterion can be expressed
as k(z1, z2) = ||f(z1)|| · ||f(z2)|| cosα, where α is an angle
between vectors f(z1) and f(z2). The main feature of this
function is that it considers the vectors’ norms, which can
be problematic for some tasks that are outliers regarding the
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Figure 2. Simple 2D example illustrating the application of cosine
kernel for HyperShot. We consider the two support examples from
different classes represented by vectors f1 and f2. For this simple
scenario, the input of hypernetwork is represented simply by the
cosine of α, which is an angle between vectors f1 and f2. We
aim at classifying the query example x represented by a vector fx.
Considering our approach, we deliver to the target network T (·)
the cosine values of angles between first (αx,1) and second (αx,2)
support vectors and classify the query example using the weights
θT created by hypernetwork H(·) from cosα (remaining compo-
nents on the diagonal of KS,S are constant for cosine kernel).

representations created by f(·). Therefore, we consider in
our experiments also the cosine kernel function given by:

kc(z1, z2) =
f(z1)

Tf(z2)

||f(z1)|| · ||f(z2)||
, (6)

that represents the normalized version dot product. Con-
sidering the geometrical representation, kc(z1, z2) can be
expressed as cosα (see the example given by Fig. 2). The
support set is represented by two examples from different
classes, f1 and f2. The target model parameters θT are cre-
ated based only on the cosine value of the angle between
vectors f1 and f2. During the classification stage, the query
example is represented by fx, and the classification is ap-
plied on the cosine values of angles between fx and f1, and
fx and f2, respectively.

2.4. Training and prediction

The training procedure assumes the following
parametrization of the model components. The en-
coder E := EθE

is parametrized by θE , the hypernetwork
H = HθH

by θH , and the kernel function k by θk. We
assume that training set D is represented by tasks Ti com-
posed of support Si and query Qi examples. The training
is performed by optimizing the cross-entropy criterion:

L = −
∑
Ti∈D

M∑
m=1

K∑
k=1

yki,m log p(yki,m|Si,xi,m), (7)

where (xi,n,yi,n) are examples from query set Qi, where
Qi = {(xi,m,yi,m)}Mm=1. The distribution for currently

Algorithm 1 HyperShot - training and prediction functions
Require: Training set D = {Tn}Nn=1, and T∗ = {S∗,X∗} test
task.
Parameters: θH - parameters , θk - kernel parameters, and θE -
encoder parameters
Hyperparameters: Ntrain - number of training iterations, Ntune
number of tuning iterations, α- step size.

1: function TRAIN(D, α, Ntrain, θH , θk, θE)
2: while n ≤ Ntrain do
3: Sample task T = {S,Q} ∼ D
4: Assign support S = {(xm,ym)}Mm=1

5: L = −
∑M
m=1

∑K
k=1 y

k
m log p(ykm|Si,xm,θH ,θk,θE)

6: Update: θE ← θE − α∇θEL,
7: θH ← θH − α∇θHL,
8: θk ← θk − α∇θkL
9: n = n+ 1

10: end while
11: return θH , θk, θE
12: end function
13: function PREDICT(T∗, α, Ntune, θH , θk, θE)
14: Create tuning task: Tt = {S∗,S∗}
15: Adapt θ̂H , θ̂k, θ̂E = TRAIN(Tt, α, Ntune, θH , θk, θE)
16: for each x ∈ X∗ do
17: return argmaxy p(y|S∗,x, θ̂H , θ̂k, θ̂E)
18: end for
19: end function

considered classes p(y|S,x) is returned by target network
T of HyperShot. During the training, we jointly optimize
the parameters θH , θk, and θE , minimizing the L loss.

During the inference stage, we consider the task T∗, com-
posed of a set of labeled support examples S∗ and a set of
unlabelled query examples represented by input values X∗
that the model should classify. We can simply take the prob-
ability values p(y|S∗,x) assuming the given support set S∗
and single query observation x from X∗, using the model
with trained parameters θH , θk, and θE . However, we ob-
serve that slightly better results are obtained while adapting
the model’s parameters on the considered task. We do not
have access to labels for query examples. Therefore we im-
itate the query set for this task simply by taking support ex-
amples and creating the adaptation task Ti = {S∗,S∗} and
updating the parameters of the model using several gradient
iterations. The detailed presentation o training and predic-
tion procedures are provided by Algorithm 1.

2.5. Adaptation to few-shot scenarios

The proposed approach uses the ordering function π(·)
that keeps the consistency between support kernel matrix
KS,S and the vector of kernel values kx,S for query exam-
ple x. For few-shot scenarios, each class has more than one
representative in the support set. As a consequence, there
are various possibilities to order the feature vectors in the
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support set inside the considered class. To eliminate this
issue, we follow [44] and propose to apply the aggregation
function to the embeddings z considering the support ex-
amples from the same class. Thanks to this approach, the
kernel matrix is calculated based on the aggregated values
of the latent space of encoding network E, making our ap-
proach independent of the ordering among the embeddings
from the same class. In experimental studies, we exam-
ine the quality of mean aggregation operation (averaged)
against simple class-wise concatenation of the embeddings
(fine-grained) in ablation studies.

3. Related Work
Feature transfer [45] is a baseline procedure for few-shot

learning and consists of pre-training the neural network and
a classifier. During meta-validation, the classifier is fine-
tuned to the novel tasks. [4] extend this idea by using cosine
distance between the examples.

In recent years, a variety of meta-learning methods [3,
11, 30] have been proposed to tackle the problem of few-
shot learning. The various meta-learning architectures for
few-shot learning can be roughly categorized into several
groups:

Memory-based methods [15, 16, 17, 27, 29, 42] are based
on the idea to train a meta-learner with memory to learn
novel concepts.

Metric-based methods meta-learn a deep representation
with a metric in feature space, such that distance between
examples from the support and query set with the same
class have a small distance in such space. Some of the ear-
liest works exploring this notion are Matching Networks
[36] and Prototypical Networks [33], which form proto-
types based on embeddings of the examples from the sup-
port set in the learned feature space and classify the query
set based on the distance to those prototypes. Numerous
subsequent works aim to improve the expressiveness of the
prototypes through various techniques. [19] achieve this by
conditioning the network on specific tasks, thus making the
learned space task-dependent. [12] transform embeddings
of support and query examples in the feature space to make
their distributions closer to Gaussian. [35] propose Rela-
tion Nets, which learn the metric function instead of using a
fixed one, such as Euclidean or cosine distance. Similar to
the above methods, HyperShot uses a kernel function that
predicts the relations between the examples in a given task.
The key difference is that instead of performing a nearest-
neighbor classification based on the kernel values, in Hy-
perShot, the kernel matrix is classified by a task-specific
classifier generated by the hypernetwork.

Optimization-based methods follow the idea of an opti-
mization process over support set within the meta-learning
framework like MetaOptNet [13], Model-Agnostic Meta-
Learning (MAML), and its extensions [5, 18, 23, 25, 6, 18].

Those techniques aim to train general models, which can
adapt their parameters to the support set at hand in a small
number of gradient steps. Similar to such techniques, Hy-
perShot also aims to produce task-specific models but uti-
lizes a hypernetwork instead of optimization to achieve that
goal.

Gaussian processes [26] possess many properties use-
ful in few-shot learning, such as natural robustness to the
limited amounts of data and the ability to estimate uncer-
tainty. When combined with meta-learned deep kernels,
[20], Gaussian processes were demonstrated to be a suitable
tool for few-shot regression and classification, dubbed Deep
Kernel Transfer (DKT). The assumption that such a univer-
sal deep kernel has enough data to generalize well to unseen
tasks has been challenged in subsequent works. [39] intro-
duced a technique of learning dense Gaussian processes by
inducing variables. This approach achieves substantial per-
formance improvement over the alternative methods. Simi-
larly, HyperShot also depends on learning a model that esti-
mates task-specific functions’ parameters. However, Hyper-
Shot employs a hypernetwork instead of a Gaussian process
to achieve that goal.

Hypernetworks [10] have been proposed as a solution
to few-shot learning problems in a number of works but
have not been researched as widely as the approaches men-
tioned above. Multiple works proposed various variations
of hyper-networks that predict a shallow classifier’s param-
eters given the support examples [2, 7, 22]. Subsequent
works have extended those models by calculating cosine
similarity between the query examples and the generated
classifier weights [8] and utilizing a probabilistic model that
predicts a distribution over the parameters suitable for the
given task [9]. More recently, [21, 43, 44] explored gen-
erating all of the parameters of the target network with a
transformer-based hypernetwork, but found that for larger
target networks, it is sufficient to generate only the param-
eters of the final classification layer. A particularly effec-
tive approach is to use Transformer-based hypernetworks
as set-to-set functions which make the generated classifier
more discriminative [40]. A key characteristic of the above
approaches is that during inference, the hypernetwork pre-
dicts weights responsible for classifying each class indepen-
dently, based solely on the examples of that class from the
support set. This property makes such solutions agnostic to
the number of classes in a task, useful in practical applica-
tions. However, it also means that the hypernetwork does
not take advantage of the inter-class differences in the task
at hand.

In contrast, HyperShot exploits those differences by uti-
lizing kernels, which helps improve its performance.
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4. Experiments
In the typical few-shot learning setting, making a valu-

able and fair comparison between proposed models is of-
ten complicated because of the existence of the significant
differences in architectures and implementations of known
methods. In order to limit the influence of the deeper back-
bone (feature extractor) architectures, we follow the unified
procedure proposed by [4].

In this section, we describe the experimental analysis and
performance of the HyperShot in the large variety of few-
shot benchmarks. Specifically, we consider both classifi-
cation (see Section 4.1) and cross-domain adaptation (see
Section 4.2) tasks. Whereas the classification problems are
focused on the most typical few-shot applications, the latter
cross-domain benchmarks check the ability of the models to
adapt to out-of-distribution tasks. Additionally, we perform
an ablation study of the possible adaptation procedures of
HyperShot to few-shot scenarios, as well as architectural
choices – presented in Section 4.3.

In all of the reported experiments, the tasks consist of
5 classes (5-way) and 1 or 5 support examples (1 or 5-
shot). Unless indicated otherwise, all compared models use
a known and widely utilized backbone consisting of four
convolutional layers (each consisting of a 2D convolution,
a batch-norm layer, and a ReLU non-linearity; each layer
consists of 64 channels) [4] and have been trained from
scratch.

We report the performance of two variants of HyperShot:

• HyperShot - models generated by the hypernetworks
for each task.

• HyperShot + adaptation - models generated by hy-
pernetworks adapted to the support examples of each
task for 10 training steps†.

In all cases, we observe a modest performance boost
thanks to adapting the hypernetwork.

Comprehensive details for each training procedure are
reported in the Appendix.

4.1. Classification

Firstly, we consider a classical few-shot learning sce-
nario, where all the classification tasks (both training and
inference) come from the same dataset. The main aim of
the proposed classification experiments is to find the ability
of the few-shot models to adapt to never-seen tasks from the
same data distribution.

We benchmark the performance of the HyperShot and
other methods on two challenging and widely consid-

†In the case of the adapted hypernetworks, we tune a copy of the hy-
pernetwork on the support set separately for each validation task. This way,
we ensure that our model does not take unfair advantage of the validation
tasks.

ered datasets: Caltech-USCD Birds (CUB) [37] and mini-
ImageNet [27]. The following experiments are in the most
popular setting, 5-way, consisting of 5 random classes. In
all experiments, the query set of each task consists of 16
samples for each class (80 in total). We provide the addi-
tional training details in the Appendix. We compare Hyper-
Shot to a vast pool of the state-of-the-art algorithms, includ-
ing the canonical methods (like Matching Networks [36],
Prototypical Networks [33], MAML [5], and its extensions)
as well as the recently popular Bayesian methods mostly
build upon the Gaussian Processes framework (like DKT
[20]).

We consider the more challenging 1-shot classification
task, as well as the 5-shot setting and report the results in
Table 1. The additional comparing methods on larger back-
bones, as well as a bigger number of baselines, are included
in Appendix.

In the 1-shot scenario, HyperShot achieves the second
and third-best accuracies in the CUB dataset with and with-
out utilizing an adapting procedure (66.13% with adapt-
ing, 65.27% without) and performs better than any other
model, except for FEAT [40] (68.87%). In the mini-
ImageNet dataset, our approach is among the top ap-
proachess (53.18%), slightly losing with DFSVLwF [8]
(56.20%).

Considering the 5-shot scenario, HyperShot is the third-
best model achieving 80.07% in the CUB dataset and
69.62% in the mini-ImageNet, whereas the best model,
FEAT [40], achieves 82.90% and 71.66% on the mentioned
datasets, respectively.

The obtained results clearly show that HyperShot
achieves results comparable to state-of-the-art models on
the standard set of few-shot classification settings.

4.2. Cross-domain adaptation

In the cross-domain adaptation setting, the model is eval-
uated on tasks coming from a different distribution than the
one it had been trained on. Therefore, such a task is more
challenging than standard classification and is a plausible
indicator of a model’s ability to generalize. In order to
benchmark the performance of HyperShot in cross-domain
adaptation, we merge data from two datasets so that the
training fold is drawn from the first dataset and validation
and testing fold – from another one. Specifically, we test
HyperShot on two cross-domain classification tasks:
mini-ImageNet → CUB (model trained on mini-
ImageNet and evaluated on CUB) and Omniglot → EM-
NIST in the 1-shot and 5-shot settings. We report the results
in Table 2. In most settings, HyperShot achieves the highest
accuracy, except for 1-shot mini-ImageNet → CUB clas-
sification, where its accuracy is on par with the accuracy
achieved by DKT [20] (40.14% and 40.03% achieved by
DKT and HyperShot, respectively). We note that just like
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Table 1. The classification accuracy results for the inference tasks on CUB and mini-ImageNet datasets in the 1-shot and 5-shot settings.
The highest results are in bold and second-highest in italic (the larger, the better).

CUB mini-ImageNet
Method 1-shot 5-shot 1-shot 5-shot

Feature Transfer [45] 46.19± 0.64 68.40± 0.79 39.51± 0.23 60.51± 0.55
Baseline++ [4] 61.75± 0.95 78.51± 0.59 47.15± 0.49 66.18± 0.18
MatchingNet [36] 60.19± 1.02 75.11± 0.35 48.25± 0.65 62.71± 0.44
ProtoNet [33] 52.52± 1.90 75.93± 0.46 44.19± 1.30 64.07± 0.65
RelationNet [35] 62.52± 0.34 78.22± 0.07 48.76± 0.17 64.20± 0.28
DKT + BNCosSim [20] 62.96± 0.62 77.76± 0.62 49.73± 0.07 64.00± 0.09
PPA [22] – – 54.53± 0.40 –
MAML [5] 56.11± 0.69 74.84± 0.62 45.39± 0.49 61.58± 0.53
MAML++ [1] – – 52.15± 0.26 68.32± 0.44
Bayesian MAML [41] 55.93± 0.71 – 53.80± 1.46 64.23± 0.69
Meta-SGD [14] – – 50.47± 1.87 64.03± 0.94
PAMELA [24] – – 53.50± 0.89 70 .51 ± 0 .67
FEAT [40] 68.87± 0.22 82.90± 0.15 55 .15 ± 0 .20 71.61± 0.16
DFSVLwF [8] – – 56.20± 0.86 –

HyperShot 65.27± 0.24 79.80± 0.16 52.42± 0.46 68.78± 0.29
HyperShot+ adaptation 66 .13 ± 0 .26 80 .07 ± 0 .22 53.18± 0.45 69.62± 0.20

in the case of regular classification, adapting the hypernet-
work on the individual tasks consistently improves its per-
formance.

4.3. Ablation study

In order to investigate different architectural choices in
adapting HyperShot to the specific task, we provide a com-
prehensive ablation study. We focused mostly on the four
major components of the HyperShot design, i.e., the method
of processing multiple support examples per class, number
of neck layers, the number of head layers, and the size of
the hidden layers, presented in Tables 3, 4, and 5. In case of
the experiments focusing on aggregating the number of sup-
port examples in the 5-way 5-shot setting, we perform the
benchmarks on CUB and mini-ImageNet, using a 4-layer
convolutional backbone. In the remaining experiments we
tested HyperShot on the CUB dataset in the 5-way 1-shot
setting with ResNet-10 backbone.

Aggregating support examples in the 5-shot setting In
HyperShot, the hypernetwork generates the weights of the
information about the support examples, expressed through
the support-support kernel matrix. In the case of 5-way 1-
shot classification, each task consists of 5 support examples,
and therefore, the size of the kernel matrix is (5 × 5), and
the input size of the hypernetwork is 25. However, with
a growing number of the support examples, increasing the
size of the kernel matrix would be impractical and could
lead to overparametrization of the hypernetwork.

Since hypernetworks are known to be sensitive to large
input sizes [10], we consider a way to maintain a constant
input size of HyperShot, independent of the number of sup-
port examples of each class by using means of support em-
beddings of each class for kernel calculation, instead of in-

dividual embeddings. Prior works suggest that when there
are multiple examples of a class, the averaged embedding of
such class represents it sufficiently in the embedding space
[33].

To verify this approach, in the 5-shot setting, we train
HyperShot with two variants of calculating the inputs to the
kernel matrix:

• fine-grained – utilizing a hypernetwork that takes as
an input a kernel matrix between each of the embed-
dings of the individual support examples. This kernel
matrix has a shape of (25× 25).

• averaged – utilizing a hypernetwork where the kernel
matrix is calculated between the means of embeddings
of each class. The kernel matrix in this approach has a
shape of (5× 5).

We benchmark both variants of HyperShot on the 5-shot
classification task on CUB and mini-ImageNet datasets, as
well as the task of cross-domain Omniglot → EMNIST
classification. We report the accuracies in Table 3. It is
evident that averaging the embeddings before calculating
the kernel matrix yields superior results.

Hidden size: Firstly, as presented in Table 4, we compare
different sizes of hidden layers. The results agree with the
intuition that the wider layers, the better results. However,
we also observe that some hidden sizes (e.g., 8188) could be
too large to learn effectively. Because of that, we propose
to use hidden sizes of 2048 or 4096 as the standard.

Neck and head layers: Then, we compared the influence
of the number of neck layers and head layers of HyperShot
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Table 2. The classification accuracy results for the inference tasks on cross-domain tasks (Omniglot→EMNIST and mini-
ImageNet→CUB) datasets in the 1-shot setting. The highest results are bold and second-highest in italic (the larger, the better).

Omni→EMNIST mini-ImageNet→CUB
Method 1-shot 5-shot 1-shot 5-shot
Feature Transfer 64.22 ± 1.24 86.10 ± 0.84 32.77 ± 0.35 50.34 ± 0.27
Baseline++ [4] 56.84 ± 0.91 80.01 ± 0.92 39.19 ± 0.12 57.31± 0.11
MatchingNet [36] 75.01 ± 2.09 87.41 ± 1.79 36.98 ± 0.06 50.72 ± 0.36
ProtoNet [33] 72.04 ± 0.82 87.22 ± 1.01 33.27 ± 1.09 52.16 ± 0.17
MAML [5] 72.68 ± 1.85 83.54 ± 1.79 34.01 ± 1.25 48.83 ± 0.62
RelationNet [35] 75.62 ± 1.00 87.84 ± 0.27 37.13 ± 0.20 51.76 ± 1.48
DKT [20] 75.40 ± 1.10 90 .30 ± 0 .49 40.14± 0.18 56.40 ± 1.34
Bayesian MAML [41] 63.94± 0.47 65.26± 0.30 33.52± 0.36 51.35± 0.16
OVE PG GP + Cosine (ML) [34] 68.43± 0.67 86.22± 0.20 39.66± 0.18 55.71± 0.31
OVE PG GP + Cosine (PL) [34] 77.00± 0.50 87.52± 0.19 37.49± 0.11 57.23± 0.31
HyperShot 78 .06 ± 0 .24 89.04± 0.18 39.09± 0.28 57 .77 ± 0 .33
HyperShot + adaptation 80.65± 0.30 90.81± 0.16 40 .034 ± 0 .41 58.86± 0.38

Table 3. The classification accuracy results for HyperShot in the 5-shot setting with two variants of the support embeddings aggregation.
The performance measured on Omniglot→EMNIST, CUB, and mini-ImageNet→CUB tasks. The larger, the better.

Omni→EMNIST CUB mini-ImageNet
HyperShot (fine-grained) 87.55± 0.19 78.05± 0.20 67.07± 0.47
HyperShot (averaged) 89.04± 0.18 79.80± 0.16 69.62± 0.28

Table 4. Comparison between various hidden sizes in the Hyper-
Shot’s layers. The classification accuracy results on CUB task and
5-way 1-shot setting. The larger, the better.

hidden size accuracy

256 70.16± 0.45
512 71.70± 0.46
1024 70.89± 0.62
2048 72.43± 0.59
4096 71.99± 0.70
8188 72.05± 0.33

Table 5. Comparison between various HyperShot’s architectures
(different number of neck layers and head layers). The classi-
fication accuracy results on CUB task and 5-way 1-shot setting.
The larger, the better.

neck layers head layers accuracy

1 3 73.00± 0.55
2 1 71.53± 0.33
2 2 68.06± 0.59
2 3 71.99± 0.70
3 3 70.81± 0.39

for the achieved results, as presented in Table 5. We ob-
served that the most critical is the number of head layers -
specific for each target network’s layers. Because of that,
we propose using the standard number of 3 head layers and
using various neck layers - tuning them to the specific task.

5. Conclusion

In this work, we introduced HyperShot — a new frame-
work that uses kernel methods combined with hypernet-
works. Our method uses the kernel-based representation of
the support examples and a hypernetwork paradigm to cre-
ate the query set’s classification module. We concentrate on

relations between embeddings of the support examples in-
stead of direct feature values. Thanks to this approach, our
model can adapt to highly different tasks.

We evaluate the HyperShot model on various one-shot
and few-shot image classification tasks. HyperShot demon-
strates high accuracy in all tasks, performing comparably or
better to state-of-the-art solutions. Furthermore, the model
has a strong ability to generalize, as evidenced by its perfor-
mance on cross-domain classification tasks.

Limitations The main limitation of HyperShot is the con-
siderable (up to 10000 epochs) training time. This could
possibly be reduced by employing a pre-training scheme
similar to [28, 40]. We are planning to investigate this in
the future.

Impact The results of this research show that Few-Shot
methods which utilize kernels and hypernetworks achieve
good performance in most benchmarks, particularly cross-
domain classification. Thus, HyperShot and other similar
models offer a promising direction in the research towards
better generalization of Few-Shot models.
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