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Abstract

To understand our surrounding world, our brain is con-
tinuously inundated with multisensory information and their
complex interactions coming from the outside world at any
given moment. While processing this information might
seem effortless for human brains, it is challenging to build
a machine that can perform similar tasks since complex in-
teractions cannot be dealt with a single type of integration
but require more sophisticated approaches. In this paper, we
propose a new simple method to address the multisensory
integration in video understanding. Unlike previous works
where a single fusion type is used, we design a multi-head
model with individual event-specific layers to deal with dif-
ferent audio-visual relationships, enabling different ways
of audio-visual fusion. Experimental results show that our
event-specific layers can discover unique properties of the
audio-visual relationships in the videos, e.g., semantically
matched moments, and rhythmic events. Moreover, although
our network is trained with single labels, our multi-head
design can inherently output additional semantically mean-
ingful multi-labels for a video. As an application, we demon-
strate that our proposed method can expose the extent of
event-characteristics of popular benchmark datasets.

1. Introduction
Real-world events around us consist of different multisen-

sory signals and their complex interactions with each other.
In-the-wild videos of real-life events and moments capture a
rich set of multi-modalities and their complex interactions
therein. Thus, it is essential to leverage multisensory infor-
mation for better video understanding, but their diversity
and complex nature make it challenging. For instance, even
though audio and vision signals are congruent, the way they
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Figure 1. A conceptual difference between prior approaches
and our event-specific fusion. Multi-modal events can be based
on various forms in in-the-wild videos; while some events might
have continuous temporal correspondence between visual changes
and accompanied audio, the others may have rhythmic, repetitive
audio-visual events or a few isolated instant moments, e.g., a person
snapping her fingers rhythmically with background music rhythm;
the air conditioner is blowing continuously; or a volcano explodes
in the footage. Despite these diversities, prior approaches use a
single type of one-size-fits-all fusion methods with barely consider-
ing diverse event-types. In contrast, we use multiple event-specific
layers for better video understanding.

relate are different. All these events have different types
of characteristics (such as uni-modal types of vision only
and audio only, and multi-modal types of continuous, in-
stant, rhythmic, etc., as shown in Figure 1) which we call
them as event types. That is, understanding video contents
requires to properly deal with such diverse and complex as-
sociations and relationships. However, surprisingly, this has
been overlooked by prior audio-visual recognition research.

There have been vast efforts, e.g., [28, 40, 53, 59, 26,
31, 62], to implement a machine perception for multi-
modal video analysis. A common paradigm in fusion meth-
ods [4, 65, 28, 59, 20] for audio-visual learning is to globally-
pool both modalities over an entire sequence. They model
multi-modal fusion mechanisms under the assumption that
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all audio-visual events are highly correlated, aligned in time,
and continuous throughout a video. This assumption is inher-
ently injected into models once a global pooling-based fusion
is used as a design choice in the architectures. This uni-
form assumption is flawed in its ability to model real-world
multisensory events,2 which smooths out sparse important
moments and results in wrong prediction. In a race event, if
the “crowd” sound is dominant instead of the “car engine”
sound, the global-pooling based fusion method smooths out
the “car engine” sound which may be an important signal
for correct recognition. We argue that different cross-modal
relationships are overlooked in these prior methods using
one single type of one-size-fits-all fusion mechanism, and
audio-visual video events have multi-label nature.

We present a new perspective that incorporates multiple
types of audio-visual relationships to improve video under-
standing. Our development is motivated by the way humans
perceive the world: Humans are spontaneously capable of
combining relevant heterogeneous signals from the same
events or objects, or distinguishing a signal from one another
if the source events of the signals are different. Such mul-
tisensory integration has been widely studied in cognitive
science [25, 49, 50]. Inspired by this study, we propose a
simple approach consisting of multiple types of fusion layers:
individual modality layers and audio-visual event-specific
layers. However, it is challenging to identify and develop all
possible types of integration. Thus, we postulate that most
of the existing events may be effectively spanned by combi-
nations of a few dominant event types identified by the prior
cognitive studies. Each layer is designed to look for different
cross-modal interactions and characteristics in videos such
as audio-only, visual-only, continuous, onset, and instant
event layers. This leads to our multi-head design consist-
ing of the simple event-specific layers with a proper feature
selection mechanism according to cross-modal interactions.

Our experimental results show that our method improves
video classification performance and also enables reliable
multi-label prediction by the multi-head design. Moreover,
our proposed model leads to better interpretability of videos
such as understanding audio and visual signals independently
or jointly based on the characteristics of events as well as
providing naı̈ve modality confidence scores. This allows
us to conduct interesting analyses of existing datasets and
potential applications such as multi-labeling, category-wise
and dataset-wise event characteristic analysis, and sound lo-
calization. We summarize our main contributions as follows:

• We propose a new audio-visual integration method with

2Let us consider the car video in Figure 3. A group of spectators talks for
a long time while recording the scene before the race car passes, but the
only useful moment for audio-visual integration is the short moment the car
passes by, i.e., instant correlation. This event is not properly understood
by capturing its global context with a uniform assumption. The other
association types of multi-sensory events are illustrated in Figure 1.

simple event-specific layers to enable a model to under-
stand different characteristics of audio-visual events.

• Our analyses verify each event-specific layer captures dif-
ferent properties of audio-visual events that result in per-
formance improvement for video classification.

• By virtue of the simplicity, we demonstrate the inter-
pretability of our proposed event-specific layers that is
useful in various applications: dataset event-characteristic
analysis, missing label detection, and dataset retargeting.

• We will release the Multi-labeled VGGSound dataset used
for our multi-label evaluation, which is a partial subset of
around 1200 videos annotated by 12 subjects.

2. Related Work
Audio-Visual Representation Learning. Recent years
have witnessed significant progress in audio-visual learning
and some used audio or visual information as a supervi-
sory signal to the other one [7, 42, 41] or leverage both
of them in self-supervised learning to learn general repre-
sentations assuming that there is a natural correspondence
between them [4, 5, 22, 8, 28, 40, 36, 32, 45, 44, 2]. Self-
supervised learning methods use different tasks such as cor-
respondence [4, 5, 8], synchronization [28, 40] or cluster-
ing [3]. Furthermore, some other methods use audio-visual
multimodal signals as self-supervision to cluster or label the
unlabelled videos [6, 3]. These existing approaches assume
that multisensory data is always semantically correlated and
temporally aligned. As a result, they apply simple fusion
techniques such as concatenation or average pooling. How-
ever, in real-world videos, multisensory data are not always
naturally co-occurring. Our work investigates more diverse
multisensory relationships and proposes different integration
approaches in audio-visual events. Different than other exist-
ing works, Morgado et al. [34] explore faulty negative and
positive samples, which are semantically non-corresponding
samples, in contrastive learning to obtain a higher represen-
tation quality. Our work deals with event-level temporal
correspondence which is different from instance level (se-
mantic mismatch) correspondence studied in [34].
Audio-Visual Activity Recognition. Various deep learning
approaches have been proposed to improve action recogni-
tion accuracy by incorporating audio as a complementary
modality [31, 29, 26, 62, 19, 59]. While most of the ex-
isting works simply concatenate audio and visual features,
distillation-based works [19, 11] use multi-modal distilla-
tion. Gao et al. [19] use multi-modal distillation from a
video model to an image-audio model for action recognition.
Chen et al. [11] propose to distill knowledge from single
modal image and audio networks to a video network for
video classification. Since the video network only inputs
sequence of images without audio, multimodal fusion is not
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required. Besides these existing works, Wang et al. [59]
investigate that naı̈ve approaches may not be the optimal
solution in training multimodal classification networks due
to inherent modality bias. They propose to use joint training
by adding two separate uni-modal branches with weighted
blending. Our learning mechanism is similar to this approach
in terms of multi-task joint training but our training scheme
is applied to multiple event-specific layers to address proper
multisensory integration.

Due to the rising popularity of transformers [57], recent
works [37, 46] design their transformer architectures with
audio and visual signal inputs. In contrast to these heavy
transformer based approaches, our work considers the mul-
tiple types of cross-modal interactions with light backbone
networks, and applies to in-depth video understanding be-
yond simple recognition tasks.
Broader Audio-Visual Learning Tasks. Recent works
on audio-visual learning use the natural correspondence be-
tween auditory and visual signals on different tasks than
representation learning and action recognition, including
audio-visual sound separation [13, 14, 15, 17, 18, 1, 69, 66,
67, 63, 56], sound source localization [47, 5, 48, 55, 23],
audio generation [70, 35, 16, 68, 64] and audio-visual event
localization [30, 53, 61]. Different from all these works,
we focus on incorporating audio and visual modalities for
multisensory integration without the assumption that they
are always correspondent.
Cognitive Science. Our design is motivated by the
findings in the numerous biology, psychology, and cog-
nitive science study on multisensory integration in the
brain [51, 49, 50, 25, 38, 39, 9]. Basically, they show that full
pairwise correspondence at all time-steps of the audio and
visual signals is not optimal because these signals contain
different relationships [25, 49, 50]; i.e., relying on a single
mechanism of simple concatenation or global pooling only
addresses limited cases. The evidence in these studies also
show that the brain solves two problems in perception: 1) to
bind or segregate the different sensory modalities depend-
ing on whether they originate from a common or separate
events; 2) to devise ways to integrate them properly if they
go together. These studies suggest the human brain uses dif-
ferent types of perceptual factors - such as temporal, spatial,
semantic, and structural - while integrating different sensory
signals. In our work, we take inspiration from these studies
and formalize the multisensory binding vs. segregation by
designing multisensory event-specific layers.

3. Approach
The goal of our model is to understand and predict an

accurate label that represents a video from the perspective
of each multisensory layer. Most of the existing works [31,
29, 26, 62, 59] use a clip level classifier that takes a short
clip (1 or 2 sec.) and then computes video-level predictions

Figure 2. Our multisensory framework. The model consists of
video and audio backbone networks that extract video-level fea-
tures, zV and zA. The features are fed into Event-Specific Layers
for multisensory integration. Each layer processes the features
individually and predicts a category label.

by averaging the classification scores of each clip. These
clip classifiers are learned by leveraging naı̈vely fused (e.g.,
concatenation followed by simple averaging) audio-visual
features with the assumption that audio and visual signals
are correlated and temporally aligned.

As aforementioned in Section 1, the existing approaches
for video classification and understanding might be improved
by considering more complex associations. First, audio
and visual events in a video may not occur with a close
association all the time. They can occur separately in each
individual modality as well. Second, these audio-visual
correspondences can have different characteristics such as
continuous, rhythmic, or isolated instant events [49, 51].
Our proposed architecture addresses these concerns by using
various multisensory event-specific layers.

Backbone Networks. Given a video clip V with its corre-
sponding audio A, our backbone networks extract features
for each modality. We use a two-stream architecture, that
leverages each modality separately, similar to other exist-
ing audio-visual learning works. Our backbone networks
take an entire 10 sec. video and audio frames and extract
features per-frame for each modality. We use a manageable
size architecture, MCx, as a spatio-temporal video stream
backbone by following [54] for extensive experiments. It
takes a video V of T frames as input and generates a video
embedding zV with dimensions T ×D. Our audio stream
backbone is a modified version of the audio network used
in [1]. A minimal modification, e.g., different kernel and
stride sizes for a few layers, is applied to the audio network
to make the temporal dimension of audio embedding and
visual embedding the same. Our audio stream backbone
take the log-mel spectrogram A of 10T frames and extract
an audio embedding zA with dimensions T ×D similar to
video features. Thus, there is a corresponding audio feature
for every video feature and we do not need any replication or
tile operations to match audio and video feature dimensions.
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3.1. Multisensory Event-Specific Layers

To deal with different multi-modal event types, we design
expert layers as multi-heads of the audio-visual network (see
Fig. 2). Defining i as the index of each layer, the layer takes
zV and zA from the backbone networks and outputs video-
level prediction Oi. We explain each layer in detail below.
Note that all the presented layers are parameter-free by itself.
Continuous Event Layer. This layer is the common inte-
gration method of audio and visual signals by performing
temporal aggregation to each set of frame features from both
modalities with the assumption of audio and visual signals
are temporally correlated and aligned throughout a video.
This temporal congruence between audio and visual signals
play a key role for audio-visual sensory integration not only
in cognitive science [49, 50] but also in audio-visual learning
works [40, 53, 28, 21] as a dominant paradigm. The inte-
grated audio-visual feature zcont. is computed as follows:

zcont. =
1
T

∑T
t=1 concat(z

V
t , z

A
t ), (1)

where concat(·) denotes the concatenation of two vectors
and t the video time step. The continuous layer feature zcont.
is obtained by temporal aggregation over all time steps T by
average pooling.
Instant Event Layer. Another type of audio-visual events
that frequently occur is sparse and isolated instant ones.
These interesting actions happen when both audio and visual
signals are semantically correlated and synced for a short
time as a few important moments rather than a long temporal
duration. The assigned task for this layer is performed by
finding the time steps (moments) that have the highest corre-
lation scores between audio and visual features, zV and zA

respectively. Figure 3 shows that the moments with the high-
est scores are located only in the last part of the video where
the car appears in the scene and it is correlated with the car
sound (visualized as colored frames). This provides well-
associated moments between audio and visual events. The
remaining parts of the video are not useful for audio-visual
integration as it only shows an empty road.

To find such moments, correlation scores are computed
by pairwise dot products between audio and visual embed-
dings [21, 1] at the same time step, then the scores are used
to compute audio-visual feature zinst. as follows:

zinst. =
1
|K|

∑
t∈K concat(zVt , z

A
t ), (2)

where K denotes a set of the top-k time steps according
to the high correlation scores as K = top-k(Sav), and the
score list Sav[t] = zVt ·zAt . That is, the instant layer feature
is obtained by averaging the features at the top-k time steps.
Onset Event Layer. Another type of audio-visual event can
be integrated on event occurrences at regular points in time,
i.e., rhythm [51, 9]. For example, sounds occur rhythmically

and repetitively in dancing, musical instruments, and bird-
calling events as they have a prominent property in audio
modality aligned with visual signals. The onset event layer
is designed to leverage audio onsets which give information
about rhythms and beats [12, 58], musical notes, and as well
as the beginning of audio events [43, 27]. In Figure 3, the
visual event (typebar hits the screen) occurs at the same
time as the onset moments (pink-colored dots). Furthermore,
almost equal time gaps between the onset moments show
that this event is rhythmic.

We compute zonset as follows:

zonset =
1

|O|
∑

t∈O concat(zVt , z
A
t ), (3)

where O = onset(A) denotes audio onset moments. We
used audio for computing onset moments, because comput-
ing the audio onset is efficient and distinctive compared
to that of complex visual data. We can simply implement
onset(·), e.g., by measuring magnitudes of audio signal, but
for better onset localization, we use the standard audio li-
braries [33] for computing the audio onset. This returns a set
of time indices that onsets exist in the range of {1, · · · , T}.
Visual Event Layer. Until now, our multisensory layers
are inspired by the human cognitive ability for multisensory
integration as binding the multimodal signals if they are cor-
related and separating them otherwise. Considering some
actions are soundless (“handshakes”, “stretching leg”, etc.)
or some scenes have irrelevant sounds, integrating these ir-
relevant sound signals to visual features acts as a detrimental
outlier. Thus, the visual event layer is designed to recognize
the events only from the visual perspective. It performs the
task of assigning zero-valued audio features for each visual
frame feature and applying Eq. (1) to output zvisual.
Audio Event Layer. Analogously to the visual event layer,
scenes might have events that are outside of the field of view
but still hearable or the visual signals may be completely
unrelated to the accompanying audio. Additionally, some
videos might have poor visual signals. To make our network
use audio modality only, the audio event layer assigns zero-
valued visual features to each audio frame feature and applies
Eq. (1) to compute zaudio.

3.2. Training

With the backbone and the event-specific layers, we ob-
tain different representations from each layer with given
identical inputs, i.e., audio and visual features from the back-
bone networks. To make each layer produce a final C-class
prediction output Oi, letting i be the index of each layer,
separate fully-connected layers are used as in Figure 2. We
train the whole network with the multi-heads in the multi-
task joint learning manner. We impose the same loss to the
individual layers with a supervisory label, where the same
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Figure 3. Sampling position of audio-visual event layers. We show how audio-visual event-specific layers perform their time index-based
pooling operation. a) Instant Event Layer picks the moments where audio and visual features are highly associated, highlighted by the AV
Correspondence heatmap in the middle row. b) Onset Event Layer only pools audio onset moments (pink-colored dots on the waveform) into
the feature computation. c) Continuous Event Layer adopts the traditional global average pooling with uniform sampling to obtain global
context information. Pink-colored dots indicate audio onset moments and are visualized just for reference purpose in (a) and (c).

single label is given across the heads, as:

Lmulti =
∑

i∈E
Li(Oi, y), where Oi = FCi(zi), (4)

E = {cont., inst., onset, visual, audio}, L(·) is the cross
entropy loss, FC(·) is the fully-connected layer, O and y are
the prediction output and label, respectively. We equally
weight each loss.

The imposed losses could appear redundant but it has
been shown to be effective in the previous multimodal learn-
ing study [59], where dominance to a specific modality head
can be balanced by this similar approach. In our case, we
balance across event types by encouraging to possess super-
vision relevant signals as much as possible.

4. Experiments
We first evaluate our method for video-level classification

on four audio-visual datasets. Then, we show additional
weakly-supervised features of our proposed method: the
capability of multi-label prediction from the single-label
training and the sound source localization task without any
additional training. We also analyze characteristics of the
event-specific layers. Last, we show that the proposed layers
enables an event-characteristic analysis of existing datasets
that may connect to a number of potential applications.

4.1. Setup

Datasets. We experiment our method on five video datasets:
VGGSound [10] and Kinetics-400 [24] for action recog-
nition datasets, and the former is specifically designed for
audio-visual learning. Kinetics-Sound [4] is a subset of Ki-
netics sub-sampled for audio-visual learning tasks, AVE [53]
is for audio-visual event localization and LLP [52] is a multi-
label dataset for audio-visual video parsing.
Implementation Details. More details can be found in the
supplementary material. We follow the prior arts [1, 62] for
audio preprocessing. For all the experiments, we sample
audios with 16kHz sampling rate and all the input audio
length is trimmed to 10 seconds. We transform the audios
to log-mel spectrograms with size of 1000× 80, and we use

Dataset Audio Only Vision Only Naı̈ve AV Ours
VGGSound 47.0 40.9 57.1 59.1
Kinetics-Sound 64.2 80.5 86.1 88.3
AVE 79.1 76.1 86.0 87.8
Kinetics 21.4 61.0 66.6 67.0

Table 1. Video-level classification performance of our proposed
model and baselines.

a modified audio network from [1]. MC3-18 [54] is used
as the video network and it takes T = 100 frames of size
112 × 112 as input. We set |K| = 10 for the instant event
layer computation.

We apply the same training process for each dataset as
follows. First, we train the audio backbone network from
scratch with a given target dataset. The video backbone net-
work is initialized by using MC3-18 pre-trained on Kinetics-
400 and fine-tuned on the target dataset. Last, we train our
multi-task model with the event-specific layers in the end-to-
end manner by using these pre-trained backbone networks
as initialization.

4.2. Analyses on Video Understanding Tasks

Effectiveness on Video-Level Classification Video classi-
fication is a task to classify a video by a single label. Since
our model outputs multiple predictions from event-specific
layers, we integrate them by majority voting to output a sin-
gle prediction as Pvote = argmaxk

∑
i I(pi=k), where pi

is a predicted label from the ith event-specific layer defined
as argmaxj Oij , and j is an index of the vector Oi, I is
an indicator function returning 1 for true statement and 0
otherwise. In case of disagreement among the layers that no
majority consensus exists, the label from the most confident
layer is selected.

We conduct a series of experiments to show how well our
model predicts video-level labels. We compare the perfor-
mance of our model with baselines on different datasets in
Table 1. Note that our goal here is not to compete on classifi-
cation accuracy with any other expensive video recognition
models. Rather, we show that our event-specific layers ana-
lyze videos from distinctive perspectives in terms of modali-
ties and event characteristics, which leads to improvement
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Figure 4. Single- to multi-label prediction on VGGSound. The original annotations are single labels, whereas typical videos contain
multiple events, actions, or categories. Our multi-head design predicts multi-labels that enable a more comprehensive description of videos.

in classification.

Accuracies on the uni-modal networks in Table 1 depict
the accuracy of the backbone networks trained with single-
stream modalities. The naı̈ve audio-visual model (Naı̈ve AV)
represents audio-visual networks that leverage the late fusion
approach (simple concat. and global pooling) for final repre-
sentation as used in the prior works [59, 28, 31]. As shown
in Table 1, our approach offers improvement to overall per-
formance in the benchmark datasets. Our model is more
effective on the datasets that are designed with audio-visual
correspondence, e.g., VGGSound, Kinetics-Sound, and AVE,
with the improvements around 2%. Our performance im-
provement is less significant on Kinetics, which is consistent
with [37], since it is a visually-dominant dataset, where
many videos’ sounds are not correlated to visual signals
(We further analyze the datasets in the “Revealing event-
characteristics of a dataset” paragraph).

Does our multi-head design have multi-label prediction
capability? Typically, large-scale video datasets, e.g.,
VGG-Sound and Kinetics, are annotated with single labels
of dominant events. Therefore, the annotation ignores the
other events that may co-occur in a video. Our network
consists of multiple event-specific layers and each layer out-
puts its own label prediction. As a simple way to extract
multiple outputs, we collect each layer’s most confident
predictions that directly form a multi-label prediction set.
Specifically, let pi be a predicted label from the ith event-
specific layer. Then, a set of label predictions P can be
defined as P =

⋃
i

(
argmaxj Oi,j

)
. In this simple way

of aggregating multiple predictions, we can analyze if the
event-specific layers enable us to see the contents of a video
from different perspectives.

This multi-label analysis may be used to answer the ques-
tions of “Are the multi-label predictions of our network cor-
rect?” or “Does an existing dataset like VGGSound contain
multiple events in a video but only annotated with a single
label?”. To answer the first question, in Table 2, we conduct
an experiment on the LLP dataset as it contains multi-labels
per video (The average number of labels per video is 1.81),
which allows to evaluate the correctness of the multi-labels
predicted by our network. We train our model on LLP, but
with the restriction of a single label per video, so that we
can measure the ability of our multi-head layers for pre-
dicting correct multi-labels despite the single-label training.

Dataset Ours Naı̈ve AV

Top-1 Top-2 Top-3 Top-4 Top-5

LLP 0.72 0.66 0.70 0.63 0.56 0.50
Table 2. Multi-label prediction measured by F1 score.

We compare our results with top-K results of the Naı̈ve-AV
model as a baseline. The top-K naı̈ve approach outputs K
number of predictions, while our model outputs multi-label
predictions dynamically depending on the consensus of the
event-specific layers.

In Table 2, we show that our method has indeed a notably
better capability to predict correct multi-labels over Top-
K baselines, despite training only with single-label per a
video clip. In addition, it shows a favorable feature of our
multi-label prediction. Although the Top-2 performance
is comparable to ours, our method can adaptively decide
the number of output labels (K), while the baseline Top-K
cannot decide what K to use in practice because the number
of ground truth multi-labels is unknown in advance. For
example, the video shown in the 2nd row of Figure 4 contains
the people playing more than two instruments. In this case,
Top-2 only outputs two predictions while our model outputs
more than two predictions. On the other hand, when there is
only one dominant event, our model tends to output only one
prediction while the Top-2 baseline enforces to still output
two predictions.

To answer the second questions, “Does an existing dataset
like VGGSound contain multiple events in a video but only
annotated with a single label?”, we additionally conduct
multi-label check evaluation. However, there is no multi-
label ground truth for the VGGSound dataset. Instead, we
check how many of the total predictions from our network
actually do match with human answers according to given
video contents. For this test, we sample a partial subset of
near 1200 videos from the VGGSound dataset and ask 12
subjects to evaluate predicted labels obtained by our model.
When our network is evaluated on the VGGSound dataset,
the empirical cardinality of P , i.e., the average number of
different predicted labels, is 2.21.3 The user study shows
that 62% of all predicted labels match with human selec-
tions, which means our network outputs 1.4 correct labels
per sample on average. Figure 4 qualitatively shows multi-

3Since we utilize five types of layers, the cardinality of the prediction set is
in 1 ≤ |P| ≤ 5.
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Figure 5. Sound source localization. Our backbone networks correctly localize the sound spatially and time-wise as a natural outcome of
the model without any explicit training for sound localization.

Dataset Continuous Instant Onset (Ins.∨Ons.) ∧ (¬Cont.)
VGGSound 354 407 230 778
Kinetics-Sound 18 18 9 34
AVE 7 4 3 12
LLP 25 47 22 74
Kinetics 366 567 258 985

Table 3. Layer-wise statistics of correctly predicted videos.

labels align with human subjects and our network. This
study would evidence that VGGSound is indeed a multi-
label dataset, and a single label is insufficient to describe
the videos properly. In this way, we annotate a partial subset
of near 1200 videos in the VGGSound dataset, called Multi-
labeled VGGSound. The details are in the supp. material.
Are our learned features interpretable? Our event spe-
cific layers are designed to differently select audio-visual
correlated moments: e.g., the instant event layer catches
highly correlated audio-visual moments. Thus, to gain a
better understanding of these moments and analysis, we vi-
sualize sound localization responses α, where α = Vt·zAt ,
Vt∈RH′×W ′×D is the visual activation from the last convo-
lution layer of video backbone network and zAt ∈RD is the
audio embedding at moment t [48, 1]. Note that this does
not require any separate additional training.

We qualitatively show in Figure 5 that the features from
our backbone networks can plausibly locate a sound source
despite no separate training for this task. The localization
response only activates when the girl plays flute, otherwise
inactivated. This confirms that our model not only attends
where the source appears in the video spatially but also at-
tends when the event sound occurs time-wise. Refer to the
supp. material for more results. Thus, our learned repre-
sentation is well-trained such that it sufficiently localizes
sources of events.
Are the event-specific layers complementary? To show
this, in the first three columns on Table 3, we first count
unique video samples that one of the continuous, instant,
and onset layers classifies into true classes while the rest
two layers predict different classes. Interestingly, the num-
bers of those samples for each layer are comparable. This
shows that each layer indeed looks for different audio-visual
characteristics in videos.

In the last column, we count video samples that the con-
tinuous layer (the conventional fusion layer) fails but the
instant or onset layers predict correctly. It shows that the

instant and onset layers capture a significant amount of cor-
rect samples compared to the samples uniquely captured
by the continuous layer. That is, our new proposed layers,
the instant and onset layers, contribute noticeably over the
continuous one, and are indeed complementary.

For typical events in videos, the number of informative
moments (features) may be less than uninformative ones for
some videos, as in the “car” example of Figure 3. Thus,
using an informative subset of time step features, i.e., instant
or onset, may improve the accuracy for these videos since
irrelevant features are ignored. Furthermore, the difference
between the instant and onset event layers can be also seen
in the same “car” example. The onset event layer uses the
onset moments, i.e., pink dots, that are grouped in the part
before the real action starts whereas the instant event layer
captures the instant, highly audio-visual correlated moments
of the video, i.e., blue dotted box.

In contrast, the continuous event layer pools information
of both modalities’ features from every time step without
consideration of their correspondence. Clearly, a single type
layer would not be the best way for multi-modal fusion, be-
cause audio and visual events have different relationships.
We show that our event-specific layers are complementary
each other, which comes from selection mechanisms of mo-
ments by design (refer to Eqs. 1, 2 and 3). Thereby, we show
our model enables a more in-depth interpretation of videos.
Layer Visualizations. To have a better insight on what
each event-specific layer learned, we visualize some of the
videos that are maximally activated by each audio-visual
layer in Figure 6. The instant event layer has short period
and high intensity-like patterns; the onset event layer cap-
tures rhythmic-like patterns; and the continuous event layer
shows temporally constant-like events. We also visualize
the prediction of each layer. The event-specific layer that
corresponds to the event type of a video outputs a correct
prediction while the remaining event-specific layers fail.
Analysis on the event-characteristics of datasets. We
apply our method to understanding the event-characteristics
of datasets. Each dataset has different event properties
such as a large portion of the videos may contain a spe-
cific event type dominantly [60], i.e., Kinetics is a visually
biased dataset [37]. We pose the problem as finding the most
dominant event-type in a given dataset by analyzing every
video. Our method can easily detect the dominant event type
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Figure 6. Visualization of the representative characteristics from the event-specific layers. Each layer captures a distinctive audio-visual
characteristic. Note that our multisensory model not only detects the event types correctly but also makes an accurate category prediction
within the layers.

Dataset Continuous Instant Onset Visual Audio Total
VGGSound 62 39 68 41 99 309
Kinetics-Sound 2 5 13 11 0 31
AVE 10 4 9 1 4 28
LLP 4 5 6 3 7 25
Kinetics 73 89 69 167 2 400

Table 4. Event-characteristics of datasets. We report the number
of categories asssigned to each multisensory layer.
of each video by checking which event-specific layer has the
highest score on the ground truth class y as argmaxi Oi,y .

With this technique, we find the event-characteristics per
category and per dataset. For finding categories with dom-
inant event type, we apply the majority voting rule to each
category and assign the most voted event-type label to the
category. In this way, we can obtain the event-type character-
istics of the categories in the dataset. In our test, categories
such as “bowling impact” or “splashing water” are associ-
ated with the instant layer, or “air conditioning noise” is
assigned to the continuous layer. See the supplementary
material for the category-wise event-type assignment results.
Table 4 shows the summary of the number of categories
that are assigned to each layer for the datasets. Our analy-
sis shows consistent results with the prior knowledge about
these datasets. The results clearly show that Kinetics is vi-
sually dominant as the number of categories assigned to the
visual layer is the highest. AVE is curated for audio-visual
learning and our method validates it by the dominance of the
AV layers. LLP [52] reports that the majority of the anno-
tated events are audio events. Our analysis also confirms a
tendency to the audio modality.

Additionally, we perform an experiment to see how many
categories of Kinetics-Sound match with the audio-visual cat-
egories that our method found in Kinetics. This reveals that

66% of the Kinetics-Sound categories are matched. Thus,
our event-type selection gives consistent results with human
selections. Please see the supp. material for details.

5. Concluding Remarks

We present a multisensory model with event-specific lay-
ers that incorporates different audio-visual relationships and
demonstrate the efficacy of our model on five different video
datasets with a diverse set of videos. Unlike the prior audio-
visual models, our event-specific layers output multiple pre-
dictions. This leads to new future research directions for
audio-visual understanding. We conclude with discussion
about potential applications of our work followed by limita-
tions in the supplementary material.
Potential Applications. Our method can open useful poten-
tial applications — 1) Modality-level video understanding:
Within a single video clip, different modalities might play
a key role at different timestamps in video understanding.
Our method can tell which modality to rely on to understand
ongoing events in a video using confidence from each layer.
This kind of modality-level video understanding, as opposed
to class prediction, would be crucial and complementary to
existing methods, 2) Missing label detection: Also, by virtue
of multi-label prediction property of our method, our method
can discover potential labels and therefore be used to build
up a more comprehensive dataset by detecting missing labels,
and 3) Dataset Retargeting / Cleanup: Our method can be
further used to retarget or clean-up by modality/event-level
classification for each video, so that we can easily create an
application-specific sub-datasets. These would improve the
video annotation system when being integrated into it. More
detail scenarios are discussed in the supplementary material.
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