LoopDA: Constructing Self-loops to Adapt Nighttime Semantic Segmentation

Fengyi Shen1,2, Zador Pataki2,4, Akhil Gurram2, Ziyuan Liu2, He Wang3, Alois Knoll1
1Technical University of Munich, 2Huawei Munich Research Center
3Peking University, 4ETH Zurich
1fengyi.shen@tum.de, knoll@in.tum.de, 2\{first.last\}@huawei.com, 3hewang@pku.edu.cn

Abstract

Due to the lack of training labels and the difficulty of annotating, dealing with adverse driving conditions such as nighttime has posed a huge challenge to the perception system of autonomous vehicles. Therefore, adapting knowledge from a labelled daytime domain to an unlabelled nighttime domain has been widely researched. In addition to labelled daytime datasets, existing nighttime datasets usually provide nighttime images with corresponding daytime reference images captured at nearby locations for reference. The key challenge is to minimize the performance gap between the two domains. In this paper, we propose LoopDA for domain adaptive nighttime semantic segmentation. It consists of self-loops that result in reconstructing the input data using predicted semantic maps, by rendering them into the encoded features. In a warm-up training stage, the self-loops comprise of an inner-loop and an outer-loop, which are responsible for intra-domain refinement and inter-domain alignment, respectively. To reduce the impact of day-night pose shifts, in the later self-training stage, we propose a co-teaching pipeline that involves an offline pseudo-supervision signal and an online reference-guided signal ‘DNA’ (Day-Night Agreement), bringing substantial benefits to enhance nighttime segmentation. Our model outperforms prior methods on Dark Zurich and Nighttime Driving datasets for semantic segmentation. Code and pretrained models are available at https://github.com/fyvision/LoopDA.

1. Introduction

Deep neural networks[42, 30, 28, 29] have shown tremendous potential in semantic segmentation [34, 6, 58, 32] tasks. However, most recent advances in this field seek to obtain higher model accuracies only based on training data under favourable viewing conditions. This is likely to hurdle the promotion of deep neural networks for applications such as visual perception for autonomous driving, where the robustness of trained models in all weather and illumination conditions is required. Models that are well trained on sunny daytime datasets fail to produce equally satisfactory results when applied to images captured in adverse conditions. Due to the lack of publicly available nighttime dataset with labels and the difficulty of creating annotations for nighttime images, semantic segmentation at nighttime remains challenging.

In an attempt to close the performance gap, unsupervised domain adaptation (UDA) approaches[4, 12, 16, 35, 43] are becoming popular by taking advantage of labelled daytime data and obtaining models with adaptable knowledge on night domain. However, it still remains an open challenge to close the domain gap between day and night data.

Reconstruction-based approaches [46, 60, 5, 47] have been proven to be promising for UDA segmentation. To close the domain gap, they reconstruct either input or cross-domain translated images from the shared encoded feature map. However, in this way, the domain gap is only tackled on feature encoder level since gradient computation for the image reconstruction loss does not reach the segmentation head. Hence, we point out that segmentation outputs should also be involved in such reconstruction-based methods.

To this point, we assume that for semantic segmentation, there is an intrinsic bidirectional connection between the input image and its segmentation output. In other words, if a pixel region in the RGB input is correctly assigned to a certain semantic class, this class distribution should in some way correspond to a specific pattern back in the input space, which leads to such semantic prediction. Therefore, when the semantic output is involved in creating an image, the resulting image should appear similar to the input image regarding the class-specific textures. Otherwise, the semantic predictions are likely to be wrong and should be further fine-tuned by a reconstruction loss. However, given that semantic outputs are only probability maps, it makes less sense to utilize them alone for image reconstruction without combining the encoded latent features. Therefore, to make the best use of the input data and the segmentation, we propose to construct a self-loop that can associate the encoded latent feature incorporating the segmentation output to the
input image. Particularly, this provides clues for the segmentation refinement of unlabelled target data by learning from the self-loop of the labelled source data. Additionally, it also comes to the question of how to best utilize the predicted semantic maps of the daytime reference data. Since directly applying their predicted static labels to guide nighttime segmentation will result in wrong predictions due to the view changes.

Figure 1. A systematic overview of LoopDA framework. Predicted semantic maps are refined by being rendered into the encoded features in different levels of self-loops. To condition our networks, self-loops of the daytime domain are trained with labels, thus the nighttime segmentation outputs get rectified accordingly through the self-loops. To deal with day-night pose shifts, offline and online co-teaching is performed for self-training.

Given the aforementioned aspects, in this work we propose LoopDA, a novel framework for domain adaptive nighttime semantic segmentation. It contains two different levels of closed loops (inner and outer) that focus on reducing the domain discrepancy between day and night. Our contributions can be summarized as follows:

- We introduce a LoopDA framework. It consists of self-loops where the learning of image segmentation benefits from reconstructing the input data using encoded latent features rendered by the predicted semantic maps. In a warm-up training stage, the self-loops comprise of an inner-loop responsible for intra-domain refinement, and an outer-loop taking care of inter-domain alignment to reduce the domain gap;
- For the self-training stage, we propose a novel pseudo-supervision strategy to allow two co-supervision signals to refine the model prediction for nighttime inputs. These include an offline signal derived from predictions of night training images, and an online signal ‘DNA’ encouraging the identical semantic predictions of static classes between nighttime and their daytime reference image for pseudo-labelling. This tackles the pose shifts without introducing additional computation steps such as pose estimation and depth warping;
- Our trained models attain state-of-the-art performances on benchmark datasets for UDA semantic segmentation at nighttime.

2. Related Work

2.1. Reconstruction based training

Autoencoding[3, 2] is the basic format of unsupervised learning, which focuses on reconstructing the input data to learn its latent representations. It is a fundamental building block of many popular deep learning based architectures[34, 6, 59, 27, 15, 38, 55]. Interestingly, LabelEnc[19] introduces a label encoding function, mapping the ground-truth labels into latent embedding via an autoencoder, approximating the “desired” intermediate representations and acting as an auxiliary supervision to boost the object detection task. Additionally, the most recent advancement[20, 50] in the field of representation learning also indicates that autoencoding is a meaningful step for learning visual features. For instance, MAE[20] claims that having an image reconstruction pretraining stage using masked inputs can produce a meaningful image encoder for image classification tasks. Furthermore, MaskFeat[50] suggests that it is also promising to reconstruct the features (e.g., HOG[11]) of the masked inputs for similar tasks. Unlike from image classification, semantic segmentation task requires various representations for different pixel locations in the feature map instead of predicting only one overall class for an image. Regarding this, image reconstruction driven by the predicted label map is introduced in [53] to fine-tune the segmentation results on cross-domain data. However, predicted labels are from probability outputs and do not contain RGB information of the input data. Therefore, image reconstruction only from labels makes less sense without involving the encoded latent features. To this end, our method constructs self-loops of the input data using latent features rendered by the predicted semantic labels, thus manipulating the latent space in a more comprehensive way.

2.2. Style transfer based training

Since image style translation approaches[59, 33, 23] based on GANs[18, 1, 36, 24, 25] can be trained in an unsupervised manner, they have been widely adopted in solving UDA problems. In [22, 54], target-like images transferred from the source domain are used to train a segmentation model that attains better performance towards target domain data. The concept of image style translation has been well accepted in nighttime semantic segmentation. In earlier works[48, 41, 44, 45], image domain translation modules are adopted either to augment nighttime into daytime styles or vice versa to better align the differences in training data appearance. However, unlike other scenarios of applying image style translation, domain transfer between day and night data is more challenging, e.g., dealing with the dark invisible regions from night images or preserving the useful semantic contents in daytime images during the domain
transfer. Therefore, in our outer loop training, we propose a semantic map rendering method to better assist the day-night image transfer while enabling the nighttime semantic map to be fine-tuned. The outer loop of LoopDA is inspired by the training philosophy of CycleGAN[59], however, we point out that CycleGAN is built for image translation while LoopDA focuses on learning domain agnostic representations from the encoder and semantic classifier, and refines nighttime predictions through semantic rendering.

3. Proposed Method

3.1. Self-loops on cross-domain levels

In this section, we propose LoopDA, providing a new perspective of domain adaptation for nighttime semantic segmentation. It builds inner and outer self-loops back to the input data using feature maps rendered by semantic outputs, gradually refining nighttime segmentation results guided through self-loops with labelled daytime data. For self-training, other than the offline pseudo-label generation, we propose a novel ‘DNA’ strategy, which takes advantage of reference daytime guidance but efficiently reduces the misguidance from pose-shifted wrong labels. Our framework mainly consists of four sub-networks: a feature encoder Enc, a semantic classifier F, a daytime decoder Decd, and a nighttime decoder Decn incorporated with semantic rendering layers.

3.1.1 Loop construction for labelled daytime domain

For the labelled daytime domain, the purpose of loop constructions is to learn a model that is able to build consistent looped mapping between an input xd and the ground-truth yd tuned by full supervision, setting the foundation for model adaptability towards nighttime domain. This involves an inner loop and an inter-domain outer loop in one training iteration. As shown in Fig. 2(a), xd is passed to Enc and further to F to obtain a deep latent feature zd = Enc(xd), and a probability map pd = softmax(F(zd)), respectively. Since yd is used to supervise pd, we calculate the cross-entropy loss,

$$L_{seg}^d = \sum_{h,w} \sum_c -y^d_{(c,h,w)} \log(p^d_{(c,h,w)})$$

(1)

where h, w and c are height, width and number of semantic classes, respectively.

Thus, any pixel in RGB space is associated with a particular semantic category in probability space. The other way around, we want the model to learn an awareness that, if semantic predictions in pd are all correct, they can also be mapped back to the input xd, reflecting different textures or patterns for the corresponding semantic classes. Given the appearance diversity of intra-class patterns, it makes less sense to recover xd simply based on pd elements that are merely probabilities. Therefore, we propose a domain-specific image decoder Decd with semantic rendering layers where pd is incorporated into zd for image recovery. Fig. 2(d) presents details of our image decoder; pd is first encoded by several fully-convolutional layers, and the resulting semantic features are multiplied layer-wisely by the raw features acquired from zd decoder layers. Additionally, the raw features are combined into the rendered features using a skip connection following [21], such that semantically rendered features do not override and spatial information in zd can be preserved. To close the intra-domain self-loop, Decd is encouraged to reproduce xd constrained by the inner-loop loss for image reconstruction,

$$L_{inner}^d = \|Dec^d(z^d, p^d) - x^d\|_1$$

(2)
To ensure that \(p^d \) is accurate enough for rendering, we fuse \(p^d \) and \(y^d \) for fine-grained rectification via linear combination (details in Supplementary). Given that daytime is a labelled domain, the aim is to teach \(Enc \), \(F \) and \(Dec^d \) for self-loop reconstruction with help of ground-truths \(y^d \), therefore, it’s unnecessary to let the fused \(p^d \) be tuned in the self-loop, and we detach it before semantic rendering happens in \(Dec^d \).

Meanwhile, \(p^d \), together with \(z^d \), goes into an inter-domain outer loop (blue path in Fig. 2(a)). Given that image translation has been known to be a meaningful component for day-night domain adaptation\cite{10,48}, hence, we pass \(p^d \) and \(z^d \) to a nighttime decoder \(Dec^n \) to obtain a nighttime version of \(x^d \), i.e., \(x^{d,n} = Dec^n(z^d, p^d) \), which is learned by an adversarial loss,

\[
\mathcal{L}_{\text{adv}}^{d,n} = (D^n(x^n))^2 + (1 - D^n(x^{d,n}))^2
\]

(3)

where \(D^n \) is the nighttime domain discriminator, which is omitted from Fig. 2 for simplicity. The challenging part of image translation from day to night is that clear contents such as building, trees and sky in \(x^d \) can become invisible in \(x^{d,n} \) as \(Dec^n \) learns to mimic dark night appearance. Hence, the semantic rendering in our \(Dec^n \) is able to help preserve daytime contents during translation. Moreover, in order to improve the perceptual quality of \(x^{d,n} \), we introduce a perceptual consistency loss between \(x^d \) and \(x^{d,n} \) as follows,

\[
\mathcal{L}_{\text{percep}}^d = \lambda_2 ||z^{d,n} - z^d||_1 + \lambda_1 LPIPS(x^{d,n}, x^d)
\]

(4)

\(L_{\text{percep}}^d \) in Equation 4 places constraints from two different perspectives and comprises two parts: L1-norm semantic consistency loss between \(z^d \) and \(z^{d,n} \) obtained based on the shared encoder \(Enc \), and LPIPS\cite{57} loss between \(x^d \) and \(x^{d,n} \) to measure structural similarity.

Moreover, in this inter-domain outer loop, we expect \(Enc \) and \(F \) to learn domain agnostic knowledge, thus treating \(x^d \) and \(x^{d,n} \) semantically equivalent to reduce the domain-specific bias. Therefore, we also compute supervised segmentation loss for the cross-domain semantic prediction \(p^{d,n} \),

\[
\mathcal{L}_{\text{seg}}^{d,n} = \sum_{h,w} \sum_{c} -f^d_{(c,h,w)} \log(p^{d,n})_{(c,h,w)}
\]

(5)

Finally, to further enforce \(Enc \) and \(F \) to produce domain-indistinguishable representations of input data, we encourage that \(Dec^d \), taking \(z^{d,n} \) and \(p^{d,n} \), closes the inter-domain self-loop towards \(x^d \), which means \(Dec^d(z^d, p^d) \approx x^d \). This can be described by the outer loop loss,

\[
\mathcal{L}_{\text{outer}}^d = ||Dec^d(z^{d,n}, p^{d,n}) - x^d||_1
\]

(6)

Similar to Equation 2, \(p^{d,n} \) is fused by \(y^d \) and its gradient tracking is also disabled for semantic rendering. The inner and outer loop training on the labelled daytime domain builds up a prototype for universal and robust representation between day and night, preparing the network parameters to adapt to the unlabelled nighttime data.
3.1.2 Loop adaptation for nighttime domain

Unlabelled nighttime data. Supported by the established daytime loops, in the same training iteration, we also pass x^n to the shared networks for self-loop construction. Following a dual data flow of daytime domain, we first build the inner loop (see Fig. 2(b)) by inner loss L_{inner}^n similar to Equation 2, forcing $\text{Enc}^n(z^n, p^n) \approx x^n$. However, instead of stopping gradient computation in semantic rendering, for the nighttime domain we always keep p^n fine-tuned during loop construction. In other words, if p^n is not able to help z^n reconstruct x^n by semantic rendering, it will get rectified towards a correct prediction based on the knowledge adapted from the daytime loops.

Like for it’s labelled daytime counterpart, for the unlabelled nighttime domain, to enhance the domain-agnostic property of \hat{E}_{nc} and F, we also conduct an outer loop to map x^n to x^{n-d} and back to x^n (i.e., $x^n \rightarrow x^{n-d} \rightarrow x^n$) assisted by Dec^d and Dec^n. Slightly different from Equation 3, in this process, the night to day translation x^{n-d} is generated using an adversarial loss L_{adv}^{ud} by considering not only x^d but also x^{ud}_{ref} as real. The reason is that, in some cases, the camera locations for x^n and x^{ud}_{ref} are close enough, so that some static objects in the dark regions of x^n can be better recovered in x^{n-d} through example guided image translation. Thus, based on a daytime domain discriminator D^d, L_{adv}^{n-d} is given as,

$$L_{adv}^{n-d} = (D^d(x^n))^2 + (D^d(x^{n-d}))^2 + (1 - D^d(x^{n-d}))^2 \quad (7)$$

In addition, to preserve semantic consistency and structural similarity between x^n and x^{n-d}, a perceptual loss $L_{percept}^n$ is also computed following Equation 4.

To close the outer self-loop, we want \hat{E}_{nc} and F to be invariant to any domain shift from night to day, i.e., the intermediate outputs such as z^{n-d} and p^{n-d} should be able to help Dec^n recover x^n in line with the inner loop, meaning $\text{Dec}^n(z^n, p^n) \approx x^n \approx \text{Dec}^n(z^{n-d}, p^{n-d})$. This is supported by the outer loop loss L_{outer}^n similar to Equation 6. While minimizing L_{outer}^n, p^{n-d} is fine-tuned to produce more reasonable prediction. Most importantly, as Fig. 2(b) shows, the gradient computation of the outer loop loss L_{outer}^n can be traced back to all sub-networks in LoopDA. Hence, they are all optimized accordingly to align with the knowledge learned from the outer loop of the labelled daytime domain. With constructed inner and outer self-loops, the domain gap is gradually reduced via intra-domain refinement and inter-domain alignment.

Unlabelled daytime reference data For the attached daytime reference images x^{ud}_{ref} that are unlabelled, we just build an inner loop in Fig. 2(c) with loss L_{inner}^{ud} to refine p^{ud}_{ref} guided by the labelled daytime data $\{x^d, y^d\}$.

3.2. Reference guided self-training

We train LoopDA adopting the popular stage-wise pipeline in domain adaptation[8, 14, 26, 31, 37, 61, 62], i.e., using a warm-up stage and a self-training stage. The warm-up stage is described in Sec. 3.1, on top of which, we introduce segmentation losses \hat{L}_{seg}^{ud} and L_{seg}^n for unlabelled data x^{ud}_{ref} and x^n based on pseudo-labels during the self-training stage.

To improve the quality of daytime reference label for better guidance on nighttime domain, as Fig. 2(c) shows, we compute \hat{L}_{seg}^{ud} as follows,

$$\hat{L}_{seg}^{ud} = \sum_{h,w} \sum_c -\hat{y}_c^{ud}(c, h, w) \log(p^{ud}_{ref}(c, h, w)) \quad (8)$$

where \hat{y}^{ud} is acquired offline following [31].

Next, we present our proposed self-training strategy for nighttime domain. Due to the fact that most static objects reflect light weakly at night, which makes segmentation quite challenging. To tackle this issue, we propose to take the best advantage of the static labels from each daytime reference image but also prevent p_n to learn from wrong labels due to pose shift. As illustrated in Fig. 3, given the current daytime reference prediction p^{ud}_{static}, we filter out all pixel locations that are associated with dynamic classes in both p^n and p^{ud}_{static}, obtaining a static label map \hat{y}^{ud}_{static} on-the-fly. In parallel, we also generate $\hat{y}_D = y_{static} \cap O(\arg \max (p^n))$ online, indicating the Day-Night Agreement (DNA) of predicted labels and an offline signal from the warm-up model.

![Figure 3](image-url)

Figure 3. An illustration of the pseudo-supervision strategy in LoopDA. To prevent p^n to be misguided by the pose-shifted \hat{y}^{ud}_{static}, the co-teaching involves an online signal based on Day-Night Agreement (DNA) of predicted labels and an offline signal from the warm-up model. We train LoopDA adopting the popular stage-wise pipeline in domain adaptation[]
semantic categories such as traffic signs, traffic lights and poles are quite sensitive to camera pose shift, which are referred to as shift sensitive classes (SSC). Following this cue, between the derived label maps $\hat{y}^n_{\text{ref}} = \arg \max (p^n_{\text{ref}})$ and $\hat{y}^{\text{ud}}_{\text{ref}} = \arg \max (p^{\text{ud}}_{\text{ref}})$, we compute a label overlapping ratio (LOR) for SSC,

$$LOR = \frac{2 \sum_{i \in N} \mathbb{1} \{t^n_i \in SSC\} \cdot \mathbb{1} \{\hat{y}^{\text{ud}}_{\text{ref},i} \in SSC\}}{\sum_{i \in N} \mathbb{1} \{t^n_i \in SSC\} + \mathbb{1} \{\hat{y}^{\text{ud}}_{\text{ref},i} \in SSC\}}$$

where $N = h \cdot w$, and $\mathbb{1}$ is an indicator checking whether the current label pixel belongs to SSC. Therefore, if LOR exceeds a certain threshold τ, we are then able to confirm that is there a very small pose shift between x^n and $x^{\text{ud}}_{\text{ref}}$, meaning that $\hat{y}^{\text{ud}}_{\text{static}}$ instead of $\hat{y}^{\text{DNA}}_{\text{static}}$ should be applied on p^n as the online supervision signal, which is given by $\hat{y}^{\text{ud}}_{\text{on}} = \begin{cases} \hat{y}^{\text{ud}}_{\text{static}} & LOR \geq \tau \\ \hat{y}^{\text{DNA}}_{\text{static}} & LOR < \tau \end{cases}$. This empowers reliable static label generation without introducing additional camera pose estimation and depth warping modules. Combined with the offline label $\hat{y}^{\text{off}}_{\text{ud}}$ containing dynamic classes and SSC from warm-up stage, we compute \mathcal{L}_{seg} by co-teaching of these two supervision signals as follows,

$$\mathcal{L}_{\text{seg}} = \sum_{h,w} \sum_{c} \left(-((\hat{y}^{\text{off}}_{\text{ud}} + \hat{y}^{\text{on}}_{\text{ud}}) \log(p^n))_{(c,h,w)} \right)$$

So far, the mentioned losses can be summarized into five categories for all data domains: segmentation losses, inner loop and outer loop losses, adversarial losses and perceptual losses. Therefore, minimizing the total loss corresponds to solving the optimization problem to look for Enc^* and F^*:

$$Enc^*, F^*, (Dec^*) = \arg \min_{Enc,F,Dec} \mathcal{L}_{\text{LoopDA}}$$

where $\mathcal{L}_{\text{LoopDA}} = \sum \lambda_i L_i$ is a weighted sum, and i stands for the specific loss from Sec. 3.1 and Sec. 3.2 by name.

4. Experiment and Analysis

4.1. Datasets and implementation details

Cityscapes[9] is adopted as our labelled daytime source domain. For our domain adaptation task we take its training set containing 2975 pixel-wisely annotated images taken in urban scenes with 19 categories. The original image resolution is 2048×1024.

Dark Zurich[44] is considered as our unlabelled nighttime target domain, whose training set contains unlabelled images captured under daytime, twilight and nighttime conditions with a resolution of 1920×1080. To keep consistent with previous papers[52, 51], we take the 2416 unlabelled night-day image pairs for training. There are also 201 night-time images with pixel-wise annotation from Dark Zurich dataset, which are separated into validation set (50 images) and test set (151 images), respectively, but the ground-truth of the latter is not publicly available. Evaluation results on the test set can be attained by submitting the model predictions to the provided website by [44].

Nighttime Driving[10] contains 50 nighttime images with the same resolution as Dark Zurich, which are pixel-wisely annotated following Cityscapes label format. We also evaluate LoopDA based on this dataset.

Our implementation of LoopDA is based on Pytorch[39] on an NVIDIA Quadro RTX 8000 with 48 GB memory. We use ImageNet[13] pretrained ResNet-101[21] backbone as feature encoder E and adopt PSPNet[6] for semantic segmentation. During training, our first downscale the original input by a factor of 2 and take 512×496 crops for both domains and set batch size to 2. We use the SGD[40] optimizer with a default learning rate of 2.5×10^{-3}, momentum 0.9, and weight decay 5×10^{-4} to train our segmentation network. We set the LOR threshold τ to 0.5, and set $\lambda_{\text{seg}} = 1.25$, $\lambda_{\text{inner}} = \lambda_{\text{outer}} = 1$, $\lambda_{\text{adv}} = 0.1$, $\lambda_{\text{percep}} = 1$, and in Equation 4 we set $\lambda_z = 0.1$ and $\lambda_l = 0.25$.

4.2. Model evaluation

Following [51], we train LoopDA using PSPNet as the segmentation network, and evaluate our model by submitting the results to the online evaluation site of Dark Zurich[44]. As a common practice, we use mean intersection over union (mIoU) as the final evaluation metric and also IoU for each class. As can be observed in Table 1, comparing with the state-of-the-art, our model attains 46.8 mIoU, outperforming DANNNet by 1.6. Furthermore, we identify that a new milestone can be further reached by having an extra knowledge distillation training stage using ResNet-101[21] pretrained backbone based on SimCLRv2[7] following [56]. This brings the best score of LoopDA to 50.6 mIoU. Our model is leading at segmenting road, sidewalk, car, train, bike as well as challenging classes at nighttime such as building, vegetation and sky. Some visual examples are given in Fig. 4.

To draw similar conclusion, we also provide our model results evaluated on Dark Zurich validation set and Nighttime Driving test set in Table 2, where LoopDA also demonstrates impressive results, achieving 37.6 and 49.6 mIoU, respectively. After an extra distillation stage, the results get boosted to 38.7 and 54.0 mIoU.

4.3. Ablation study

To better understand how each component of LoopDA affects the final result, in Table 3 we conduct an ablation study on Dark Zurich validation set. We take AdaptSegNet [49] in row(i) as our baseline approach. Comparing row(i) and row(ii), we confirm that adding our inner loop reconstruction only together with semantic rendering can
Table 1. Cityscapes - Dark Zurich adaptation results evaluated on the test set. We compare the performance of LoopDA with state-of-the-art methods. In all tables of Sec. 4.2, bold stands for best. Regarding network architectures for semantic segmentation: ‘D’ stands for Deeplabv2, ‘R’ stands for RefineNet and ‘P’ stands for PSPNet. ‡ means an extra distillation stage on nighttime domain using pretrained ResNet-101[21] based on SimCLRv2[7] as backbone feature extractor.

<table>
<thead>
<tr>
<th>Method</th>
<th>Arch</th>
<th>Phase</th>
<th>Dark Zurich</th>
<th>Night Driving</th>
</tr>
</thead>
<tbody>
<tr>
<td>Deeplab[6]</td>
<td>D</td>
<td></td>
<td>79.0</td>
<td>21.8</td>
</tr>
<tr>
<td>RefineNet[32]</td>
<td>R</td>
<td></td>
<td>68.8</td>
<td>23.2</td>
</tr>
<tr>
<td>PSPNet[58]</td>
<td>P</td>
<td></td>
<td>78.2</td>
<td>19.0</td>
</tr>
<tr>
<td>AdaptSegnet[49]</td>
<td>D</td>
<td></td>
<td>86.1</td>
<td>44.2</td>
</tr>
<tr>
<td>BDL[31]</td>
<td>D</td>
<td></td>
<td>85.3</td>
<td>41.1</td>
</tr>
<tr>
<td>DMAda[10]</td>
<td>R</td>
<td></td>
<td>75.9</td>
<td>29.1</td>
</tr>
<tr>
<td>GCMA[44]</td>
<td>R</td>
<td></td>
<td>81.7</td>
<td>46.9</td>
</tr>
<tr>
<td>MGCDA[45]</td>
<td>R</td>
<td></td>
<td>80.3</td>
<td>49.3</td>
</tr>
<tr>
<td>CDAda[52]</td>
<td>R</td>
<td></td>
<td>90.5</td>
<td>60.6</td>
</tr>
<tr>
<td>DANNet[51]</td>
<td>P</td>
<td></td>
<td>90.4</td>
<td>60.1</td>
</tr>
<tr>
<td>LoopDA(ours)</td>
<td>P</td>
<td></td>
<td>86.3</td>
<td>64.7</td>
</tr>
<tr>
<td>LoopDA(ours)</td>
<td>P</td>
<td></td>
<td>92.1</td>
<td>63.3</td>
</tr>
<tr>
<td>LoopDA[19]</td>
<td>P</td>
<td></td>
<td>92.1</td>
<td>63.3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Method</th>
<th>Arch</th>
<th>Phase</th>
<th>Dark Zurich</th>
<th>Night Driving</th>
</tr>
</thead>
<tbody>
<tr>
<td>AdaptSegnet[49]</td>
<td>D</td>
<td></td>
<td>20.2</td>
<td>34.5</td>
</tr>
<tr>
<td>DMAda[10]</td>
<td>R</td>
<td></td>
<td>-</td>
<td>36.1</td>
</tr>
<tr>
<td>GCMA[44]</td>
<td>R</td>
<td></td>
<td>26.7</td>
<td>45.6</td>
</tr>
<tr>
<td>MGCDA[45]</td>
<td>R</td>
<td></td>
<td>26.1</td>
<td>49.4</td>
</tr>
<tr>
<td>CDAda[52]</td>
<td>R</td>
<td></td>
<td>36.0</td>
<td>50.9</td>
</tr>
<tr>
<td>DANNet[51]</td>
<td>P</td>
<td></td>
<td>36.8</td>
<td>47.7</td>
</tr>
<tr>
<td>LoopDA(ours)</td>
<td>P</td>
<td></td>
<td>37.6</td>
<td>49.6</td>
</tr>
<tr>
<td>LoopDA(ours)</td>
<td>P</td>
<td></td>
<td>38.7</td>
<td>54.0</td>
</tr>
</tbody>
</table>

Table 2. mIoU comparison of Cityscapes - Dark Zurich adaptation results evaluated on Dark Zurich validation set and Night Driving test set, respectively. Regarding network architectures for semantic segmentation: ‘D’ stands for Deeplabv2, ‘R’ stands for RefineNet and ‘P’ stands for PSPNet. ‡ means an extra SimCLRv2[7] distillation stage on nighttime domain.

<table>
<thead>
<tr>
<th>Method</th>
<th>Arch</th>
<th>Phase</th>
<th>Dark Zurich</th>
<th>Night Driving</th>
</tr>
</thead>
<tbody>
<tr>
<td>AdaptSegnet[49]</td>
<td>D</td>
<td></td>
<td>20.2</td>
<td>34.5</td>
</tr>
<tr>
<td>DMAda[10]</td>
<td>R</td>
<td></td>
<td>-</td>
<td>36.1</td>
</tr>
<tr>
<td>GCMA[44]</td>
<td>R</td>
<td></td>
<td>26.7</td>
<td>45.6</td>
</tr>
<tr>
<td>MGCDA[45]</td>
<td>R</td>
<td></td>
<td>26.1</td>
<td>49.4</td>
</tr>
<tr>
<td>CDAda[52]</td>
<td>R</td>
<td></td>
<td>36.0</td>
<td>50.9</td>
</tr>
<tr>
<td>DANNet[51]</td>
<td>P</td>
<td></td>
<td>36.8</td>
<td>47.7</td>
</tr>
<tr>
<td>LoopDA(ours)</td>
<td>P</td>
<td></td>
<td>37.6</td>
<td>49.6</td>
</tr>
<tr>
<td>LoopDA(ours)</td>
<td>P</td>
<td></td>
<td>38.7</td>
<td>54.0</td>
</tr>
</tbody>
</table>

Table 3. Ablation study for Cityscapes - Dark Zurich adaptation results evaluated on Dark Zurich validation set.

<table>
<thead>
<tr>
<th>Phase</th>
<th>Components</th>
<th>mIoU</th>
<th>∆</th>
</tr>
</thead>
<tbody>
<tr>
<td>(i)</td>
<td>baseline[49] on PSPNet ($\mathcal{L}_{seg}^{\text{d}}$)</td>
<td>20.6</td>
<td>-0.0</td>
</tr>
<tr>
<td>(ii)</td>
<td>no outer loop (w/o $\mathcal{L}{percept, \text{adv}}$, $\mathcal{L}{seg}^{\text{d}}$, \mathcal{L}_{outer})</td>
<td>22.0</td>
<td>+1.4</td>
</tr>
<tr>
<td>(iii)</td>
<td>no inner loop (w/o \mathcal{L}_{inner})</td>
<td>26.3</td>
<td>+5.7</td>
</tr>
<tr>
<td>(iv)</td>
<td>no semantic rendering layers</td>
<td>28.6</td>
<td>+8.0</td>
</tr>
<tr>
<td>(v)</td>
<td>LoopDA warm-up model</td>
<td>29.5</td>
<td>+8.9</td>
</tr>
<tr>
<td>(vi)</td>
<td>no ‘DNA’ (without $\hat{y}{DNA}$ in $\mathcal{L}{seg}^{\text{d}}$)</td>
<td>35.7</td>
<td>+15.1</td>
</tr>
<tr>
<td>(vii)</td>
<td>LoopDA full configuration ($\mathcal{L}_{seg}^{\text{n}}$)</td>
<td>37.6</td>
<td>+17.0</td>
</tr>
<tr>
<td>(viii)</td>
<td>with extra distillation stage (LoopDA[19])</td>
<td>38.7</td>
<td>+18.1</td>
</tr>
</tbody>
</table>

Figure 4. Qualitative comparison with state-of-the-art methods for Cityscapes - Dark Zurich adaptation on Dark Zurich validation set.

help refine the nighttime predictions, and this brings a 1.4 mIoU performance gain over baseline. This also reveals that the outer loop plays a crucial role in LoopDA training, without which the performance drops from 29.5 (see row(v)) to 22.0 mIoU. Row(iii) and row(v) indicate that inner loop is also a dispensable part in LoopDA, and training the warm-up stage without the inner loop results in a performance decrease by 3.2 mIoU. Row(iv) shows the result when no semantic rendering layer is involved in training, meaning that the output from segmentation head F cannot get refined with the self-loops. This results in a performance drop of 0.9 mIoU. Row(vi) reveals the impact of our proposed ‘DNA’ online label generation strategy. If there is no \hat{y}_{DNA}, the result of the self-training stage decreases from 37.6 (row(vii)) to 35.7 mIoU. Row(viii) suggests that an extra SimCLRv2 [7] knowledge distillation stage helps with further improvement, reaching a mIoU of 38.7. More detailed ablation of this part is given in Supplementary. We also provide ablative analysis in Table 4 to examine the impact of different τ values for LOR threshold in self-
training stage. Setting too low τ values (e.g., 0.0 or 0.25) means that the self-training mainly relies on \(\hat{y}_{ud}^{static}\), which is problematic owing to the camera pose shift between day reference and night inputs. As shown in Fig. 5, compared to \(p^n\) based on our proposal, the overfitting issue rises in \(p^n_{overfit}\) when \(\hat{y}_{static}^{ud}\) is dominant. This hinders the model to learn further from pseudo-labels, obtaining 35.7 and 36.4 mIoU, respectively. However, higher τ values (e.g., 0.75 or 1.0) make \(\hat{y}_{DNA}\) play stronger role, which leads to less sufficient self-training (37.1 and 36.9 mIoU). This verifies our selection of τ (to be 0.5) in the paper, and indicates that our ‘DNA’ self-training strategy is a meaningful solution in dealing with the pose shifted static labels.

4.4. Discussion

Limitations. Although our LoopDA framework demonstrates impressive performances on benchmark datasets for domain adaptive nighttime segmentation, we found that there is still space to improve. First of all, in choosing between \(\hat{y}_{DNA}\) and \(\hat{y}_{static}^{ud}\) for self-training, we rely on SSC, however, there can also be close day-night image pairs where SSC do not exist. In this case, the static labels are not fully utilized because \(\hat{y}_{static}^{ud}\) is dismissed. Secondly, for the task of image translation, there are powerful GAN architectures that ensure higher fidelity outputs, but require much more memory for training. Therefore, a trade-off between GAN image quality and memory consumption should be made. Furthermore, as a basic proof of concept, we follow [31] for offline pseudo-label generation, which can be replaced by more advanced pseudo-labelling techniques in the field of domain adaptation for better mIoU. These aspects will be further explored as future work.

Chances. We point out that there exists potential of extending \(\hat{y}_{DNA}\) obtained from UDA to other research areas. For instance, one possible direction can be image retrieval. Day-night image retrieval has been an open challenge since acquiring domain-robust descriptors for this scenario is difficult, let alone the problematic dynamic objects that lead to mismatches. However, we conduct a simple experiment in Fig. 6 by saving day-night image pairs retrieved based on our \(\hat{y}_{DNA}\) with \(LOR \geq 0.5\). Interestingly, we observe that these obtained cross-domain image pairs are captured almost at the same location. To this point, we argue that using larger τ to check LOR between cross-domain image pairs can provide a new approach for image retrieval. A further application can be 3D reconstruction given a cross-domain dataset, where similar scenes can be better matched using \(\hat{y}_{DNA}\).

![Figure 5. Visual comparison of self-training results without introducing our \(\hat{y}_{DNA}\). \(p^n_{overfit}\) gets overfitted on daytime reference static label \(\hat{y}_{static}^{ud}\) due to the day-night camera pose shift.](image)

![Figure 6. Examples of retrieved day-night training pairs based on our \(\hat{y}_{DNA}\), satisfying condition \(LOR \geq 0.5\).](image)

5. Conclusion

In this work, we propose LoopDA for domain adaptive nighttime image segmentation. It constructs different levels of self-loops, starting with the inputs and ending up with an aim to recover the inputs from the encoded latent features rendered by the segmentation outputs. In this way, the intra-domain inner loop enables the semantic predictions to be refined, and the inter-domain outer loop enforces the learned cross-domain knowledge to be better aligned. For self-training, to alleviate the misguidance of pose-shifted static labels produced by the daytime reference images, we propose a co-teaching mechanism. It allows an offline signal, together with an online ‘DNA’ signal that checks the agreed day-night predictions for pseudo-supervision on nighttime domain. Our self-training strategy makes direct use of the network outputs without introducing extra operation modules, which is easy to ensemble for other similar tasks. The efficacy of LoopDA is verified through extensive experiments on benchmark datasets, attaining state-of-the-art performance for adapting nighttime semantic segmentation.
References

