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Abstract

One of the challenges for analyzing video contents (e.g.,
actions) is high computational cost, especially for the tasks
that require processing densely sampled frames in a long
video. We present a novel efficient action recognition algo-
rithm, which allocates computational resources adaptively
to individual frames depending on their relevance and sig-
nificance. Specifically, our algorithm adopts LSTM-based
policy modules and sequentially estimates the usefulness of
each frame based on their intermediate representations. If
a certain frame is unlikely to be helpful for recognizing ac-
tions, our model stops forwarding the features to the rest of
the layers and starts to consider the next sampled frame. We
further reduce the computational cost of our approach by
introducing a simple yet effective early termination strategy
during the inference procedure. We evaluate the proposed
algorithm on three public benchmarks: ActivityNet-v1.3,
Mini-Kinetics, and THUMOS’14. Our experiments show
that the proposed approach achieves outstanding trade-off
between accuracy and efficiency in action recognition.

1. Introduction
As the amount of videos stored in private and public

repositories explodes, there has been a growing interest in
analyzing and understanding video content in recent years.
Action recognition is one of the most primitive tasks in
video understanding, and existing approaches [2, 8, 19, 20,
31, 35] often perform dense prediction over a sequence of
frames or clips, i.e., short time intervals of a few seconds.
To be specific, they extract features from a set of frames
(or clips) in a video via a sliding window scheme, process
individual frames using a deep neural network, and finally
identify an action label by aggregating the prediction scores
of all the frames. Such a costly procedure is impractical
in real-world scenarios, where the algorithms need to run
in resource-limited environments. Reducing computational
costs for video analysis is critical in practical applications.

The key idea of efficient action recognition comes from
the intuition that all frames in a video are not equally im-

STOP

inferred layer skipped layer

fr
am

e 
1

STOP

fr
am

e 
4

PREDICT

fr
am

e 
7

STOP

(b) Accuracy vs. efficiency 

Figure 1: The overview of our approach with an example
video in the Throwing Darts class of the ActivityNet-v1.3
dataset. Our model achieves efficient action recognition by
skipping less important frames in the middle of the classi-
fication network adaptively, e.g., frame 1 and 7 in this fig-
ure. The proposed algorithm reduces computational costs
as many layers as it skips.

portant. Consequently, models do not need to observe all
frames and can skip irrelevant or repetitive frames with-
out any penalty. Several action recognition techniques pur-
sue efficient processing through frame selection (or sam-
pling) [6, 12, 16, 43] or adaptive resource allocation [21].
The frame selection methods utilize an external network to
1) determine whether the current frame is worth forward-
ing to full backbone models for inference [12, 16, 19] or 2)
sample the position of the next input frame while skipping
redundant ones [6, 43]. On the other hand, adaptive com-
putation models process frames in multiple resolutions us-
ing networks with different capacities [21] or select cropped
patches in frames [37], depending on their estimated impor-
tance. However, many frame selection methods are only
available on recorded videos, due to the use of global mem-
ory [43] or preprocessed video features [6, 16]. These prop-
erties hinder the applicability in online processing environ-
ments such as real-time surveillance systems and streaming
services.

We propose an adaptive computation algorithm based on
dynamic layer skipping for efficient action recognition, re-
ferred to as SoF-Net (Stop-or-Forward Network), which re-
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duces the computational cost by skipping layers at infer-
ence time depending on their importance. Our approach
is available on online processing as illustrated in Figure 1.
The decision-making for layer skipping relies on the pol-
icy modules implemented with a set of LSTMs, which are
applied to several intermediate layers in the backbone net-
work. The policy modules enable the classification network
to make the final predictions based only on a fraction of
input frames while skipping irrelevant or repetitive frames
in the middle of forwarding processes. We also introduce a
simple but effective way to further reduce the computational
cost by terminating inference completely before observing
all frames based on prediction scores and their confidence.
To the best of our knowledge, this is the first attempt to show
how to determine the frame’s usefulness in the intermediate
layer of a network.

The contribution of this paper is summarized as follows:

• We propose an adaptive resource allocation method for
efficient action recognition, which reduces the compu-
tational cost by skipping less important frames in the
middle of forwarding processes and terminating the in-
ference procedure even before observing all frames.

• We introduce a simple but effective self-supervised
learning method via learning LSTM-based policy
modules that are responsible for the proposed dynamic
layer skipping.

• Our approach achieves an excellent trade-off between
accuracy and efficiency on multiple benchmarks in-
cluding ActivityNet-v1.3, Mini-Kinetics, and THU-
MOS’14.

2. Related Works

This section overviews efficient action recognition meth-
ods and adaptive computation techniques for deep neural
networks.

2.1. Efficient action recognition methods

Efficient networks Although 3D CNN architectures [2,
31] have widely been used for video understanding, they
suffer from large computational costs incurred by the
complex operations to handle spatio-temporal information
jointly. To tackle this challenge, some approaches rely on
the models based on 2D CNNs [35] or their extensions by
incorporating temporal shift modules [20] or using tempo-
ral difference [46]. Another line of research for design-
ing lightweight action recognition models is to decompose
spatio-temporal information into multiple subspaces, e.g.,
spatial and temporal information [4, 11, 17, 18, 23, 25, 32,
33, 44]. Although efficient networks are successful in ac-
tion recognition, they are limited to focusing on architec-

ture designs without considering the characteristics of input
videos.

Efficient frame selection Some action recognition tech-
niques achieve efficiency by adaptively selecting a subset of
frames in an input video for prediction [1, 15]. These ap-
proaches employ either a lightweight network [16] or multi-
ple reinforcement learning agents [40] to identify the frames
for passing into the full backbone models. AdaFrame [43],
for example, chooses the next frame for observation us-
ing the global context obtained from a designated neural
network [28]. FrameExit [7] presents an early termination
method via non-sequential processing of frames. The main
drawback of these methods is that they are designed for of-
fline processing by default. On the other hand, there exist
several methods that perform sequential decision-making
during inference [3, 6, 21, 42, 43, 45]. LiteEval [42] em-
ploys coarse and fine LSTMs to propagate features, where
a conditional gating module determines when to allocate
more resources for feature computation. AR-Net [21] uti-
lizes a lightweight policy network that selects proper res-
olutions of input frames and corresponding classification
networks to reduce computation for unimportant frames.
AdaFocus [37] also reduces costs by applying a lightweight
network, which selects cropped patches from each frame.
OCSampler [19] employ reinforcement learning to select a
fixed number of frames from candidates to reduce compu-
tation. Unlike previous approaches, our algorithm exploits
intermediate representations in a CNN to stop processing
unnecessary frames and reduce computational costs.

2.2. Adaptive computation techniques

Adaptive computation for reducing computational cost
and improving performance is used in many areas such
as image recognition [26, 38, 41], natural language pro-
cessing [29] and semantic correspondence [22]. Most ap-
proaches [22, 34, 41] choose active layers based on the im-
portance of input frames. Some methods adopt a policy
network that decides whether to drop or keep each layer
block for the applications of image classification by using
reinforcement learning [36, 41], or Gumbel-Softmax [34].
ACT [5] adaptively selects a subset of layers in each resid-
ual block of ResNet [9] for processing based on so-called
halting scores. A Similar approach has recently been pro-
posed in a transformer-based model, DynamicViT [26],
which chooses salient tokens by inserting a prediction mod-
ule into the transformer.

In natural language processing, Skim-RNN [29] makes
a decision for sending a current input word to a small
RNN for skimming or big one for proofreading. On the
other hand, [10, 30, 38] share the idea with anytime predic-
tion techniques and reduce computation costs successfully.
They incorporate classifiers into multiple layers to measure
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confidence and optionally calculate budgets, and make pre-
dictions before processing all the layers in the networks de-
pending on the outputs of the classifiers. However, they are
limited to being designed for images and have not been ap-
plied to videos yet.

3. Proposed Method
3.1. Overview

Given a video with T frames, V = {v1, v2, ..., vT }, the
objective of efficient action recognition is to identify an ac-
tion label y for the video with a low computational cost in
terms of GFLOPS, memory usage, and so on. For efficient
action recognition, we adopt the adaptive resource alloca-
tion framework that aims to allocate a different amount of
computational cost to each frame depending on its impor-
tance. For the adaptive resource allocation, our main as-
sumption is that irrelevant or redundant frames can often be
identified using the representations in lower layers. Based
on the assumption, we propose a dynamic layer-skipping
strategy that allows the model to stop the evaluation of in-
put frames at intermediate layers adaptively. To this end,
we employ policy modules to control the inference flow of
a backbone network, where the backbone network and pol-
icy modules are optimized jointly to minimize costs for un-
necessary frames via our layer-wise decision-making tech-
nique and maximize prediction accuracy based only on the
relevant frames.

3.2. Stop-or-Forward Network (SoF-Net)

The overall framework of the proposed approach is il-
lustrated in Figure 2. SoF-Net consists of a backbone net-
work with L layers and multiple LSTM-based policy mod-
ules; the backbone network computes a visual feature at
each layer and an associated policy module is in charge
of making a decision—stopping inference (i.e., skipping
the input frame) or forwarding the feature to the subse-
quent layers. Note that the policy modules are employed
in the backbone network after pre-selected N(< L) lay-
ers, which are aligned with the stages of modern CNNs—
stacked building blocks with identical structures, e.g., Res-
Block in ResNet [9]. Thus, we use N policy modules and
denote an index of layer with the nth policy module by ln.

Given T frames sampled uniformly from an input video,
our model processes the frames sequentially. At the lthn layer
of the tth frame, we first obtain a visual feature xln

t from the
backbone network and perform the average pooling (Avg-
Pool) on it. Then, the LSTM-based policy module generates
a probability distribution over two options using the current
pooled visual feature and a hidden state that contains histor-
ical information of non-skipped frames, and then samples
an action using the Gumbel-Softmax trick [13] that makes
the sampling operation differentiable. The decision process

by the nth policy module is summarized as follows:

x̄
(n)
t = AvgPool(xln

t ), (1)

h
(n)
t = LSTM(n)(W (n)

x x̄
(n)
t , h

(n)
t̄ ), (2)

q
(n)
t = W (n)

g h
(n)
t , (3)

g
(n)
t = Gumbel-Softmax(q(n)t ), (4)

where x̄
(n)
t is the average-pooled visual feature for the nth

LSTM at the tth frame while t̄ and h
(n)
t denote the index of

the last non-skipped frame and the hidden state of the nth

LSTM for the frame, respectively. The learnable embed-
ding matrices, Wx and Wg , correspond to FC and Gating
FC layers in Figure 2, respectively. The sampled action,
g
(n)
t ∈ {0, 1}, from Gumbel-Softmax(·) represents either

stop or forward for the nth policy; if the sampled action is
0, we skip the frame under consideration and continue the
inference otherwise.

Among all the T frames, we compute the logit zt at the
tth frame only if the frame is not skipped, which is given by

zt = MLP(xL
t ), (5)

where MLP(·) denotes a multi-layer perceptron. The final
prediction pT is obtained by applying the softmax function
to the aggregated logit as follows:

pT = Softmax

(
1∑
t st

T∑
t=1

stzt

)
, (6)

where st ≡
∏

n g
(n)
t is an indicator variable of frame skip-

ping.

3.2.1 Conditional early termination

In addition to the aforementioned dynamic layer skipping
technique, we introduce a strategy to terminate the inference
procedure without observing all the T frames in the input
video. This is motivated by the fact that people can recog-
nize visual content after watching only a few early frames
in a video if a sufficient amount of evidence is collected.
Based on the inspiration, we terminate the inference early
and report the final classification result at the point when
the prediction for non-skipped frames becomes higher than
a threshold, Formally, the inference is terminated if the fol-
lowing condition meets:

max
c

pTc > ρ, (7)

where pTc denotes the probability of action label c after pro-
cessing the T

th
frame as in Eq. (6) and ρ is a threshold of

the prediction probability. Note that T > Tmin, where Tmin
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Figure 2: A run-time procedure of the proposed algorithm. At several predefined intermediate layers of the backbone classi-
fication model, we employ LSTM-based policy modules to determine whether it stops or continues the inference procedure.
The policy modules are learned to predict stop signals for irrelevant or redundant frames while encouraging the classification
network to go through all layers for important frames. The final prediction for a video is obtained by aggregating the predic-
tion scores over the fully processed frames.

is the minimum number of frames for early termination to
avoid too hasty decision.

The proposed early termination scheme is incorporated
on top of the dynamic layer skipping technique, which leads
to a desirable combination of architectural and temporal op-
timization for efficient action recognition. Also, contrary to
[7], our full algorithm processes video frames sequentially
and runs online.

3.3. Training

We train our model using three loss terms, which include
1) action classification loss Lcls, 2) efficiency loss Leff, and
3) policy guidance loss Lpg. The total loss is given by

L = αLcls + (1− α)Leff + Lpg, (8)

where α balances the trade-off between recognition accu-
racy and computational cost.

3.3.1 Action classification loss

To predict a correct action label y that is represented by an
one-hot encoded vector, the backbone network is learned
using a standard cross-entropy loss (LCE) as follows:

Lcls = LCE(p, y) = −
∑
c∈C

yc log pc, (9)

where C indicates the label set.

3.3.2 Efficiency loss

To make our model run efficiently, the policy modules are
learned to minimize the amount of the overall computa-
tion (GFLOPS) for an input video with T frames. For this
purpose, we construct a lookup table that stores expected
GFLOPS for each policy module; the expected GFLOPS of
the nth policy module is defined by GFLOPS for inferring
the remaining layers after the lthn layer, which is given by

flookup(n) = fGFLOPS(L)− fGFLOPS(ln), (10)

where fGFLOPS(l) denotes computational cost in terms of
GFLOPS when inferring until the lth layer and flookup(·) is
a lookup table value. The efficiency loss based on the ex-
pected GFLOPS over T frames and N policy modules is as
follows:

Leff =
1

T ·N

T∑
t=1

N∑
n=1

flookup(n)g
(n)
t . (11)

3.3.3 Policy guidance loss

To learn better policy modules, we incorporate an additional
inner classifier as guidance for each module. The policy
guidance loss is defined as

Lpg = βLinner
cls + (1− β)Lself, (12)
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where Linner
cls and Lself denote inner-cassification loss and

self-supervision loss, respectively, and β controls the trade-
off between recognition accuracy and computational cost.

Inner classification loss To generate self-supervision for
policy modules, we train additional inner classifiers at-
tached to individual policy modules as illustrated in Fig-
ure 2. The inner classifiers are learned by the cross-entropy
loss only when the associated policy module generates a
forward signal, i.e., g(n)t = 1, which is given by

Linner
cls =

1∑
t

∑
n g

(n)
t

T∑
t=1

N∑
n=1

g
(n)
t LCE(p

(n)
t , y), (13)

where p
(n)
t = W

(n)
cls h

(n)
t is a predictive distribution based

on a learnable embedding matrix W
(n)
cls in the nth policy

module at the tth frame.

Self-supervision loss We train the policy module using
the pseudo-label ĝ(n)t , which is estimated by the inner clas-
sifier. Specifically, if the classification score from the inner
classifier increases progressively over the layers, we con-
tinue to observe the subsequent layers for which the pseudo-
label of the corresponding policy module is defined by

ĝ
(n)
t =

{
1 if p(n+1)

t (y) > p
(n)
t (y)

0 otherwise
. (14)

Then the self-supervision loss to train the policy modules
except the last one is given by

Lself =
1

T · (N − 1)

T∑
t=1

N−1∑
i=1

LBCE(g
(n)
t , ĝ

(n)
t ), (15)

where LBCE denotes a binary cross-entropy loss function
with two vectorized input values.

4. Experiments
We evaluate the proposed approachon three standard

benchmarks and report the results.

4.1. Experimental setup

Datasets We conduct experiments on three action recog-
nition datasets: ActivityNet-v1.3 [1], Mini-Kinetics [2],
and THUMOS’14 [14]. ActivityNet-v1.3 is composed of
untrimmed long videos, which are divided into 10,024 train-
ing and 4,926 validation examples for 200 action classes.
The average duration of the videos is 117 seconds. Mini-
Kinetics contains 200 classes and 131,082 trimmed videos,
121,215 for training and 9,867 for testing, sampled from
the original Kinetics dataset [2]. The average length of the

videos is 10 seconds. We train models using the training set
while evaluating algorithms on the validation or test splits
on ActivityNet-v1.3 and Mini-Kinetics. THUMOS’14 con-
tains videos over 24 hours in 101 different sport activities.
The validation and the test sets contain 1,010 and 1,574
untrimmed videos, respectively, and the validation set is
used for training.

Evaluation metrics For evaluation, we adopt the mean
Average Precision (mAP) for ActivityNet-v1.3 and THU-
MOS’14 while using the top-1 accuracy for Mini-Kinetics.
On the other hand, to compare efficiency of models, we
measure GFLOPS per frame (GFLOPS/f), GFLOPS per
video (GFLOPS/V), and runtime per video (Runtime/V).

4.2. Implementation details

As a backbone network, we adopt ResNet-50 [9] pre-
trained on the ImageNet [27] dataset. We uniformly sam-
ple T = 16 frames from each video during both training
and testing and resize to 168× 168 resolutions. The policy
module is attached to the end of each residual block (i.e.,
res1,res2, res3, res4, and res5), thus we use N = 5 pol-
icy modules. The policy modules are defined by a single-
layer LSTM with a 512-dimensional hidden state. We set
the initial temperature of Gumbel-Softmax to 5, and gradu-
ally anneal it with an exponential decay factor of -0.045 in
every epoch following [13]. We set the coefficients of loss
terms as α = 0.9 and β = 0.9 in our training. For condi-
tional early termination, the thresholds, ρ and Tmin, are set
to 0.999 and 3, respectively.

We train the backbone and policy modules using the
SGD optimizer with an initial learning rate of 0.001, weight
decay of 0.00001, and momentum of 0.9. Note that the
learning rate is reduced to 0.0001 after 30 epochs. Since
a random policy at initial training steps would hinder the
learning backbone network, we train our algorithm in two
stages. We first warm up the backbone network for 15
epochs while fixing the policy modules, and start to train the
entire network including the policy modules for additional
60 epochs. Our model is implemented with PyTorch [24]
and all models are trained in 4 Titan XP GPUs with a mini-
batch size of 6 videos per GPU. Note that the results of
TSN [35] are reproduced with the same hyper-parameters
as SoF-Net.

To measure the runtimes of TSN [35], AR-Net [21],
AdaFocus [37] and SoF-Net, we test each model in the
same environment setup, with 16 uniformly sampled frames
from 4,921 videos in the ActivityNet-V1.3 validation set
and batch size of 1, and a single GPU (NVIDIA Titan XP)
and CPU (Intel® Xeon® CPU E5-2620 v4 @ 2.10GHz).
We report the average runtime from five runs.
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Table 1: Performance comparison with the state-of-the-art methods on ActivityNet-v1.3 and Mini-Kinetics. Note that first
five methods run offline while the others including SoF-Net are online algorithms. Our implementation of FrameExit (online)
does not use its original frame sampling strategy, but sequentially takes input frames given by uniform sampling. MV2 and
R# denote MobileNet-V2 [28] and ResNet with the number of layers, respectively, and T is the default number of input
frames to run each algorithm . Results of other methods are copied from [19] while † denotes our reproduction. The best
results are in bold.

Type Method Backbone Resolution T
ActivityNet-v1.3 Mini-Kinetics

mAP GFLOPS/f GFLOPS/V Top1 GFLOPS/f GFLOPS/V

Offline

AdaFrame [43] MV2+R101 224 25 71.5 3.16 79.0 - - -
ListenToLook [6] MV2+R152 224 16 72.3 5.09 81.4 - - -
SCSampler [16] MV2+R50 224 16 72.9 2.62 42.0 70.8 2.62 42.0
FrameExit [7] R50 224 10 76.1 2.61 26.1 72.8 1.97 19.7
FrameExit [7] R50 224 16 76.1† 2.19† 35.1† - - -
OCSampler [19] MV2+R50 224 10 77.2 2.58 25.8 73.7 2.16 21.6

Online

LiteEval [42] MV2+R101 224 25 72.7 3.80 95.1 61.0 3.96 99.0
AR-Net [21] MV2+R50/R32/R18 224/168/112 16 73.8 2.09 33.5 71.7 2.00 32.0
FrameExit (online) [7] R50 224 10 73.7† 2.76† 27.6† - - -
AdaFocus [37] MV2+R50 128 16 75.0 1.66 26.6 72.2 1.64 26.3
SoF-Net (ours) R50 168 16 75.3 1.71 27.4 72.8 1.75 28.0

Table 2: Action recognition results on THUMOS’14.

Method mAP GFLOPS/f GFLOPS/V
TSN [35] 46.6 4.12 65.9

AR-Net [21] 47.4 1.67 26.7
SoF-Net 47.8 1.60 25.6

4.3. Comparison with other methods

We compare the proposed SoF-Net with the state-of-the-
art efficient action recognition techniques in two branches:
frame selection methods such as AdaFrame [43], LiteE-
val [42], ListenToLook [6] SCSampler [16], FrameExit [7],
and OCSampler [19], and adaptive computation framework
such as AR-Net [21] and AdaFocus [37]. Table 1 and 2
summarize the results on ActivityNet-v1.3, Mini-Kinetics,
and THUMOS’14. In THUMOS’14, we use 224× 224 im-
ages and sample 16 frames from each video for training a
TSN [35] model. We also compare our method with an
online version of FrameExit [7] by removing its heuristic
frame sampling strategy—observing frames from the cen-
ter to the sides temporally. Our method outperforms all
competing methods in accuracy with smaller or compara-
ble computational costs and parameters.

To compare the efficiency of algorithms, we addition-
ally present the runtime and frame usage ratio in Table 3 of
our approaches and other methods. The results show that
SoF-Net is faster in inference than its counterparts by using
fewer frames regardless of input resolution; we only use
less than 60% of frames to predict action in videos. Note
that AR-Net [21] not only uses 70% of frames but also uses
four backbone networks and four resolutions for each back-
bone network to process frames, resulting in high latency.

Table 3: Comparison of runtime and frame usage ratio on
the ActivityNet-v1.3 validation set. The numbers in SoF-
Net denote input image sizes.

Method Runtime/V Total Runtime Frame Usage
(ms) (s) (%)

TSN [35] 110.5 543.6 100.0
AR-Net [21] 120.8 594.6 70.1

AdaFocus [37] 165.1 812.3 100.0
SoF-Net (168) 74.6 367.2 54.3
SoF-Net (192) 82.0 403.4 61.0
SoF-Net (224) 83.9 412.8 59.0

AdaFocus [37] appears to be efficient in terms of GFLOPS
when using the 128x128 cropped images as its inputs but
turns out to have the longest runtime. These runtime com-
parisons indicate that our model is more appropriate than
other methods for being applied to practical problems in-
volving online processing requirements.

We believe that the outstanding performance of SoF-Net
is mainly due to its unique structure. SoF-Net has a sim-
ple procedure based on a single backbone network and em-
ploys the features in multiple semantic levels to distinguish
redundant or noisy frames for the frame selection. This at-
tribute makes the proposed approach more powerful than
other methods that rely on a single pre-defined semantic
level for the decision.

4.4. Discussion

For a better understanding of our algorithm, we perform
an in-depth analysis on the ActivityNet-v1.3 dataset.
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Table 4: Ablation study for individual components in our
algorithm, tested on the ActivityNet-v1.3 validation set.

Policy Temporal Policy Early mAP GFLOPS/Vmodule modeling guidance term. (%)
- - - - 73.7 40.3
✓ - - - 74.3 32.2
✓ ✓ - - 75.0 31.6
✓ - ✓ - 74.7 32.6
✓ ✓ ✓ - 75.6 31.7
✓ ✓ ✓ ✓ 75.3 27.4

Table 5: Performance comparisons by varying input sizes
on the ActivityNet-v1.3 validation set.

Resolution w/o Early termination w/ Early termination
mAP GFLOPS (f/V) mAP GFLOPS (f/V)

168× 168 75.6 1.98 / 31.7 75.3 1.71 / 27.4
192× 192 76.4 2.73 / 43.7 76.3 2.34 / 37.4
224× 224 77.1 3.48 / 55.7 76.9 3.04 / 48.6

Analysis of our model We perform ablation studies to
investigate the contributions of individual components in
our algorithm. In this experiment, we train the four vari-
ants of our models, where we add individual modules in
the sequence of temporal modeling, policy module, policy
guidance with self-supervision, and early termination. The
policy module without temporal modeling is implemented
by replacing LSTM with an FC layer. Table 4 summa-
rizes the results, where we observe the followings. First,
the result without temporal modeling implies that the his-
torical information of non-skipped frames is crucial to im-
prove both accuracy and efficiency. Second, the application
of the policy module provides 21.3% (40.3 GFLOPS/V to
31.7 GFLOPS/V) efficiency improvement by skipping re-
dundant frames using early layer skipping. Third, the self-
supervision obtained from inner classifiers helps the pol-
icy modules identify noisy frames, leading to accuracy im-
provement. Finally, the early termination strategy indeed
makes SoF-Net more efficient.

Frame skipping ratio Figure 3 illustrates the statistics of
the decisions made by policy modules. Overall, our pol-
icy modules learn to use 54.3% of frames while skipping
32.3% on average, where the first and last policy modules,
corresponding to res1 and res5, are two common locations,
where skipping decisions are made. Frame skipping at the
last ResBlock enhances accuracy by preventing confusing
frames from being involved in inference. Besides frame
skipping, early termination of frames improves efficiency
greatly by skipping 13.4% of frames.

Input resolutions We train SoF-Net on various sizes of
input frames (168, 192, 224) with and without early termi-

(17.3%)

61.6%

24.6% (6.9%)

10.7% (3.0%)

2.8% (0.8%)

0.4% (0.1%)
Figure 3: Statistics of frame usages. We show the ratio of
the frames that stop forwarding by their stop-decision loca-
tions as a form of ‘res#.’ ‘Early Term.’ denotes the ratio of
the frames skipped by early termination, and ‘Used’ means
the frame ratio for full inference. The numbers in gray color
indicates the percentage of each category.

nation. As shown in Table 5, the accuracy of the model
improves as the size of an input frame increases while the
corresponding computation cost also increases. With a res-
olution of 224 × 224, our model achieves higher accuracy
than the state-of-the-art offline algorithm. In all resolutions,
early termination consistently reduces computations with
negligible accuracy drops.

4.5. Qualitative Analysis

For a better understanding of how SoF-Net works, we
present input frames and their decision-making results in
Figure 4. For each example, the bottom row illustrates
whether each frame is used for prediction or skipped; res#
means that the model stops prediction at the #-th policy
module and decides to skip the frame, and the exit indicates
frame skipping by ‘early termination’ while the frames con-
sidered to be important by the policy modules are repre-
sented as the original frames. The blue bars at the bottom
of each case denote action localization annotations provided
in the ActivityNet-v1.3 dataset. Note that, considering ac-
tion localization annotation, SoF-Net effectively captures
important frames and skips repetitive or irrelevant frames.

5. Conclusion
We presented a novel efficient action recognition algo-

rithm, SoF-Net, which allocates adaptive computational re-
sources for individual frames based on their importance.
Specifically, the policy module in each layer decides to stop
forwarding the current frame to the following layers and fil-
ter out less important frames, reducing computational costs
and improving recognition performance. The module is
trained by the efficiency loss and the policy guidance loss
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Figure 4: Visualization of the decision-making results by SoF-Net. For each example, the top row shows the original input
frames and the bottom row illustrates how the frames are processed in SoF-Net. The skipped frames specifies the position
of stopped layer (res#) while we present the original frames for the ones used for prediction. The black box with a word
‘exit’ indicates the frames that are not observed at all due to early termination, and the blue bar denotes the temporal action
localization ground-truths indicating the relevance of the frame to the target action.

by comparison of classification scores of inner classifiers in
the current and next layers. Moreover, we also employ a
simple yet effective early termination strategy that decides
to terminate the inference of a given video.

In summary, SoF-Net has a simple online (sequential)
procedure for efficient prediction without using multiple
backbone networks (e.g., AR-Net [21], LiteEval [42], OC-
Sampler [19]) or adopting offline prediction relying on
global memory (e.g., AdaFrame [43]). SoF-Net employs
representations in the multiple intermediate layers for frame
selection, effectively identifying potential redundancy or

noise in various semantic levels. This property makes the
proposed approach more potent than other methods relying
on a single pre-defined semantic level for the decision. To
the best of our knowledge, this is the first attempt to show
how to determine the frame’s usefulness in the intermediate
layer of a network.
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