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Abstract

Deep learning techniques have achieved remarkable
progress in document understanding. Most models use co-
ordinates to represent absolute or relative spatial informa-
tion of components, but they are difficult to represent la-
tent rules in the document layout. This makes learning lay-
out representation to be more difficult. Unlike the previ-
ous researches which have employed the coordinate system,
graph or grid to represent the document layout, we propose
a novel layout representation, the cell-based layout, to pro-
vide easy-to-understand spatial information for backbone
models. In line with human reading habits, it uses cell in-
formation, i.e. row and column index, to represent the posi-
tion of components in a document, and makes the document
layout easier to understand. Furthermore, we proposed the
multi-scale layout to represent the hierarchical structure of
layout, and developed a data augmentation method to im-
prove the performance. Experiment results show that our
method achieves the state-of-the-art performance in text-
based tasks, including form understanding and receipt un-
derstanding, and improves the performance in image-based
task such as document image classification. We released the
code in the repo a.

1. Introduction
Document understanding can parse layout and extract

key information from various documents such as scanned
forms and receipts, which are widely used in many indus-
tries. However, it is a challenging task due to its cross-
modality nature including textual, visual, and layout char-
acteristics. With the development on natural language pro-
cessing (NLP) and computer vision (CV) techniques, ex-
tracting textual and visual information has been easier, how-
ever, the utilization of layout information has received rela-
tively less attention. Thus, we try to develop a layout repre-

*work conducted during an internship at Rakuten Group, Inc.
ahttps://github.com/mijungkim-rakuten/
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Figure 1. Three layout representations: graph, grid, and cell-
based layout. The number in the cell-based layout is the [row,
column] index of the cells. The images are sampled from FUNSD
and CORD.
sentation that complies with human reading habits.

A document consists of many independent components,
such as text blocks, figures, and tables. The positions of
those components usually follow specific patterns. For ex-
ample, the answer is usually written on the right or right
below to the corresponding question as a pair. Also, con-
textually similar components are written on the same row
or column. Such arrangement of text components enables
us to read more easily and fast, which is one of the crucial
features for the document understanding.

Previous works [24, 25, 7, 13, 3] have used absolute and
relative coordinates extracted from optical character recog-
nition (OCR) models to represent the position of compo-
nents. Since those approaches are tied to their OCR algo-
rithms, the coordinates are influenced by the limitation of
the algorithms. In addition, it is hard to learn relational in-
formation among components. Therefore, there is a possi-
bility to confuse the model, which results in training the
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model even more difficult. To address this problem, we
introduce the cell-based layout to improve the representa-
tion of spatial positions. A cell is a unit of components
in an image used to represent layout, which corresponds to
a bounding box. Specifically, we calculate the position of
rows and columns in a document based on coordinates by
giving the same row/column index to the cells that have sim-
ilar y/x coordinates, and then give a row index and column
index to every cell based on coordinates. By learning from
row/column indexes, the model can learn if two components
are in the same row or column and how many components
are in each row and column. Therefore, the model can un-
derstand relatively higher level of the spatial relationship of
components in documents than previous approaches.

Regarding the layout representation, there are two popu-
lar ways: graph [26] and grid [10] as shown in Figure 1.
Graph model can learn from the relationship among all
components, however, suffering from heavy calculation.
Grid divided document image into several patches with the
same height and width. It could capture distance informa-
tion between patches and has less calculation, however, the
size of component is not always equal to the patches. Some-
times many components are put into a patch and sometimes
a component is divided into several patches. To resolve
these problems, we propose the cell-based layout, which
makes every component in a cell.

Generally, document layout is a hierarchical structure.
For example, a text block could be divided into a few sen-
tences, and a sentence could be divided into several words.
To represent such complex layout, we propose the multi-
scale layout via using word-level cells and token-level cells
as input data. One or several words make up a token, a
named entity. Furthermore we propose a data augmentation
to simulate hand-writing words and camera motion, which
randomly zoom in or out named entities in the documents.

Our contributions are as follows: 1. We propose a novel
layout representation for document understanding, the cell-
based layout, which is more in line with natural human
reading habits. 2. We propose the multi-scale layout to
learn the hierarchical structure in documents and propose
a new data augmentation to improve the results. 3. Our
method achieved the SoTA performance of named entity
recognition on the FUNSD [8] and CORD [19] datasets and
improve the performance of document classification on the
RVL-CDIP [5] dataset comparing with the baseline mod-
els. Furthermore, we conducted extensive ablation studies
to analyze the effect of the multi-scale cell-based layout.

2. Related work

2.1. Document understanding

The approaches of document understanding could be di-
vided into three categories: heuristic rule-based approaches,

conventional machine learning approaches, and deep learn-
ing approaches. To develop rule-based approaches, re-
searchers summarized some heuristic rules via manually
observing the layout information of documents and pro-
cessed documents with fixed layout information. The rule-
based approaches [4, 11, 17, 21] contains three types of
analysis methods: bottom-up [11, 21], top-down [4] and hy-
brid strategy [18].

With the development of conventional machine learning,
statistical machine learning approaches [16, 20] have be-
come the standard for document segmentation tasks in the
last decade. [20] models document layout as a grammar
and performs a global search for the optimal parse based on
a grammatical cost function.

Recently, deep learning methods have become the main-
stream of many machine learning problems. Doc-former [1]
proposed a novel multi-modal attention layer capable of
fusing text, vision, and spatial features. SelfDoc [13] pro-
posed a modality-adaptive attention mechanism to fuse lan-
guage and vision features. Many novel unsupervised pre-
training tasks are proposed to encourage multi-modal fea-
ture collaboration, such as the text-image alignment task in
LayoutLMv2 [25], which aligns the text lines and the cor-
responding image regions. LayoutLMv3 [7] introduces a
word patch alignment objective to learn cross-modal align-
ment.

There are research effort on improving document repre-
sentation ability of the model by making full use of cross-
modal information. ViLBERT [15] proposed a model for
learning task-agnostic joint representations of image con-
tent and natural language. VL-BERT [22] adopts the Trans-
former model as the backbone, and extends it to take both
visual and linguistic embedded features as input.

2.2. Layout representation

For document understanding, the main research direc-
tion is the introduction of new pre-training objectives[24,
25, 7, 26] and the attention mechanism [13]. PICK [26]
introduces a novel method for the KIE task and uses the
improved graph learning module to learn the layout repre-
sentation. Chargrid [10] introduced a novel type of text rep-
resentation, which is achieved by encoding each document
page as a two-dimensional grid of characters. [9] learns the
boundary points and the pixels in the text lines and then fol-
lows the most simple observation that the boundaries and
text lines in both horizontal and vertical directions should
be kept after dewarping to introduce a novel grid regulariza-
tion scheme. Distinct from them, we propose a novel layout
representation, the cell-based layout. It does not need ad-
ditional tool, data, or modules. It just analyzes the OCR
results to generate a row index and column index for each
bounding box, and uses them to improve the existing meth-
ods.
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3. Method
In this section, we first introduce the cell-based layout,

as shown in Figure 3. We utilize the row and column in-
dexes as spatial position representations and sort out the in-
put data by row/column index to improve the layout repre-
sentation. Then we introduced the multi-scale layout, which
uses word- and token-level cells to learn the multi-scale
document layout. Finally, we propose a data augmentation
method to simulate handwritten words and camera motion
effects.

3.1. Cell-based layout

One reason for the difficulty of document understanding
is that the models cannot understand the spatial relationship
of the components because of the difficulty in learning the
habit of human reading. Generally, existing methods learn
from the coordinates of the bounding boxes. However, it
is inefficient to train the document understanding model for
three reasons. The first reason is that the detected coordi-
nates of the bounding box will be biased due to the limi-
tation of OCR technology and real word environment, es-
pecially for handwriting words. For example, the detected
y-coordinates of two words on the same line are often a few
pixels apart. Besides, unnoticed handwriting positional de-
viations will also be magnified, resulting in an inaccurate
representation of the document layout.

The second reason is that the coordinate of a bounding
box could not provide any relational information with other
bounding boxes, so that the model has to learn the latent in-
formation in all coordinates information. Although [25, 7]
puts the index of a word in the corresponding named en-
tity and the distance between the former boundary box in
the model to solve this problem, it is still difficult to ex-
plore the latent rules of the document. We use row index
and column index to present spatial relationship of cells, it
could emphasize the relationship of the cells on the same
line or on the same column. Besides, the current cell num-
ber indicates that the max number of previous cells in the
same row/column indirectly by simply subtracting 1 from
the row/column index. In addition, the coordinates have a
wide range that makes it difficult to converge, for exam-
ple, [24, 25, 7] normalized the range of the coordinates in
the range of [1 ∼ 1000]. Contrarily, the maximum number
of rows/columns is usually only a few dozen. Therefore,
the cell-based layout is a more efficient representation of
the document layout.

The third reason is that the coordinates do not fit the way
humans remember. The cell-based layout is more in line
with human understanding of documents. We think about
information of the document layout, for example, the spe-
cific meaning of words on the same column. There are cer-
tain rules in documents, such as item names are usually
in the same column on a invoice. The row/column index

could emphasize the relationship among cells in the same
line/column, it could help the model to find the latent rule
in the documents.

Generation cell-based layout. First, we sort the x- and
y-coordinates of top left corners of the bounding boxes
to get a sequence of the x-coordinates Xtl and the y-
coordinates Ytl. The coordinates of ith row ri and column
ci are calculated as follows;

r1 = min(Ytl); c1 = min(Xtl).

Then we define two sets of coordinates Y i
tl and Xi

tl, i > 1
and i ∈ N+.

Y i
tl = {ytl|ytl > ri−1 + θ ∗H}

Xi
tl = {xtl|xtl > ci−1 + θ ∗W}

ri = min(Y i
tl); if len(Y i

tl) > 0

ci = min(Xi
tl); if len(Xi

tl) > 0,

where H is the height of the document and W is the width
of the document. θ is a threshold to control the number
of cells in the document, and make the cell-based layout
clearer. We use 0.005 as θ unless otherwise indicated.
Then we give every bounding box a row index rindex and
a column index cindex based on the y-coordinate ytl and
x-coordinate xtl of its top left corner.

rindex = o; if co ≤ ytl < co+1; for o ∈ N+

cindex = p; if cp ≤ xtl < cp+1; for p ∈ N+

In the cell-based layout, we update the coordinate of the
top-left corner of the bounding box using the coordinates of
the corresponding row and column.

Figure 2 gives an overview of the application of the cell-
based layout. We propose two ways to take advantage of
cell information.

Spatial position representation. The first way is taking
the cell information as a part of the spatial position repre-
sentation, and making the backbone model learn latent in-
formation in the cell-based layout from the cell information.

Extl
= Embx(xtl); Eytl

= Emby(ytl)

Ew = Embw(w); Eh = Embh(h)

Er = Embr(rindex); Ec = Embc(cindex)

SPR = Concat(Extl
, Eytl

, Ew, Eh, Er, Ec),

where xtl and ytl are the x/y coordinates of the top left cor-
ner, w and h are the width and height of the bounding box.
Finally, we combine these embeddings to represent the spa-
tial representation. Embs are the embedding layers.

Order of the input data. The other way is sorting the
sequence of cells by row or column index. It does not need
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Figure 2. Overview of the application of the cell based layout. We define a row and column index for each bounding box to generate
the cell-based layout. We use three ways to take advantage of cell information: A. using row and column index as spatial position
representation. B. sorting input data by column index. C. sorting input data by row index. The images are sampled from FUNSD.
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Figure 3. A cell-based layout sample of a receipt image. The
numbers in the cell-based layout are row and column indexes. The
images are sampled from CORD.
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Figure 4. The multi-scale layout. The feature of the first word in
a token is used as the feature of the token. The image is sampled
from the FUNSD dataset.

to change model structure, the existing models could be
reused directly. By using the specific order of the input data,
the latent rules among the cells which on the same line or
in the same column could be understood more easily. Such
rules can be found by humans easily, and they appear in the
most documents due to the human writing customs.

3.2. Multi-scale layout

A document layout can be considered as a hierarchical
structure largely consisted of header, content, and footer.
The content can be divided into multiple sentences, a sen-
tence can be divided into multiple phrases, and a phrase can
be divided into several words. It is important to understand

the hierarchical structure of document for document under-
standing, therefore we propose the multi-scale layout to ex-
press the multi-level structure accurately. Since there are
not enough annotations to learn the full hierarchical struc-
ture, we feed word-level and token-level cells into the model
as shown in Figure 4.

To apply multi-scale layout on existing methods conve-
niently, we only modify the input data without changing the
architecture of the existing models or increasing calcula-
tion. Specifically, we use the cell feature of the first word
in the token as the token cell feature. Then we feed Nw

word cells and the Nt token cells into the model, where Nw

means the number of word cells and Nt means the number
of token cells. Token cells are less than word cells, because
token cells could be divided into several word cells. For
the named entity recognition task, we take the classifica-
tion results of the token cells as the results. As a result, the
calculation of the token feature is not needed. The multi-
scale layout could make use of backbone model to learn the
multi-scale layout without additional calculation and mod-
ification of the model. Therefore it could be used in any
models which use a sequence of components as input data,
as long as corresponding annotations exist.

The multi-scale cell-based layout. We implement the
multi-scale cell-based layout by using the cell information
and the multi-scale layout at the same time. The multi-
scale cell-based layout could learn the hierarchical structure
based on the multi-scale layout, explore latent layout infor-
mation based on cells. It is a natural layout representation
and more easily to understand.

3.3. Data augmentation

The handwritten words are difficult to localized by OCR
tools. Additionally, camera motion and shooting settings
would change the document images which often happen in
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Original image Generated image

Figure 5. A sample of proposed data augmentation. The red
boxes represent the original bounding boxes from the dataset. The
images are sampled from FUNSD.

the real-world. To simulate these problems, we propose a
data augmentation method, shown in Figure 5, which ran-
domly enlarges or shrinks the bounding boxes to generate
new examples. We crop the image patch in the every bound-
ing boxes and set the color in all bounding boxes white,
firstly. Then we enlarge or shrink these image patches and
put them in the original position based on the top left cor-
ner of the corresponding bounding box. In this manner, the
cell-based layout would not be influenced, therefore it could
increase the diversity of document layout without changing
the latent rules in the cell information. We use the scale fac-
tor Θ to control the resizing range of the bounding boxes.

4. Experiments

In this section, we introduce the implementation details
of our proposed method and the datasets that we used in ex-
periments at first. Then we compare with existing methods
and analyze the spatial position representation. In addition
to it, we used the experimental results on the FUNSD [8]
and CORD [19] datasets to test the performance on the
named entity recognition task. Furthermore, we use the
RVL-CDIP [5] dataset to evaluate the proposed method for
document classification. Finally, we conducted several ab-
lation studies to analyze the proposed methods.

4.1. Implementation details

We evaluate our method on three datasets, the CORD
dataset, the FUNSD dataset, and the RVL-CDIP dataset.
The FUNSD dataset is a document noisy scanned form un-
derstanding dataset sampled from the RVL-CDIP dataset.
It contains 199 documents with comprehensive annotations
for 9,707 semantic entities. We focus on semantic entity
a label among ”question”, ”answer”, ”header”, or ”other”.
The dataset is divided into training dataset with 149 sam-
ples and test dataset with 50 samples. The CORD dataset
is a receipt key information extraction dataset with 30 se-
mantic labels defined under 4 categories. It consists of
800 training samples, 100 validation samples, and 100 test
samples. The RVL-CDIP dataset is a subset of the IIT-
CDIP collection [12] labeled with 16 categories. It contains

400,000 document images and is split into train/val/test (
320,000/40,000/40,000 document images) dataset.

We apply the cell-based layout to the baseline mod-
els, LayoutLMv2/v3 [25, 7], to compare it with SoTA
performance and evaluate our methods. Baseline mod-
els have two different versions with different parame-
ter number, modelBASE and modelLARGE . We use
the LayoutLMv3BASE for the comparison purpose unless
stated otherwise. We use both the baseline model and the
pre-trained baseline model. The pre-trained LayoutLMv3
is pre-trained on a large IIT-CDIP dataset, which contains
about 11 million document images and can split into 42 mil-
lion pages. Due to the limitation of GPU, we use 1 GPUb

to fine-tune on the FUNSD dataset and the CORD dataset,
and use 4 GPUs to fine-tune on the RVL-CDIP dataset. The
batch size per GPU is 8 for modelBASE , and the batch size
per GPU of modelLARGE is 4.

4.2. Fine-tuning on Multi-modal Tasks

We compare our method with existing methods and cat-
egorize them by the position representation as follows.

P(A) is the absolute 1D-position, used to preserve the
positional relationship of the components within the docu-
ment. It represents the difference of the position for each
component simply, however could not represent spatial po-
sition of components.

Co(A) means the absolute position based on coordinates
of bounding boxes, such as coordinates of top-left (xtl, ytl)
and bottom right (xbr, ybr) corners, width w and height h
of the bounding box. It provides detailed spatial position of
bounding boxes and is used by many methods [23, 24, 13].

Co(R) means the relative position and distance based
on coordinates of neighboring bounding box, for example,
the Euclidean distance from each corner of a bounding box
to the corresponding corner in the adjacent bounding box.
Since Co(A) does not include the relationship among the
bounding boxes, the model has to learn the latent spatial re-
lationship from dataset. Co(R) could represent the spatial
information between adjacent components.

T(R) is semantic relative position, such as the index of
a word in the corresponding token [25, 7]. It presents the
position of a small component in a large component, which
make use of the order of small components in a large com-
ponent.

Cell represents the row index and column index based on
the cell-based layout. It provides rich spatial information by
emphasizing the spatial relationship of the cells that are in
the same row or in the same column. On the other hand,
the number of rows and columns are less than the range of
coordinates, which make the layout easier to understand.

We follow the existing methods to fine-tune the base-
line models for three multi-modal tasks on public available

bNVIDIA Tesla V100-SXM2-32GB
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Table 1. Comparison with existing methods on the FUNSD, CORD, and RVL-CDIP datasets. “T/L/I” denotes “text/layout/image”
modality. “R/G/P” denotes “region/grid/patch” image embedding. The score † is reached when only using the 10% RVL-CDIP dataset and
the score ‡ is not reached due to resource limitation. Thus the scores are not directly comparable to other scores.

Model Parameters Modality Image Embedding Position Representaion FUNSD (F1) CORD (F1) RVL-CDIP (Acc.)

BERTBASE [2] 110M T None P(A) 60.26 89.68 89.81
RoBERTaBASE [14] 125M T None P(A) 66.48 93.54 90.06
BROSBASE [6] 110M T+L None Co(R)+P(A) 83.05 95.73 -
LiLTBASE [23] - T+L None Co(A)+T(R) 88.41 96.07 95.68*
LayoutLMBASE [24] 160M T+L+I(R) ResNet-101(fine-tune) Co(A)+P(A) 79.27 - 94.42
SelfDoc [13] - T+L+I(R) ResNeXt-101 Co(A) 83.36 - 92.81
Udoc [3] 272M T+L+I(R) ResNet-50 Co(A) 87.93 96.86 95.05
LayoutLMv2BASE [25] 200M T+L+I(G) ResNeXt101-FPN Co(A+R)+T(R)+P(A) 82.76 94.95 95.25
DocFormerBASE [1] 183M T+L+I(G) ResNet-50 Co(A+R)+P(A) 83.34 96.33 96.17
LayoutLMv3BASE [7] 133M T+L+I(P) Linear Co(A+R)+T(R)+P(A) 90.29 96.56 95.44
OursBASE 133M T+L+I(P) Linear Cell+Co(A+R)+T(R)+P(A) 93.76 97.23 90.7†

BERTLARGE [2] 340M T None P(A) 65.63 90.25 89.92
RoBERTaLARGE [14] 355M T None P(A) 70.72 93.80 90.11
BROSLARGE [6] 340M T+L None Co(R)+P(A) 84.52 97.40 -
LayoutLMLARGE [24] 343M T+L None Co(A)+P(A) 77.89 - 91.90
LayoutLMv2LARGE [25] 426M T+L+I(G) ResNeXt101-FPN Co(A+R)+T(R)+P(A) 84.20 96.01 95.64
DocFormerLARGE [1] 536M T+L+I(G) ResNet-50 Co(A+R)+P(A) 84.55 96.99 95.50
LayoutLMv3LARGE [7] 368M T+L+I(P) Linear Co(A+R)+T(R)+P(A) 92.08 97.46 95.93
OursLARGE 368M T+L+I(P) Linear Cell+Co(A+R)+T(R)+P(A) 93.52 97.49 -‡

* LiLT uses image features with ResNeXt101-FPN backbone in fine-tuning RVL-CDIP.

Table 2. Comparison on the FUNSD dataset. Ours(P) means the
proposed position representation, and Ours(R) and Ours(C) mean
that the input data are sorted by row/column index.

Method Pre-trained F1(%)

LayoutLMv3 No 21.84
Ours(P) No 26.92

LayoutLMv3 Yes 90.29
LayoutLMv3LARGE Yes 92.08
Ours(P) Yes 92.39
Ours(R) Yes 92.50
Ours(C) Yes 93.76

benchmarks, including form understanding on FUNSD, re-
ceipt understanding on CORD, and document image classi-
fication on RVL-CDIP. Results are shown in Table 1.

4.3. Named entity recognition

Named entity recognition (NER) is a subtask of infor-
mation extraction that aims to locate and classify named
entities mentioned in documents into pre-defined categories
such as organizations and locations. The model is trained
to learn from the input data, a document image, words, and
bounding box information, in order to predict a classifica-
tion result of each named entity. It could be used for form
understanding, receipt understanding, and key information
extraction. We apply the cell-based layout into pre-trained
and original LayoutLMv3 models to improve the results on
NER task. We report F1 scores for this task.

FUNSD dataset. We use LayoutLMv3BASE as the
baseline model, and it reaches the 90.29% F1 score after
pre-training the model using the CDIP dataset. However, it

only gets 21.84 % of F1 score without pre-training, because
the FUNSD dataset only has 149 document images for train-
ing. Pre-training could greatly improve the performance of
the baseline model.

Via using our proposed position embedding, Lay-
outLMv3 without pre-training could reach the F1 score
of 26.92%. The F1 score could be improved by 5.08%.
Furthermore, we tested our method using pre-trained
LayoutLMv3BASE . We put the cell information into spa-
tial position embedding layers in the fine-tuning phase. As
a result, the proposed position embedding reached 92.39%
of the f1 score, improving LayoutLMv3BASE by 2.1%. It
is better than the performance of LayoutLMv3LARGE .

Furthermore, by sorting the input data by row index or
column index, we reach 92.5% and 93.76%, respectively.
Therefore the three ways of using cell information could im-
prove the baseline model. The cell-based layout could im-
prove the performance of LayoutLM-v3 on FUNSD dataset
with pre-training and without pre-training. It is noted that
we did not pre-train LayoutLMv3 using our method, we
only use the cell information in the fine-tuning phase.

CORD dataset. In order to prove the generic of our
method, we evaluated our method using LayoutLMBASE

on the CORD dataset. LayoutLMv3 reached a F1 score of
53.13% without pre-training. Although the performance is
lower than the pre-trained LayoutLMv3, the performance is
much better than the results on the FUNSD dataset, due to
800 document images for training. As presented in Table 3,
the F1 score is pushed to 85.25% using the multi-scale cell-
based layout. In addition, the proposed spatial position rep-
resentation improved the F1 score by 16.41%. The F1 score
could be improved by 13.76% and 12.04% via sorting the
input data by row and column index, respectively. Because
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Table 3. Comparison on the CORD dataset. Ours(P) means
the proposed position representation, and Ours(R) and Ours(C)
mean that the input data are sorted by row/column index. Ours(M)
means the multi-scale layout.

Method Pre-trained F1(%)

LayoutLMv3 No 62.56
Ours(P) No 69.54
Ours(R) No 66.89
Ours(C) No 65.17
Ours(M+P) No 85.25

LayoutLMv3 Yes 96.56
Ours(P) Yes 96.97
Ours(M) Yes 97.01
Ours(M+P) Yes 97.23

Table 4. Results on the RVL-CDIP dataset for Document Clas-
sification task. We choose a 0.1%, 10% samples randomly to
evaluate the methods. Ours(P) means the proposed position repre-
sentation, and Ours(R) and Ours(C) mean that the input data are
sorted by row/column index.

Method Pre-trained Num. of samples Acc.(%)

LayoutLMv3 No 400 (0.1%) 27.50
Ours(P) No 400 (0.1%) 40.00
LayoutLMv3 No 40,000 (10%) 77.32
Ours(P) No 40,000 (10%) 77.89
Ours(R) No 40,000 (10%) 77.67
Ours(C) No 40,000 (10%) 77.82
Ours(P+R) No 40,000 (10%) 78.69
Ours(P+C) No 40,000 (10%) 78.24

LayoutLMv3 Yes 400 (0.1%) 62.50
Ours(P) Yes 400 (0.1%) 70.00
Ours(R) Yes 400 (0.1%) 70.00
Ours(C) Yes 400 (0.1%) 70.00
LayoutLMv3 Yes 40,000 (10%) 90.22
Ours(P) Yes 40,000 (10%) 90.70
Ours(R) Yes 40,000 (10%) 90.62
Ours(C) Yes 40,000 (10%) 90.34

of its layout containing latent rules and sufficient number
of samples, the cell-based layout could analyze the layout
more correctly on receipt dataset.

Furthermore, we evaluate the multi-scale layout and the
proposed position representation using the pre-trained Lay-
outLMv3. As a result, the F1 score increases by 0.67% us-
ing the multi-scale and the proposed spatial position rep-
resentation as shown in Table 3. It shows the multi-scale
cell-based layout can benefit LayoutLMv3 and pre-trained
LayoutLMv3 for the NER task.

4.4. Document classification

To demonstrate the generalizability of the cell-based lay-
out from the multi-modal domain to the visual domain, we
evaluated our method on the task of document classifica-
tion. The document classification task aims to predict the
category of visually rich document images. We conduct
experiments on the RVL-CDIP dataset, and extract textual
and layout information using tesseract 4.1.1c. The evalua-
tion metric is the overall classification accuracy on the test
dataset. Note that we use the different OCR tool with Lay-
outLMv3, and due to resource limitation, we use 4 GPU
and up to 10% examples of the dataset. To perform a de-
tailed analysis, we evaluate models using different numbers
of samples, as presented in Table 4 You can observe that our
method improves accuracy by 7.5% using 0.1% of the RVL-
CDIP dataset that contains 400 document samples. When
using 10% samples, the proposed spatial position represen-
tation could improve the performance by 0.48%. In the
condition of using 10% samples and LayoutLMv3, the pro-
posed method could reach an accuracy of 78.69%, improv-
ing the baseline model by 1.37%.

We observe two trends from the experiment results. The
first is that when more samples are used, the improvement
will be less. We consider document classification is a rel-
atively simple task. Compared with latent layout informa-
tion, intuitive text information and image information are
more helpful for document understanding. By using more
document samples, the model have more text and image in-
formation to learn and reach remarkable performance, even
though the cell-based layout give a better layout represen-
tation . The second trend is that the pre-trained model is
harder to improve, which could also be observed in other ex-
periment results. Considering that the pre-trained model has
prior knowledge from the IIT-CDIP dataset, and the cell-
based layout that is not used in the pre-training phase, we
consider it is a reasonable phenomenon.

4.5. Ablation study

We used ablation studies to analyze the efficiency and
generalizability of our methods. More extensive ablation
studies are provided in the supplementary.

Comparison of spatial position representation. To an-
alyze the efficiency of the spatial position representation,
we compare different spatial position representations as
shown in Table 5. We use LayoutLMv3BASE as the base-
line model and product experiments on the CORD dataset.
PR1 reached the best performance by inserting a row / col-
umn index in the spatial position representation. The F1
score is improved by 16.01%, however, the embedding size
and the number of parameters are also increased. To evalu-
ate the influence of the parameter number, we develop PR2

chttps://github.com/tesseract-ocr/tesseract
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Table 5. Comparison results using different spatial position
representation (SPR). xtl and ytl means the coordinate of top
left corner of bounding box, and xbr and ybr presents the bottom
right corner of the bounding box. 1 means the fixed value 1. w
and h means the height and width of the bounding box. r and c
means the row index and column index. The coordinates† means
that coordinates are updated according to the row/column index as
mentioned in Section 3.1.

Method SPR E. size F1(%)

BASE xtl, ytl, xbr, ybr, h, w 786 53.70
PR1 xtl†, ytl†, xbr, ybr, h, w, r, c 1024 69.71
PR2 xtl†, ytl†, xbr, ybr, h, w, 1, 1 1024 52.20
PR3 xtl†, ytl†, xbr, ybr, h, w, h, w 1024 51.74
PR4 xtl†, ytl†, xbr, ybr, r, c 786 58.87
PR5 xtl†, ytl†, h, w, r, c 786 69.54

and PR3 to compare. PR2 uses the fixed value 1 to simu-
late the row index and column index. Considering that the
fixed value may bring bad effect to training, we use height
and width information again to increase the diversity of in-
put, PR3. As a result, PR2 and PR3 reached a worse result
than the baseline model. Additionally, we develop PR4 by
replacing the height and width of the bounding box with the
row / column index information, which would not increase
the embedding size and the parameter number. PR4 im-
proved the performance of based model by 5.74%. However
without the height and width information, the performance
is reduced by 10.84% comparing with PR1. Consequently,
increasing parameters cannot improve performance without
appropriate and useful information. The row / column in-
dex could provide more important information for spatial
position representation.

The xtl and xbr share the same embedding layer, and ytl
and ybr share the same embedding layer in LayoutLMv3.
Considering that xtl and ytl are the coordinates of the top
left corner, they should provide different information with
xbr and ybr. Sharing the same embedding layer would con-
fuse the information of the two corners. Therefore, we re-
move xtl and ytl and add row/column index to the position
representation to develop PR5. PR5 archived a F1 score of
69.54%, which is close to PR1. By removing xtl and ytl
and increasing row/column index, the total embedding size
would not be changed. Therefore, PR5 could easily be em-
ployed by existing pre-trained models. By inserting cell in-
formation into the position representation, the model would
learn the latent layout information from the cell-based lay-
out and reach a better result.

Data augmentation. As presented in Table 6, the
data augmentation could improve the results. We use
LayoutLMv3BASE as the baseline model and evaluate the
method on CORD dataset. Basically, when the bounding
box is not updated with the resize of component, the per-

Table 6. Comparison results use data augmentation or not.
Scale factor Θ is used to control the level of the data augmen-
tation. ”Update bbox” controls if use the resized bounding box
information.

Pattern Scale factor Θ Update bbox F1 score

LayoutLMv3 - - 53.70
DA 0.2 Yes 53.67
DA 0.3 Yes 53.41
DA 0.2 No 53.79
DA 0.3 No 53.95
DA 0.4 No 54.07

Table 7. Comparison results using LayoutLMv2 with/without
the cell information.

Method F1 score

LayoutLMv2BASE 82.76
OursBASE 83.09

formance is better. The accurate bounding box could make
the model overfit on the layout information provided by the
training test. Using the bounding box information, which
is different from the real size of bounding boxes in docu-
ment images, would not change the cell-based layout but
only change the size of the bounding box. It is helpful to
inhibit overfitting in training and improve performance.

Evaluation on other model. To evaluate the generic
of the cell-based layout, we test it using another baseline
model, LayoutLMv2 [25]. We applied the proposed spa-
tial position representation on the baseline model and used
the FUNSD dataset to evaluate. As shown in Table 7, the
F1 score is improved by 0.33% when using the proposed
method. Therefore, we consider that the cell-based layout
could improve the performance of other methods.

5. Conclusion

In this paper, we present a novel and natural layout
representation for document understanding tasks, i.e. the
multi-scale cell-based layout. Unlike graph and grid ap-
proaches, it provides natural and efficient spatial represen-
tation for document understanding. We believe that it could
be easily adapted to other tasks that need spatial informa-
tion like image detection. Furthermore, we propose a data
augmentation method to improve the results. We evaluate
the method using 2 baseline model, 3 public datasets, and
2 tasks, named entity recognition and document classifica-
tion. The multi-scale cell-based layout improve the perfor-
mance and reached the SoTA on FUNSD and CORD dataset
and improve the baseline model on RVL-CDIP dataset in
the environment where GPU resource is limited.
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