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Abstract

For change detection in remote sensing, constructing a
training dataset for deep learning models is difficult due
to the requirements of bi-temporal supervision. To over-
come this issue, single-temporal supervision which treats
change labels as the difference of two semantic masks has
been proposed. This novel method trains a change detec-
tor using two spatially unrelated images with correspond-
ing semantic labels such as building. However, training
on unpaired datasets could confuse the change detector in
the case of pixels that are labeled unchanged but are vi-
sually significantly different. In order to maintain the vi-
sual similarity in unchanged area, in this paper, we empha-
size that the change originates from the source image and
show that manipulating the source image as an after-image
is crucial to the performance of change detection. Extensive
experiments demonstrate the importance of maintaining vi-
sual information between pre- and post-event images, and
our method outperforms existing methods based on single-
temporal supervision.

1. Introduction

Change detection aims to detect the location of interest
regions among semantically changed areas. Generally, this
change of interest (CoI) between multi-temporal high spa-
tial resolution (HSR) remote sensing images is defined in
the same area but at different times.

Recently, several supervised change detection meth-
ods [4, 9, 15, 3] have been proposed and showed promis-
ing results. Those methods are trained on the datasets con-
sisting of pairs of bi-temporal images with change labels.
However, these bi-temporal datasets require high cost to ob-
tain compared to the other tasks such as segmentation [27]
and detection [28]. It is due to several requirements for bi-
temporal supervision. First of all, obtaining correctly regis-
tered bi-temporal pair images is difficult due to the physical
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Figure 1. Synthetic change generation tool example.

limitations of satellites. Second, to decide whether the spe-
cific region is a change or not, observing both before- and
after-image should be preceded. Lastly, change is rare even
in the real world; which makes it hard to obtain bi-temporal
pair images containing change of interests. For these rea-
sons, publicly [1, 7, 5, 18] opened change detection datasets
are small-scaled and imbalanced.

To solve the problem, Zheng et al. [33] proposed a
method to train a change detection model using only single-
temporal labeled unpair images. Instead of using bi-
temporal labeled pair images, it trains the change detec-
tion model using a training dataset consisting of unpaired
images which are randomly sampled from the training set.
The change label between two unpaired images is defined
as whether the semantics of the same pixel location in two
images are different or not (i.e., xor operation). This ap-
proach enables training change detectors without high-cost
bi-temporal pairwise datasets, however, it ignores the struc-
ture and style consistency in unchanged areas. In this set-
ting, for example, buildings in paired images but with dif-
ferent color or texture are labeled unchanged. Also differ-
ent semantics such as road and grassland are also labeled
unchanged regions since they are not change of interest.
This inconsistency makes the model confused to learn what
the change is. Furthermore, unpaired setting ignores use-
ful context information such as object sizes, common pat-
terns, or styles of the area, which can be obtained from bi-
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temporal paired images.
In this paper, we propose Self-Pair, a novel synthetic

image generation method of constructing input pairs for
change detection models. The key idea of Self-Pair is that
more diverse and realistic pair images can be generated
with single-temporal single images, retaining the charac-
teristics of real-world settings. Self-Pair relieves compli-
cated conditions of change detection datasets such as high
cost labeling, registration, and preserves the characteristics
of unchanged regions as shown in the Fig. 1. We verified
the performance of the existing change detection methods
and Self-Pair in both in-domain and cross-domain settings.
On extensive benchmarks, our approach outperforms pre-
vious single-temporal supervision method [33], and even
bi-temporal supervision methods in some cases. Moreover,
by conducted experiments on SNUNet-CD [9], BIT-CD [4],
and ChangeStar [33] architectures, our method shows appli-
cability to the various change detection architectures.

2. Related Works
2.1. Object Segmentation in Remote Sensing

Semantic segmentation in remote sensing images is chal-
lenging because of significant scale variation, background
complexity, and imbalance between background and fore-
ground. To address these challenges, Zheng et al. [35] pro-
posed FarSeg in the perspective of foreground modeling.
They achieved high performance with a better trade-off be-
tween speed and accuracy compared with general semantic
segmentation methods [6, 32]. Li et al. [17] achieved state-
of-the-art through affinity context modeling, which focuses
on solving the background complexity and background-
foreground imbalance problem.

2.2. Object Change Detection in Remote Sensing

Change detection has been studied along with the ris-
ing need of utilizing remote sensing images to find mean-
ingful changes [23, 14]. As deep learning progresses, the
change detection methods based on deep learning also show
promising performance [20, 34, 9, 4]. However, these
methods require well-defined datasets with bi-temporal su-
pervision, and most public datasets are small-scale, hence
these methods show poor performance on the real-world
cases [22]. The major reason for this phenomenon is that
changes are rare compared to non-changes in bi-temporal
paired images [33], and there is a difficulty in collecting
bi-temporal paired images. For this reason, the progress
of change detection was relatively slow compared with the
other tasks.

Recently, various change detection benchmark datasets
have been proposed to solve this problem, but they still suf-
fer from a lack of data samples [7, 18, 5, 11]. To address this
issue, Zheng et al. [33] recently proposed ChangeStar that

detects changes using single temporal unpaired images with
pseudo labels. ChangeStar significantly alleviated the train-
ing data collection problem in change detection. It uses xor
operation on the semantic segmentation labels of two sin-
gle temporal unpaired images to make pseudo change label,
and use pseudo change label to train the change detection
model. However, ChangeStar does not consider the style,
texture and consistency information coming from the bi-
temporal paired images, which significantly degrades per-
formance compared with the bi-temporal paired change de-
tection methods.

2.3. Data Augmentation in Remote Sensing Imagery

In recent years, the strong augmentation strategy such as
copy-and-paste (CP) and inpainting is widely used to var-
ious deep learning tasks(e.g. classification [31, 30], object
detection [8], and object segmentation [10]). Also in remote
sensing domain, there had been trial to exploit strong aug-
mentation strategy. Kumdakcı et al. [16] proposed inpaint-
ing method for augmenting the vehicle instances to solve
the data shortage problem, however, it has limitations of
generating instances with diversity.

3. Approach
3.1. Change Detection from Bi-temporal Supervi-

sion

The goal of change detection based on bi-temporal su-
pervision with given the pre-event images {Xt0

1 , . . . ,Xt0
N |

Xt0
k ∈ RC×H×W } and the corresponding post-event im-

ages {Xt1
1 , . . . ,Xt1

N |Xt1
k ∈ RC×H×W } can be formulated

as follows:

min
θ

N∑
k=1

L(Fθ(X
t0
k ,Xt1

k ),Yt0→t1
k ), (1)

where L indicates the loss function between the predicted
change map obtained by change detector Fθ with paired
bi-temporal images (Xt0

k ,Xt1
k ), which indicates the pre-

event image and the post-event image of a specific area k.
Change map, Yt0→t1

k ∈ {0, 1}H×W represents the regions
of change of interest between the pre- and post-event im-
ages.

Deep learning change detection models based on bi-
temporal paired images(Pair training method), require the
dataset to be a collection of image pairs. This requirement
leads high cost of building process and insufficient samples
problem because set of image pairs should be taken from the
same region at the different time and also should contain the
CoIs.

3.2. Disentangle the Change Map

Zheng et al. [33] proposed ChangeStar, which defines
change as an area where the same pixel position in pre- and
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Figure 2. Self-Pair. Three ways of generating single temporal paired images with pseudo change label using a single image. (a) Randomly
cropping two patches from a single image. (b) Semantic label based inpainting approach. (c) Semantic label based copy-and-paste with
style blending approach.

post-event images has different semantic information. From
the definition of change by Zheng et al., we can disentangle
the change map Yt0→t1 to the difference of the semantic
information Yk ⊕ Yl from two different images Xk and
Xl. The relaxed formulation without bi-temporal informa-
tion {Xt1

1 , . . . ,Xt1
N} can be expressed as follows:

min
θ

N∑
k=1

N∑
l=1

1(k ̸= l)L(Fθ(X
t0
k ,Xt0

l ),Yt0
k ⊕Yt0

l ), (2)

where 1 and ⊕ denotes the indicator function and the xor
operation, respectively. Disentangle the change map allevi-
ates the constraint in the original formulation by replacing
paired images to unpaired images that having no geograph-
ical relationship. By disentangling the change map, change
detection model can be trained with pseudo bi-temporal
paired images randomly sampled from semantic segmenta-
tion datasets. We will call this method the Unpair training
method.

Unpair training method achieved impressive perfor-
mance with resolving the high cost problem of construct-
ing bi-temporal paired dataset, however still having a sig-
nificant performance gap compared with existing state-of-
the-art methods that trained with bi-temporal supervision.
As shown in Figure 3-(a), ChangeStar ignores meaningful
characteristics of bi-temporal paired images: consistency
in unchanged area, common patterns, and style similarity

across two images. In Figure 3-(c), areas in the green boxes
which labeled as unchanged contain different semantic in-
formation (Left: Tree, Right: Road). Such inconsistencies
of unchanged regions across input images could confuse the
model to learn what the change is, which leads to degrada-
tion of the performance. This indicates that the ChangeS-
tar’s Unpair training formulation is missing essential prop-
erties of the change detection for the real-world bi-temporal
setting.

3.3. General Formulation of Change Detection

To overcome the problems come from dataset and re-
flect the properties missed by Unpair training formulation,
we rethink how the change creates from given two pre- and
post-event images: all changes originate from the source
and arise from the manipulation of the source. In order
to represent this principle, we reformulate change detection
as follows:

min
θ

N∑
k=1

L(Fθ(X
t0
k , g(Xt0

k )),Yt0
k ⊕ g(Yt0

k )), (3)

where g is a function that maps an image or label of specific
area at particular time to an image or label of arbitrary time
step where the change occurs.

This formulation allows us to utilize single-temporal im-
ages Xt0

k like ChangeStar, and to devise more plausible
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Figure 3. Qualitative comparison of structure similarity by bi-temporal, single-pair, and unpair scenarios.

mapping functions g that preserve meaning information in
the real-world bi-temporal paired image setting. With this
formulation, in this paper, we focus on the study of design-
ing the function g and propose three simple and effective
augmentation strategies.

3.4. Proposed Method

For the candidate of function g, photometric transforma-
tion and geometric transformation functions could be on the
lists. However, only geometric transformation functions are
discussed in this paper due to photometric transformation
could not augment the new change instances.

3.4.1 Random Crop from Single Image

A very naive method for generating single-temporal paired
images based on geometric transformation is random crop.
Randomly cropped two patches with no overlapped regions
from the source image are set as an input pair for change
detection model. This approach is similar to the method
proposed in [33] but different in generating a pair from
a single source rather than randomly sampled two images.
Although this strategy loses most of its structural consis-
tency, it can still retain the style similarity or typical patterns
which can be observed in the real-world bi-temporal paired
images. Moreover, this aggressive strategy could behave as
a strong augmentation considering the massive changes that
can happen in the real world as well.

For the experiment of random crop strategy, rotation op-
eration to the cropped patches is mixed and comprehensive
random crop method for change instance augmentation can
be expressed as follows:

min
θ

N∑
k=1

L(Fθ(crop1(X
t0
k ), r(crop2(X

t0
k ))),

crop1(Y
t0
k )⊕ r(crop2(Y

t0
k ))),

(4)

where r is a random rotation function, crop1 and crop2

are notation of random crop function. Each crop func-
tions crop same location for the corresponding image and
label while cropping different locations for single-temporal
paired setting.

3.4.2 Inpainting based on Labels

One of the most common changes happens in the real world
is the disappearance of objects. We implement this be-
havior by erasing randomly selected instances and inpaint
the background based on surroundings. Since only mini-
mal changes occur in the entire image, most structural con-
sistency is maintained in the unchanged area. Unlike ran-
dom crop strategy, inpainting strategy preserves the impor-
tant informations, such as structural consistency, common
patterns, and style similarities that can be observed in bi-
temporal paired settings. Inpainting based change instance
augmentation strategy can be expressed as below:

min
θ

N∑
k=1

L(Fθ(X
t0
k , inpaint((Xt0

k × a), 1− a),

Yt0
k ⊕ (Yt0

k × a)),

(5)

where a is binary mask of the objects to be erased, and these
objects are randomly sampled at each time. For the imple-
mentation, we adopt method in Telea et.al [24] for inpaint-
ing, and the inpainted images are set to pre-event images.

3.4.3 Copy-and-Paste Instance Labels

The other changes that commonly happens in the real world
is occurance of the objects. A simple method for adding
objects to an image is copying objects from the source im-
age using semantic masks and pasting it to the target image.
Copy-and-Paste strategy can be used for easing the extreme
imbalance between foreground and background that com-
monly observed in remote sensing images.

For the implementation of copy-and-paste strategy for
augmenting the change instances, we copy objects from
one of cropped patches and paste them to the other cropped
patch. Even though the objects are extracted from a single
source, there may be an artifact near boundary of the pasted
object due to the randomness of the paste location. To elim-
inate the artifacts to make augmented sample more realistic,
fast Fourier transform based blending method is used.

Let FA, FP be the amplitude and phase components of

6377



(a) No Processing (b) Gaussian smoothing (c) Poisson blending (d) Fourier blending

Figure 4. Qualitative comparison of blending methods used in Copy & Paste [8] and our Fourier blending.

the Fourier transform F ,

F(x)(m,n) =
∑
h,w

X(h,w)e−j2π( h
H m+ w

W n), j2 = −1.

(6)
We denote Mβ as a mask for blending the amplitudes from
each original image and modified image by copy-and-paste
method. Mβ strictly followed the method proposed in [29].
Given two images (original image Xt0

k and copy-and-pasted
image Xt0′

k ), realistically synthesized copy-and-pasted im-
age using Fourier blending can be follw as:

Xt1′
k = F−1([Mβ ◦ FA(Xt0

k ) + (1−Mβ) ◦ FA(Xt0′
k ),

FP (Xt0′
k )]).

(7)

Figure 4 is a visual comparison between the conventional
blending method and our Fourier blending method. Our
Fourier blending method is inspired by [29, 13] that mix
the styles of images from two different domains. However,
unlike the those studies, we reduce the style gap at the mod-
ified regions by replacing the amplitude in the same image
in the same domain.

4. Experiments
We evaluate our method in a cross-domain setting, that

train the model with building segmentation dataset and val-
idate under building change detection datasets which are
constructed in a different purpose. For more fair compar-
ison of Unpair, Pair, and Self-Pair, evaluation under in-
domain setting is also conducted. Note that the LEVIR-CD
dataset only offers change labels between t0 and t1 images,
so in-domain experiments could not be performed.

4.1. Experimental Settings

Training Datasets. Three building segmentation datasets
for remote sensing are used to train change detectors in the
formulations of Unpair Eq.(2) and Self-Pair Eq.(3), which
exploit only single temporal supervision:

• xView2 pre-disaster [33]. xView2 dataset is origi-
nally proposed for building damage assessment. The

pre-disaster dataset, which is a subset of the xView2
dataset contains 9,168 pre-disaster HSR images and
316,114 building polygons. We use subset from train
and tier3 split dataset. Each image has a size of 1,024
× 1,024 pixels.

• SpaceNet2 [26]. SpaceNet2 dataset consists of 10,590
HSR images of size 650 × 650 pixels of 0.3 m GSD
and 219,316 urban building instance annotations. Fol-
lowing ChangeStar, we also used only 3-bands pan-
sharpened RGB images and their annotations.

• WHU building change detection [15]. WHU dataset
is constructed with one pair of aerial images of size
15,354 × 32,507 pixels obtained in 2012 and 2016 of
the same area. It provides 12,796 and 16,077 building
instance labels respectively, and change labels across
the pair. Train, validation, and test set are composed of
4,736, 1,036, and 2,416 tiles that extracted from origi-
nal aerial image pair.

Evaluation Datasets. We evaluate Unpair and Self-Pair
methods on the LEVIR-CD and WHU building change de-
tection datasets, which are widely used in change detection
evaluation.

• LEVIR-CD [5]. The LEVIR-CD dataset contains 637
bi-temporal pairs of HSR images and 31,333 change
labels on building instances. Each image has a size
of 1,024 × 1,024 pixels with 0.5 m GSD. The change
label provides the information about occurance of
new buildings and disappearance of existing buildings.
Train, validation and test set are split into 445, 128, and
64 pairs. Evaluation of Unpair and Self-Pair method
are conducted with the test set.

Implementation details. We experiment our augmen-
tation strategies based on three state-of-the-art change
detectorsSNUNet-CD [9], BIT-CD [4], and ChangeS-
tar [33]. Since these studies were conducted on different
settings of backbone, optimizer and training schedule, ex-
periments of Self-Pair follow the most of hyperparameters
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Model Method

Train on xView2 pre-disaster Train on SpaceNet2 Oracle

WHU LEVIR-CD WHU LEVIR-CD WHU LEVIR-CD

IoU (%) F1 (%) IoU (%) F1 (%) IoU (%) F1 (%) IoU (%) F1 (%) IoU (%) F1 (%) IoU (%) F1 (%)

SNUNet-CD

Pair 74.54 87.10 81.93 92.11

Unpair 64.28 72.11 71.22 80.05 66.91 74.77 64.01 70.98

Self-Pair 69.19 79.40 77.51 84.52 72.95 81.70 69.38 79.83

BIT-CD

Pair 74.48 86.07 81.51 90.86

Unpair 60.15 70.22 63.29 73.43 66.12 73.85 63.10 69.23

Self-Pair 68.37 78.76 72.91 82.54 71.81 80.74 67.04 77.29

ChangeStar

Pair 79.89 87.92 91.09 94.91

Unpair 75.61 82.29 80.13 88.65 64.51 72.14 60.20 68.32

Self-Pair 82.94 91.09 84.59 93.14 77.58 83.90 74.41 81.22

Table 1. Experimental results of Unpair and Self-Pair methods in xView2 pre-disaster → (WHU, LEVIR-CD) and SpaceNet2 → (WHU,
LEVIR-CD) cross domain tasks. Oracle is a single domain bi-temporal supervised training setup.

of each studies’ experimental details. For SNUNet-CD, 16-
channel model is adopted, and for BIT-CD and ChangeStar,
ResNet50 backbone [12] is adopted. Three ways of aug-
mentation approaches of Self-Pair are applied with the same
probability in the training stage.

4.2. Cross-domain Evaluation Results

For evaluating the Self-Pair, two formerly proposed
methods(Pair and Unpair) are used for comparison. Pair
method trains the model with bitemporal supervision and
evaluated under in-domain setting which can be considered
as an upper bound. Unlike Pair and Unpair, Self-pair trains
the model with single-temporal supervision and evaluated
under cross-domain settings to checkout the generalization
performance. Here Unpair trains the models with Zheng et
al. [33]’s method, and Self-pair indicates the models trained
with our proposed method.

As shown in Table 1, all of change detectors trained
with our augmentation method outperform the change de-
tectors trained with Unpair method regardless of its ar-
chitecture. Even for the ChangeStar model, the perfor-
mance of the model trained with our method outperforms
the model trained with Pair method. This implies that Self-
Pair method can approximate the distribution of changes in
the real-world better than given fixed dataset.

4.3. In-Domain Evaluation Results

We evaluate the performance of ChangeStar model
trained with each Pair, Unpair, and Self-Pair on the WHU
and LEVIR-CD dataset to compare the in-domain and
cross-domain performance. The experimental results are in
Tab 2. As shown in Tab 2, our Self-Pair method based
ChangeStar achieved the best performance not only under
in-domain experiment on the WHU dataset but also in the
cross-domain experiment with LEVIR-CD dataset. In ad-
dition, the Pair method showed the lowest performance in
the cross-domain experiment, and was not significantly dif-
ferent from the Unpair method even in the in-domain ex-

Train on WHU Trainset

Model Method WHU LEVIR-CD

IoU (%) F1 (%) IoU (%) F1 (%)

ChangeStar Unpair 78.13 86.41 59.29 68.82

ChangeStar Self-Pair 83.57 90.77 66.79 78.41

ChangeStar Pair 79.89 87.92 51.23 55.11
Table 2. Evaluation result on in-domain (WHU Testset), cross-
domain (LEVIR-CD Testset) performance according to each aug-
mentation method(Pair, Unpair and Self-Pair).

periment. Those results indicate that paired images are not
essential in both in-domain and cross-domain settings for
change detection.

Table 3 is an experiment to analyze the effect of each of
three components in Self-Pair. As shown in Tab 3, it can be
seen as all components of Self-Pair have a complementary
relationship. Also, when both of Self-Pair and Pair method
are used for training, the model showed 3.34% higher per-
formance than trained with Self-Pair method alone. Eventu-
ally, summarizing the results of Tab 2 and Tab 3, it shows
that paired input setting is not essential for change detec-
tion, while can give advantages for performance improve-
ment.

4.4. Qualitative Results

Figure 5 shows the results of qualitative analysis of cam-
parison between Pair, Unpair, and Self-Pair on the WHU
building change detection dataset. As shown in Fig. 5-(e),
Unpair shows high TP (True Positive) score in both exam-
ples but also shows high FP (False Positive) score as well.
Compare with Pair, Self-Pair shows lower FP and FN (False
Negative) with showing higher TP. To summarize, results of
comparison of the qualitative analysis show that for a task
which only focusing the true positive score, using Unpair
method is efficient, or for the task which requires lower false
positives and higher true positives, using Self-Pair could be
a best augmentation mthod.
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Figure 5. Qualitative analysis of pair, unpair, and Self-Pair. True positives (TP), false positives (FP), and false negatives (FN) are represented
as green, red, and blue, respectively.

Method Components Metric Gain

UN CR IN CP PA IoU F1 IoU F1

Unpair ✓ 78.13 86.41 0 0

Self-Pair ✓ 79.23 87.10 +1.10 +0.69

Pair ✓ 79.89 87.92 +1.76 +1.51

Self-Pair ✓ ✓ 82.96 90.21 +4.83 +3.80

Self-Pair ✓ ✓ ✓ 83.57 90.77 +5.44 +4.36

Pair ✓ ✓ ✓ ✓ 86.91 94.02 +8.78 +7.61

Table 3. The result of comparing the effect of each component
of Self-Pair (UN: Unpair, CR: Crop-and-Rotation, IN: Inpainting,
CP: Copy-and-Paste with Blending, PA: Pair) .

4.5. Discussion and Ablation Study

Why Self-Pair works? Self-Pair is a strategy to generate a
visually plausible realistic synthetic image to consist single-
temporal paired images from a single image source. If
Self-Pair could create the characteristics of the bi-temporal
paired images, the domain gap between bi-temporal paired
setting and the Self-Pair setting should be small [19].

Figure 6 shows the results of t-SNE embedding [25]
of Self-Pair, bi-temporal paired setting (Pair), and single-
temporal paired setting (Unpair). As show in Figure 6,
samples from Self-Pair embed near to the embedded sam-
ples from Pair in both cases where the change occurred
and no changes. This indicates that Self-Pair creates the
synthetic images by utilizing characteristics of bi-temporal
paired images. Note that Self-Pair can be embedded more
widely than embedding result in Fig. 6, during training
phase by randomness from inpainting method and copy-
paste with blending method.

Table 4 shows Earth mover’s distance (EMD)
[2] between sets of intermediate features. Regard-
less of whether sample is labeled to change or non-
change, EMD (Self-Pair,Pair) costs smaller distance than
EMD (Unpair,Pair). This tendency is also maintained re-
gardless of whether the cosine metric or euclidean metric

Cost EMD(Pair, Self-Pair) EMD(Pair, Unpair)

(a) Changed Areas

Cosine
(×10−2)

4.3173 10.6672

Euclidean
(×1)

2.3946 3.7833

(b) Unchanged Areas

Cosine
(×10−2)

3.4424 5.9130

Euclidean
(×1)

1.5830 2.2914

Table 4. Earth mover’s distance (EMD) between sets of interme-
diate features from {Pair and Self-Pair} or {Pair and Unpair}
shown in Fig. 6. Cost indicates which type of distance metric
is used.

Model Method IoU Gain

FarSeg [35] Baseline 71.50 0

FarSeg [35] Naive-CP [10] 69.29 -2.21

Farseg [35] CPwB 74.71 +3.21

PFNet [17] Baseline 70.98 0

PFNet [17] Navie-CP [10] 69.10 -1.88

PFNet [17] CPwB 71.91 +0.93
Table 5. Evaluation result of building semantic segmentation ac-
cording to each naive copy-and-paste and copy-and-paste with
blending augmentation strategy.

is used for compute the distance. Accordingly, the results
quantitatively proves that our method effectively reduces
the domain gap better than the existing single-temporal
paired strategy[33].
Ablation study Table 5 shows the results of comparing
naive copy-and-paste (Naive-CP) [10] and copy-and-paste
with blending (CPwB) in building semantic segmentation
dataset. As shown in the table, performance of Naive-CP
is lower than baseline. For the semantic segmentation on
the remote sensing domain, background context is highly
important(e.g. no building on the sea). Also, scale of ob-
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(a) Changed areas (b) Unchanged areas

Pair

Unpair

Self-Pair

Pair

Unpair

Self-Pair

Figure 6. The result of t-SNE [25] by concatenating the intermediate features of pre and post-event images from ChangeStar which trained
on the WHU change detection dataset. (a) is the result of the area where the change occurred, and (b) is the result of the area where having
no changes.

Figure 7. Data-efficiency on the WHU benchmark. Note that Self-
Pair and Unpair requires three times as many epochs as pairs for
convergence.

jects are having difference between different scenes. This
is why the performance of Naive-CP that designed without
considering characteristics of HSR remote sensing images
is significantly reduced. On the other hand, CPwB is using
only one single image for setting an input pair for change
detection model which means that there is no scale variation
and the context of background is fixed. For these reasons,
CPwB could easily adapt to the characteristics of remote
sensing imagery domain and showing improved results to
the baseline while Naive-CP fails to adapt to it and shows
degraded results.

Table 6 shows the result of comparing the performance
of Gaussian smoothing, Poisson blending [21] which used
in [8], and our Fourier blending. Gaussian smoothing has
no improvements and Poisson blending performed poorly
compared with copy-and-paste with no blending. To ana-
lyze this phenomenon, we visualize the augmented samples
based on each blending methods in Fig. 4. In Fig. 4, the
pasted buildings shown in the red boxes are very small and
in the Fig. 4-(c), most of pasted buildings are erased after
blended with poisson method. However, in Fig. 4-(d) every
pasted buildings are left with changed texture when fourier
method is used for blending. Consequently, qualitative and
quantitative results shows that blending method can miti-
gate the artifacts which created by hard augmentation and

Model Method IoU Gain

FarSeg [35] Gaussian smoothing 74.54 -0.17

FarSeg [35] Poisson blending [21] 68.90 -2.60

Farseg [35] Fourier blending 76.19 +1.48

PFNet [17] Gaussian smoothing 72.29 +0.38

PFNet [17] Poisson blending [21] 69.78 -2.13

PFNet [17] Fourier blending 73.41 +1.50

Table 6. The result of comparing the effect of each blending meth-
ods.

leads to the performance improvements.
Data-efficiency on the WHU dataset. Self-Pair augments
data in various forms according to three strategies. Figure 7
shows the results of evaluating the data efficiency of Pair,
Unpair, and Self-Pair. Self-Pair significantly improves data
efficiency of the WHU building change detection dataset.

5. Conclusions

In this work, we redefine the change detection problem in
way of how the change happens - how to model the changes
happen in the real-world. We proposed a novel data aug-
mentation method Self-Pair, which generates the synthetic
image for constructing a input pair based on single-temporal
single image and alleviates the problem of high cost of
collecting pair set which contains changes for bi-temporal
paired supervised learning. We hope our method reduces
the time cost of data collection and makes object change
detection research more accessible, scalable, and economi-
cal.
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