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Abstract

In autonomous driving, monocular 3D object detection
is an important but challenging task. Towards accurate
monocular 3D object detection, some recent methods re-
cover the distance of objects from the physical height and
visual height of objects. Such decomposition framework
can introduce explicit constraints on the distance predic-
tion, thus improving its accuracy and robustness. However,
the inaccurate physical height and visual height prediction
still may exacerbate the inaccuracy of the distance predic-
tion. In this paper, we improve the framework by multivari-
ate probabilistic modeling. We explicitly model the joint
probability distribution of the physical height and visual
height. This is achieved by learning a full covariance ma-
trix of the physical height and visual height during train-
ing, with the guide of a multivariate likelihood. Such ex-
plicit joint probability distribution modeling not only leads
to robust distance prediction when both the predicted phys-
ical height and visual height are inaccurate, but also brings
learned covariance matrices with expected behaviors. The
experimental results on the challenging Waymo Open and
KITTI datasets show the effectiveness of our framework 1.

1. Introduction

3D object detection aims to locate objects with 3D
bounding boxes. It is widely used in and important to au-
tonomous driving. LiDAR and RGB image sensors are
commonly used for this task. Compared to LiDAR-based
3D object detection [54, 41, 56, 23], image-based monocu-
lar 3D object detection [46, 5, 40] is with low computation
and energy cost as the 3D spatial locations of objects are
inferred from monocular images. Despite the advantage of
computation cost, monocular 3D object detection is chal-
lenging because it is essentially an ill-posed problem to in-
fer the distance of objects from 2D images. To infer the
spatial location of an object, the object visual appearance
can be exploited when considering the inverse process of
the imaging geometry [14]. Such that, the factors in this

1https://github.com/Rock-100/MonoDet
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Figure 1: a) The inaccurate physical height and visual
height prediction may exacerbate the inaccuracy of the dis-
tance prediction, if two predicted errors cannot be canceled
by each other. For example, if the predicted physical height
increase to 1.5 times and the predicted visual height de-
crease to 3

5 times, the predicted distance will increase to 2.5
times. b) Existing method [43] models the physical height
and visual height as two independent variables. In contrast,
our method models the joint probability distribution of these
two variables to explicitly learn the correlation.

process, including the prior of object physical size, scene
layout, and the camera’s imaging process are of great im-
portance to monocular 3D object detection, especially the
distance prediction.

In monocular 3D object detection, different geomet-
ric priors have been utilized to recover the distance indi-
rectly. Deep3Dbox [33] recovers the distance by the physi-
cal size and the 2D bounding boxes. Keypoint-based meth-
ods [18, 24] recover the distance by the physical size and
the predicted eight projected corners. Shape-based meth-
ods [4, 28] recover the distance by the physical size and
the predicted shape of objects. MonoRCNN [43], GUP-
Net [29], and DEVIANT [21] recover the distance by the
physical height and the projected visual height, which im-
proves the distance prediction.
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Although such decomposition framework [43, 29, 21]
can introduce explicit constraints on the distance predic-
tion, they suffer from inaccurate physical height and vi-
sual height prediction. As shown in Fig. 1a, the inaccu-
rate physical height and visual height prediction may exac-
erbate the inaccuracy of the distance prediction. To improve
the accuracy of the physical height and visual height predic-
tion, uncertainty modeling [19] is used to predict the heights
in [43, 29, 21]. Uncertainty modeling can make the physical
height and visual height prediction more accurate, as it can
relieve the negative effect of noisy training samples. GUP-
Net [29] further introduces a learnable depth bias to correct
the distance prediction error. However, the existing works
do not explicitly model the joint probability distribution of
the physical height and visual height, which may hinder the
model to capture the correlation between the two heights.

To resolve the above gap, we propose a multivariate
probabilistic framework. As shown in Fig. 1b, we explic-
itly model the joint probability distribution of the physical
height and visual height, instead of modeling these two vari-
ables independently as in [43]. This is achieved by learn-
ing a full covariance matrix of the physical height and vi-
sual height during training, with the guide of a multivariate
likelihood. Such explicit modeling not only leads to ac-
curate physical height and visual height prediction, but also
makes the model explicitly learn the correlation between the
two heights. Capturing the correlation can help the model
achieve robust distance prediction when both the predicted
physical height and visual height are inaccurate, as the pre-
dicted errors of the two heights can be canceled by each
other. Besides, we model the uncertainties of the physical
size, yaw angle, and projected center. This leads to bet-
ter physical size, yaw angle, and projected center prediction
and also improves the 3D object detection accuracy.

To better evaluate our method, we conduct experiments
on both the widely used KITTI dataset [13] and the more
recent Waymo Open dataset [47]. The Waymo Open
dataset [47] is much more diverse and challenging than
the KITTI dataset [13]. The experimental results show our
method can predict covariances as expected effectively and
support the superiority of our method.

The contribution of this paper is three-fold:

1. Originally explicitly modeling the joint probability
distribution of the physical height and visual height
to improve the 3D object detection accuracy, with the
guide of a multivariate likelihood during training.

2. An accurate and robust monocular 3D object detection
framework with probabilistic outputs for all 3D vari-
ables.

3. Achieving the state-of-the-art (SOTA) accuracy on the
monocular 3D object detection task of the challenging
Waymo Open dataset [47].

2. Related Work

2.1. Monocular 3D Object Detection

Monocular 3D object detection has drawn much at-
tention. Learning-based methods [55, 7, 44, 32] directly
regress the distance of objects by adding distance branches
to 2D object detectors. These methods are simple and effi-
cient but there is no explicit constraint in the distance pre-
diction. Pseudo-LiDAR-based methods [52, 31, 49, 48, 58]
first predict the depth map of an input image using an ex-
ternal monocular depth estimator, then predict the distance
of objects with the aid of the estimated depth map. The ac-
curacy of monocular 3D object detection is bounded by the
accuracy of monocular depth estimation. 3D-anchor-based
methods [2, 3, 22] predict the transformations from the
3D anchor boxes to the ground-truth 3D bounding boxes,
which can ease the challenging distance learning. BEV-
based methods [40, 38] first transform the feature maps
from perspective view to orthographic view, then directly
conduct 3D object detection in the 3D space. Equivariance-
based method [21] designs depth equivariant backbones for
monocular 3D object detection, which improves the gener-
alization ability. Ensemble-based method [25] ensembles
multiple distance predictions from different cues, which
can improve the distance prediction accuracy. Video-based
methods [3, 50] exploit the temporal information to improve
the 3D object detection accuracy.

Many recent works in monocular 3D object detection de-
compose the distance of objects and recover it indirectly.
These methods can improve the distance prediction accu-
racy as explicit constraints are introduced. Deep3Dbox [33]
recovers the distance by minimizing the re-projection er-
ror between the four boundaries of projected 3D bound-
ing boxes and 2D bounding boxes. Keypoint-based meth-
ods [18, 24] recover the distance by minimizing the re-
projection error between the eight projected corners of 3D
bounding boxes and the predicted eight projected corners.
Shape-based methods [57, 35, 34, 4, 28] recover the dis-
tance by minimizing the re-projection error between the
dense shape of objects and the predicted projected key-
points. MonoJSG [26] proposes the semantic and geometric
cost volume to better recover the distance of objects. DID-
M3D [37] decomposes the instance depth of objects into vi-
sual depth and attribute depth. MonoRCNN [43] and GUP-
Net [29] recover the distance by the physical height and the
projected visual height. However, these existing methods
do not explicitly model the joint probability distribution of
multiple decomposed variables. In contrast, our method ex-
plicitly models the joint probability distribution of the phys-
ical height and visual height, which leads to accurate and
interpretable distance prediction. We use MonoRCNN [43]
as the baseline to illustrate the effectiveness of modeling the
joint probability distribution.
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Figure 2: Main architecture of MonoRCNN++. Our MonoRCNN++ explicitly models the joint probability distribution of
the physical height and visual height. Such explicit modeling not only leads to accurate physical height and visual height
prediction, but also makes the model explicitly learn the correlation between the two heights.

2.2. Uncertainty and Covariance Estimation

The uncertainty-aware regression loss [19] has been uti-
lized in many computer vision tasks. In 2D object detection,
[17, 8] use the loss for bounding box regression. In 3D
pedestrian localization, MonoLoco [1] uses the loss for 3D
location regression. In LiDAR 3D object detection, [12, 11]
introduce the loss to model the uncertainties of 3D vari-
ables. In monocular 3D object detection, [42, 32, 43, 29]
use the loss for the distance-related variables to improve the
accuracy of the distance prediction. However, when intro-
ducing the loss to multiple variables, these existing works
simply apply the loss to these variables independently. In
contrast, our method explicitly models the joint probability
distribution and the covariance of different variables during
training.

SUPN [10] is a seminal work studying the covariance es-
timation in computer vision. It extends a Variational Auto
Encoder (VAE) [20] using a likelihood model with a full
covariance matrix. By encoding a full covariance matrix,
the samples obtained from such a model capture pixel-level
correlations in the image domain and are free from salt-and-
pepper (independent) noise. SUPN [10] is further adopted
in [45] for monocular depth estimation to capture the pixel-
level covariance. In contrast, our method focuses on monoc-
ular 3D object detection and considers the covariance in
predicting the distance of objects.

3. Proposed MonoRCNN++

We first present the basic framework. Then we detail
the probabilistic modeling in 3D detection heads. Finally,

we show how learned covariances and uncertainties behave.
We term our method MonoRCNN++ and the main architec-
ture is illustrated in Fig. 2.

3.1. Basic Framework

Monocular 3D object detection aims to predict the 3D
bounding boxes of objects from monocular images. Follow-
ing MonoRCNN [43], MonoRCNN++ directly predicts the
3D bounding boxes of objects from RGB images based on
the imaging geometry [14]. We build the basic framework
upon Faster R-CNN [39], use a ResNet [16] with FPN [27]
as the backbone, and use RoIAlign [15] to extract the crops
of object features. We introduce two 3D detection heads,
i.e., the 3D distance head and 3D attribute head, to adapt to
monocular 3D object detection.

3D distance head recovers the distance of objects and is
based on the geometry-based distance decomposition [43].
Specifically, the distance of an object Z is decomposed into
the physical height H , and the reciprocal of the projected
visual height hrec =

1
h , which is formulated as

Z =
fH

h
= fHhrec, (1)

where f denotes the focal length of the camera. 3D distance
head regresses d = [H,hrec]

T and recovers Z by Eq. (1).
3D attribute head predicts the physical size, yaw angle,

and projected center of objects. The physical size is de-
noted as m = [W,H,L]T. The yaw angle is denoted as
a = [sin(θ), cos(θ)]T, where θ is the allocentric pose of 3D
bounding boxes. Following [13, 47], only the yaw angle of
the 3D bounding boxes is considered, and the roll and pitch
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angles are assumed to be zero. The 2D projected center of
a 3D bounding box is denoted as p = [px, py]

T.
MonoRCNN++ predicts the 3D center [px, py, Z]T in

pixel coordinates, and converts it to camera coordinates us-
ing a projection matrix P during inference, formulated aspx · Z

py · Z
Z


P

= P ·


x
y
z
1


C

. (2)

Following [13, 47], per-image projection matrices are as-
sumed to be available during both training and inference.

3.2. 3D Distance Head

To improve the prediction accuracy of the physical
height and visual height, our MonoRCNN++ models d =
[H,hrec]

T using a multivariate distribution with a full co-
variance matrix. Differently, MonoRCNN [43] simply ap-
plies the uncertainty-aware regression loss [19] to H and
hrec independently.

Let d be the prediction, d̂ be the groundtruth, and Σ
be the predicted covariance matrix. Let E denote (d −
d̂)TΣ−1(d − d̂). For the regression of d, the likelihood
with a multivariate Laplace distribution is

p(d̂ |d,Σ) =
2

(2π)
N
2 |Σ| 12

( π
2
√
2E

)
1
2 e−

√
2E√

E
2

N
2 −1

, (3)

where N is the length of d. In our case, N = 2. The loss
function of 3D distance head can then be formulated as

Ldis = − log(p(d̂ |d,Σ)). (4)

The covariance matrix Σ contains variances and covari-
ances. bH =

√
Σ0,0

2 and bhrec =
√

Σ1,1

2 are the scale
parameters of the multivariate Laplace distribution, which
can be interpreted as the predicted uncertainties of H and
hrec, respectively. kH,hrec = Σ0,1 is the predicted covari-
ance of H and hrec.

Covariance matrices are positive definite, thus it is diffi-
cult to directly predict Σ or Σ−1. Following [10], we rep-
resent the precision matrix Σ−1 via its Cholesky decompo-
sition

Σ−1 = LLT, (5)

where L is a lower triangular matrix with positive diagonal
elements. L can be formulated as

L = [
el0,0 0
l1,0 el1,1

]. (6)

Our model explicitly predicts l0,0, l1,0, l1,1 to form L, and
then we can obtain Σ−1 by Eq. (5). We can further obtain

the determinant of the covariance matrix Σ in Eq. (3) by

|Σ| = 1

|Σ−1|
=

1

|LLT|
= e−2(l0,0+l1,1). (7)

Eq. (3) can then be computed using Eq. (5) and Eq. (7).

3.3. 3D Attribute Head

To improve the prediction accuracy of the physical size,
yaw angle, and projected center, our MonoRCNN++ uses
the uncertainty-aware regression loss [19] with the Laplace
assumption. Differently, MonoRCNN [43] uses the L1 re-
gression loss for those variables.

The loss functions for the physical size m and yaw angle
a can be formulated as

Lsize =
L1(m̂,m)

bm
+ log(bm), (8)

Lyaw =
L1(â,a)

ba
+ log(ba), (9)

where m̂ and â are the groundtruths, m and a are the pre-
dictions, and bm and ba are the learnable variables of uncer-
tainties (the scale parameters of the Laplace distribution).

For the projected center prediction, the training tar-
get of a center is normalized by its proposal size. Let
(x1, y1, x2, y2) denote the top-left and bottom-right corners
of the proposal, and p̂ = [p̂x, p̂y]

T and p = [px, py]
T de-

note the groundtruth center and the predicted center, respec-
tively. Let t̂ and t denote the normalized groundtruth center
and the normalized predicted center, respectively, where t̂
is defined as

t̂ = (
p̂x − x1

x2 − x1
,
p̂y − y1
y2 − y1

). (10)

The projected center loss function can be formulated as

Lkpt =
L1(t̂, t)

bt
+ log(bt), (11)

where bt is the learnable variable of uncertainties (the scale
parameters of the Laplace distribution). During inference,
the normalized predicted center t is transformed to the pre-
dicted center p.

The overall training loss function for two 3D detection
heads is

L3D = Ldis + Lsize + Lyaw + Lkpt. (12)

3.4. How Learned Covariances Behave

For monocular 3D object detection, the larger the phys-
ical height of an object, the larger the average projected
visual height of this object. Thus, H and hrec are nega-
tively correlated. We show predicted covariances in Fig. 4.
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Figure 3: Predicted uncertainties of the car class on the val subset of the KITTI val split [6]. We uniformly divide the
distance range into 8 intervals and show the average uncertainty of each interval. Predicted uncertainties are larger for nearby
truncated objects and faraway small objects.

Figure 4: Predicted covariances of the car class on the val
subset of the KITTI val split [6]. We uniformly divide the
distance range into 8 intervals and show the average covari-
ance of each interval. Predicted covariances are negative
and their magnitudes increase with the increase of the dis-
tance Z.

We can see our model can predict covariances as expected
effectively. Explicitly modeling the covariances can make
the model achieve accurate prediction of d = [H,hrec]

T

and explicitly learn the correlation between H and hrec. In
Tab. 1, we show some challenging cases such as faraway
objects (first row), occluded objects (second row), and trun-
cated objects (bottom two rows). We can see that with the
negative covariances, the predicted errors of the two heights
can be canceled by each other when recovering the distance
during inference. We also show predicted uncertainties in
Fig. 3. We can see for all variables, their uncertainties are
larger for nearby truncated objects and distant small objects.

3.5. Implementation Details

The backbone of MonoRCNN++ is ResNet-50 [16] with
FPN [27] and is pretrained on the ImageNet [9]. We extract
ROI features (size: 256 × 7 × 7) from P2, P3, P4 and P5
of the backbone, as defined in [27]. We use five scale an-
chors of {32, 64, 128, 126, 512} with three ratios {0.5, 1,
2}. Each detection head consists of two hidden fully con-
nected layers (size: 1024) and an output fully connected

H (meters) h (pixels) Z (meters) kH,hrec

[P/G] [P/G] [P/G] [P]

1.43/1.51 25.56/27.01 40.29/40.34 −6.67× 10−5

1.52/1.65 38.86/43.28 28.11/27.40 −6.50× 10−5

1.40/1.38 183.31/173.09 5.51/5.75 −4.24× 10−5

1.59/1.63 203.22/209.54 5.65/5.61 −2.95× 10−5

Table 1: Predicted covariances and two heights on the
val subset of the KITTI val split [6]. The predicted errors
of the two heights can be canceled by each other when re-
covering the distance. ‘P’ means predictions and ‘G’ means
groundtruths.

layer. Images are scaled to a fixed height of 512 pixels for
the experiments on the KITTI dataset [13], and 640 pix-
els for the experiments on the Waymo Open dataset [47].
The training batch size is 8. The total iteration number is
6 × 104, 1.2 × 105 and 1.8 × 105 on the training subset
of the KITTI val split [6], the training subset of the KITTI
test split [13], and the training subset of the Waymo Open
dataset [47], respectively. During training random mirror-
ing and photometric distortion are used as augmentation,
and during inference no augmentation is used. We imple-
ment our method with PyTorch [36] and Detectron2 [53].
All the experiments run on a server with 2.2 GHz CPU and
GTX Titan X.

4. Experiments
We first describe the datasets we use, i.e., the KITTI

dataset [13] and Waymo Open dataset [47]. Then we
present ablation studies on the KITTI dataset [13]. Finally
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we comprehensively benchmark our MonoRCNN++ on the
Waymo Open dataset [47] and KITTI dataset [13]. We also
visualize qualitative examples.

4.1. Datasets

KITTI dataset [13] provides multiple benchmarks for
computer vision problems in autonomous driving. The 3D
Object Detection task is used to evaluate the 3D object de-
tection performance. This task provides 7481 training im-
ages with 2D and 3D bounding box annotations, and 7518
test images with no annotation. Each object is assigned a
difficulty level, i.e., easy, moderate, or hard. We only use
the images from the left cameras for training. We train
and evaluate our model with the car, pedestrian, and cyclist
classes.

Waymo Open dataset [47] is a large-scale, diverse, and
challenging autonomous driving dataset. It provides 798
training sequences and 202 validation sequences from dif-
ferent scenes. Following [49], we only use the RGB images
from the front camera, consider object labels in the front
camera’s field of view, and evaluate results on the valida-
tion sequences. Following [49], we form our training set
(52 386 images) by sampling one frame out of every three
frames from the 798 training sequences, and form our val-
idation set (39 848 images) using all the frames from 202
validation sequences. We adopt the official evaluation [47]
to calculate the average precision (AP). The evaluation is
separated by difficulty level (LEVEL 1, LEVEL 2) and dis-
tance to the sensor. Following [49, 26, 21], we evaluate our
model with the vehicle class.

4.2. Ablation Studies

We conduct ablation studies to show the effectiveness
of modeling the joint probability distribution, as shown in
Tab. 2. We show the results of the car class on the val sub-
set of the KITTI val split [6]. We first set the baseline ‘B’
predicting a diagonal covariance matrix. From Tab. 2, we
can see:

1) Modeling the covariance of the physical height and
visual height in 3D distance head is effective. Compar-
ing ‘B+U+C’ with ‘B+U’, we can see introducing the
covariance modeling can improve the 3D object detec-
tion accuracy. Specifically, ‘B+U+C’ surpasses ‘B+U’ by
9.98%/5.91%/5.36% in AP3D and 6.58%/8.45%/3.23%
in APBEV. This supports that explicitly modeling the joint
probability distribution with a full covariance matrix can
achieve accurate prediction of physical height and visual
height and explicitly learn the correlation, leading to accu-
rate and robust monocular 3D object detection.

2) Modeling the uncertainties in 3D attribute head is ben-
eficial. Comparing ‘B+U’ with ‘B’, we can see introducing
the uncertainty modeling can slightly improve the 3D object
detection accuracy. We assume that the uncertainty mod-

AP|R40
[Easy / Mod / Hard] ↑

AP3D APBEV

B 17.29 / 13.94 / 11.85 24.41 / 18.52 / 16.83
B+U 17.34 / 14.04 / 11.95 24.78 / 19.18 / 16.73
B+U+C 19.07 / 14.87 / 12.59 26.41 / 20.80 / 17.27

Table 2: Ablation studies on the val subset of the KITTI
val split [6]. ‘B’ means the baseline. ‘U’ means using the
uncertainty-aware regression loss [19] instead of L1 regres-
sion loss in 3D attribute head. ‘C’ means modeling the joint
probability distribution of the physical and visual height
with a full covariance matrix, instead of a diagonal matrix.

eling can alleviate the negative influence of noisy training
samples during training and makes the model focus on more
achievable training samples, which leads to more accurate
physical size, yaw angle, and projected center prediction.

4.3. Comparisons on the Waymo Open Dataset

Following [49, 26, 21], we comprehensively benchmark
our MonoRCNN++ using the vehicle class on the val set of
the Waymo Open dataset [47], shown in Tab. 3. Note that
GUPNet [29] and DEVIANT [21] use the scale data aug-
mentation during training to improve their accuracy. Al-
though our MonoRCNN++ does not use this augmentation
during training, we can see MonoRCNN++ still achieves
the best accuracy. 1) When the IoU threshold is 0.7, our
method achieves the best overall 3D AP and surpasses the
second [21] by a large margin. Specifically, MonoRCNN++
surpasses DEVIANT [21] by 59.11% / 60.71% in LEVEL 1
/ LEVEL 2, respectively. This shows our MonoRCNN++ is
significantly better than GUPNet [29], DEVIANT [21], and
MonoJSG [26] under the strict evaluation (IoU > 0.7). Our
method also achieves the best accuracy for nearby objects
within 30 meters, and the second best accuracy for objects
beyond 30 meters. 2) When the IoU threshold is 0.5, our
method achieves the best overall 3D AP. For nearby objects
within 30 meters, our method also achieves the best accu-
racy. For faraway objects beyond 50 meters, our method
achieves the second best accuracy. We also visualize some
qualitative examples in Fig. 5.

4.4. Comparisons on the KITTI Dataset

We comprehensively benchmark MonoRCNN++ on the
KITTI test dataset [13] in Tab. 4. We can see 1) Com-
paring MonoRCNN++ with MonoRCNN [43], we can see
MonoRCNN++ is better. Firstly, MonoRCNN++ surpasses
MonoRCNN [43] by 9.37%/8.46%/13.06% in the AP3D
of the car class on the easy/moderate/hard subsets, respec-
tively. Secondly, our MonoRCNN++ is a multi-class model
while MonoRCNN [43] is a single-class model. 2) With-
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Method Input LEVEL 1 (IoU > 0.5) ↑ LEVEL 2 (IoU > 0.5) ↑
Overall 0 - 30m 30 - 50m 50m - ∞ Overall 0 - 30m 30 - 50m 50m - ∞

PatchNet (ECCV 20) [30] I+D 2.92 10.03 1.09 0.23 2.42 10.01 1.07 0.22
PCT (NeurIPS 21) [49] I+D 4.20 14.70 1.78 0.39 4.03 14.67 1.74 0.36
GUPNet (ICCV 21) [29] I 10.02 24.78 4.84 0.22 9.39 24.69 4.67 0.19
MonoJSG (CVPR 22) [26] I 5.65 20.86 3.91 0.97 5.34 20.79 3.79 0.85
DEVIANT (ECCV 22) [21] I 10.98 26.85 5.13 0.18 10.29 26.75 4.95 0.16
MonoRCNN++ (Ours) I 11.37 27.95 4.07 0.42 10.79 27.88 3.98 0.39

Method Input LEVEL 1 (IoU > 0.7) ↑ LEVEL 2 (IoU > 0.7) ↑
Overall 0 - 30m 30 - 50m 50m - ∞ Overall 0 - 30m 30 - 50m 50m - ∞

PatchNet (ECCV 20) [30] I+D 0.39 1.67 0.13 0.03 0.38 1.67 0.13 0.03
PCT (NeurIPS 21) [49] I+D 0.89 3.18 0.27 0.07 0.66 3.18 0.27 0.07
GUPNet (ICCV 21) [29] I 2.28 6.15 0.81 0.03 2.14 6.13 0.78 0.02
MonoJSG (CVPR 22) [26] I 0.97 4.65 0.55 0.10 0.91 4.64 0.55 0.09
DEVIANT (ECCV 22) [21] I 2.69 6.95 0.99 0.02 2.52 6.93 0.95 0.02
MonoRCNN++ (Ours) I 4.28 9.84 0.91 0.09 4.05 9.81 0.89 0.08

Table 3: Comparisons on the Waymo Open val set [47]. We evaluate on the vehicle class and use 3D AP (IoU > 0.5 and
0.7) as metric. ‘Input’ means the input data modality used during training and inference. ‘I’ denotes image and ‘D’ denotes
depth. Red / blue indicate the best / second, respectively. The results of [30] and [29] are from [49] and [21], respectively.

Method Input AP3D [Easy / Mod / Hard ] ↑
Car Pedestrian Cyclist

AM3D (ICCV 19) [31] I + D 16.50 / 10.74 / 9.52 - -
PatchNet (ECCV 20) [30] I + D 15.68 / 11.12 / 10.17 - -
DDMP-3D (CVPR 21) [48] I + D 19.71 / 12.78 / 9.80 4.93 / 3.55 / 3.01 4.18 / 2.50 / 2.32
PCT (NeurIPS 21) [49] I + D 21.00 / 13.37 / 11.31 - -
Kinematic3D (ECCV 20) [3] I + V 19.07 / 12.72 / 9.17 - -
M3D-RPN (ICCV 19) [2] I 14.76 / 9.71 / 7.42 4.92 / 3.48 / 2.94 0.94 / 0.65 / 0.47
MonoPair (CVPR 20) [7] I 13.04 / 9.99 / 8.65 10.02 / 6.68 / 5.53 3.79 / 2.12 / 1.83
RTM3D (ECCV 20) [24] I 14.41 / 10.34 / 8.77 - -
GrooMeD-NMS (CVPR 21) [22] I 18.10 / 12.32 / 9.65 - -
MonoDLE (CVPR 21) [32] I 17.23 / 12.26 / 10.29 9.64 / 6.55 / 5.44 4.59 / 2.66 / 2.45
MonoRUn (CVPR 21) [4] I 19.65 / 12.30 / 10.58 10.88 / 6.78 / 5.83 1.01 / 0.61 / 0.48
PGD (CoRL 21) [51] I 19.05 / 11.76 / 9.39 2.28 / 1.49 / 1.38 2.81 / 1.38 / 1.20
GUPNet (ICCV 21) [29] I 20.11 / 14.20 / 11.77 14.72 / 9.53 / 7.87 4.18 / 2.65 / 2.09
DEVIANT (ECCV 22) [21] I 21.88 / 14.46 / 11.89 13.43 / 8.65 / 7.69 5.05 / 3.13 / 2.59
MonoRCNN (ICCV 21) [43] I 18.36 / 12.65 / 10.03 - -
MonoRCNN++ (Ours) I 20.08 / 13.72 / 11.34 12.26 / 7.90 / 6.62 3.17 / 1.81 / 1.75

Table 4: Comparisons on the KITTI test benchmark [13]. ‘Input’ means the input data modality used during training
and inference. ‘I’, ‘D’, and ‘V’ denote image, depth, and video, respectively. ‘-’ denotes that results are not available for
single-class models.

out using additional data modality, MonoRCNN++ outper-
forms PGD [51], MonoRUn [4], MonoDLE [32], PCT [49],
DDMP-3D [48], and Kinematic3D [3]. 3) Although GUP-
Net [29] and DEVIANT [21] performs better than our
MonoRCNN++ on the KITTI dataset [13], ours performs

better on the much larger and more challenging Waymo
Open dataset [47]. We argue this is due to the probabilistic
learning nature of the covariance modeling and uncertainty
modeling. Such a probabilistic learning framework requires
ample training samples to discover the intrinsic distribution
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Figure 5: 3D detection results of MonoRCNN++ on the test set of the KITTI test split [13] (top row) and val set of the
Waymo Open dataset [47] (bottom three rows). MonoRCNN++ predicts accurate 3D bounding boxes for various challenging
cases. The red boxes in the image planes represent the 2D projections of the predicted 3D bounding boxes. The yellow /
green boxes in the bird’s eye view results represent the predictions and groundtruths, respectively, and the red / blue lines
indicate the yaw angle. The radius difference between two adjacent white circles is 5 meters.

of the target variables, as discussed in [19]. This coincides
with our observation that the Waymo Open dataset [47]
in our experiments is about 7 times larger than the KITTI
dataset [13]. Another reason for the gap on KITTI [13] can
be GUPNet [29] and DEVIANT [21] use the scale data aug-
mentation to improve their accuracy (Tab.7 of [21]), while
ours does not use. Finally, we visualize some qualitative
examples in Fig. 5.

5. Conclusion

In this paper, we have proposed MonoRCNN++, a
probabilistic monocular 3D object detection framework.
MonoRCNN++ originally explicitly models the joint
probability distribution of the physical height and visual
height, which leads to accurate and interpretable monocular

3D object detection. MonoRCNN++ can predict the co-
variance matrices as expected effectively. The experimental
results on the monocular 3D object detection tasks of the
challenging Waymo Open [47] and KITTI [13] datasets
show the effectiveness of our framework.
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