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Abstract

3D MRI imaging is based on a number of imaging se-
quences such as T1, T2, T1ce, and Flair, and each of them
is performed by a group of two-dimensional scans. In prac-
tical MRI, some scans are often missing while many medical
applications require a full set of scans. An MRI imputation
method is presented, which synthesizes such missing scans.
Key components in this method are the index registration
and the intensity registration. The index registration mod-
els anatomical differences between two different scans in
the same imaging sequence, and the intensity registration
reflects the image contrast differences between two different
scans of the same index. Two registration fields are learned
to be invariant, and accordingly, allow two estimates of a
missing scan, one within corresponding imaging sequence
and another along scan index; the two estimates are com-
bined to yield the final synthesized scan. Experimental re-
sults highlight that the proposed method improves prevalent
limitations existing in previous synthesis methods, blending
both structural and contrast aspects and capturing subtle
parts of the brain. Quantitative results also show the supe-
riority in various data sets, transitions, and measures.

1. Introduction
Among various diagnoses in neurology and neuro-

surgery, Magnetic Resonance Imaging (MRI) is one of the
most popular due to its safety and information abundance.
MRI 3D volumes are generally taken through several imag-
ing sequences (also referred to as pulse sequences or modal-
ities); for example, T1-weighted (T1), T2-weighted (T2),
T1 contrast-enhanced (T1ce), and FLuid-Attenuated Inver-
sion Recovery (Flair)1, which differ by TR (repetition time)
and TE (echo time). Each of them is performed and visual-
ized through a group of two-dimensional scans, from one of
three anatomical planes: axial, coronal, or sagittal (shown
in Fig. 1). Accurate diagnosis and image analysis through

1T1-weighted, T2-weighted, T1 contrast-enhanced, and FLuid-
Attenuated Inversion Recovery are abbreviated as T1, T2, T1ce, and Flair,
respectively, for the rest of the paper.

MRI require all T1, T2, and Flair (or even more) sequence
scans [14, 25]. Unfortunately, some scans are often missing
due to practical limitations such as scanning cost, prolonged
scanning time, and motion artifacts.

To be provided as a simple fix, studies for synthesizing a
translated modality from a given modality, known as cross-
modality translation [11], exist. The process of replacing
missing data with substituted ones, generally referred to as
imputation [10, 25, 43], contributes to the real-world med-
ical imaging problem. Deformable registration [4], which
aims to align similar pairs of images by using geometric cor-
respondences, is also involved in a variety of data augmen-
tation, synthesis, and imputation tasks. However, although
an extensive field of work was suggested to generate miss-
ing or incomplete medical images, limitations are shown
as most methods require closely related or similar data for
the process. Also, constraints remain in generating high-
quality substitute images, losing either structural or visual
parts. Clinically important parts are often small in terms of
size and mainly focused on particular regions, which may
be difficult to be reconstructed by existing methods. The
reconstruction may also include erroneous parts that con-
tain some noisy components. Some methods do show high
quantitative measures - however when visualized, images
remain insufficient to be used in actual clinical scenarios.

To deal with these limitations and provide a “clinically
useful” fill-in, a 3D MRI imputation method based on reg-
istration is presented. The motivation lies in the fact that (1)
two-dimensional scans within the same imaging sequence
show similarities in appearance and contrast while show-
ing different anatomical structures, and (2) different scans
with the same scan index (in diverse imaging sequences)
show similar anatomies but exhibit differences in appear-
ance and contrast. Two registration fields are introduced:
the index registration field Φ based on observation (1), and
the intensity registration field Ψ based on (2). Φ models
anatomical differences between two scans in the same imag-
ing sequence, and Ψ reflects the image contrast and appear-
ance differences between two scans of the same index. Both
fields are trained as invariant registration fields2 so that the

2A novel term explained in details in Section 3.3 and Fig. 3.
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Figure 1. MRI imaging sequences and two-dimensional scans. A single 3D MRI volume can be visualized through a variety of imaging
sequences. Each sequence volume produces a number of two-dimensional scans in a particular plane (axial plane in figure).

same Φ can be applied in any imaging sequence and the
same Ψ can be applied in any scan index. Consequently,
the two registration fields allow two estimates of a missing
scan, one within corresponding imaging sequence and an-
other along scan index. The two estimates are combined to
yield the final synthesized scan, available of preserving both
anatomical structure and contrast aspects. An overview of
the proposed method is visualized in Fig. 2. Experiments
show improvements by our method, which results in syn-
thesized images with higher quality and richer detail, losing
neither structural nor visual features. Parts in center of brain
which usually contain clinically important data specifically
show structural resemblance, while these parts have been
kept as a limitation in previous methods. Quantitative mea-
sures also show the superiority of the proposed method in
various data sets, sequence transitions, and metrics.

The main contributions are summarized as follows.

• Two registration fields for matching anatomical differ-
ences and contrast differences are considered. Espe-
cially, a new concept of intensity registration is intro-
duced for a straightforward sequence translation.

• A novel invariant registration field that can be shared
along parallel directions of alignment is proposed.

• “Clinically useful” results are shown; synthesized MRI
images successfully capture both structural and con-
trast details. Center parts of brain notably visualize
structural resemblance compared to baseline methods.

2. Related Works
2.1. Medical Image Registration

Image registration, also known as image alignment, is
a process of aligning two or more anatomically related im-
ages based on their spatial appearances. Medical image reg-
istration, in particular, has been extensively studied.
Traditional Algorithms : Popular models for traditional

algorithms include elastic [24, 32, 41], b-spline [19, 33, 45],
viscous fluid-flow [5, 8], optical flow [6, 7, 30], and diffeo-
morphism [1, 2, 9, 18, 23, 34, 40].
Deep Learning Image Registration (DLIR) Algorithms
: Although not explicitly introduced for registration, the
Spatial Transformer Network (STN) [17] is one of the first
methods that employ deep learning for image alignment.
Simple end-to-end unsupervised methods [12, 37] integrate
STN to demonstrate warping of registration fields to im-
ages. VoxelMorph [3, 4, 44] uses a structure similar to STN,
adopting an encoder-decoder structure for the localization
net and producing transformation parameters.

2.2. MRI Cross-Modality Translation

The diversity of imaging sequences enables MRI to gen-
erate distinct contrasts while imaging the same anatomy.
However, complete multi-modal MR images are not easy
to collect due to practical limitations. Synthesizing a trans-
lated modality from a given modality without actual acqui-
sition, cross-modality translation, has been studied [38].
Supervised Methods : A number of regression-based syn-
thetic methods [20, 21, 28] have been proposed. Replica
[20] employs a supervised random forest that learns a non-
linear regression to predict intensities of alternate contrasts.
LSDN [28] integrates image intensity features and spatial
information through the location-sensitive deep network.
Unsupervised Methods : Cross-modality translation has
also been treated through a general unsupervised approach
[35]. For instance, GAN [15] based methods [11, 38] have
been proposed to fill in missing contrasts. Two implemen-
tations are shown in [11], each of them useful whether the
reference images in two contrasts are paired or not.

2.3. Missing Data Imputation

The absence of some data in a particular data set causes
substantial bias, making the analysis of data less efficient.
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Figure 2. Overview of proposed method. Blue, orange, green, and gray dashed arrows represent the procedure of index registration,
sequence translation, fusion, and copying invariant registration fields, respectively.

Given as a solution, imputation is the process of replacing
missing data with substituted values.
GAN Based Imputation : Imputation models [16, 25, 39,
42] through GAN [15] have been introduced. CollaGAN
[25] estimates a single missing data from remaining multi-
ple data, handling the imputation problem through a multi-
domain images-to-image translation.
MRI Imputation with Transformers : With the release
of vision transformers (ViT) [13], a Cambrian explosion
of using transformers in various vision tasks has occurred
recently. Particularly in medical tasks [10, 26, 43], trans-
formers are utilized to deal with missing images. A novel
aggregated residual transformer (ART) block is introduced
in ResViT [10] to preserve localization and context of the
missing. PTNet [43] adopts transformer layers along with
skip connections and multi-scale pyramid representations
for a high-resolution synthesis.

3. Method

A single 3D MRI volume is expressed by a number of
imaging sequences such as T1-weighted (T1), T2-weighted
(T2), T1 contrast-enhanced (T1ce), and FLuid-Attenuated
Inversion Recovery (Flair), which differ by contrasts while
showing the same anatomy. As shown in Fig. 1, each se-
quence volume is visualized by two-dimensional scans in
one of axial, coronal, or sagittal planes. Consequently, each
scan is associated with an imaging sequence and scan index.
Here, “scan index” is defined as the index of a scan when vi-
sualized in a particular direction. For example, a volume of
resolution 240× 240× 155 (by convention, x, y, z refers to
sagittal, coronal, and axial axis, respectively) visualized in
the axial direction should have a scan index range of 0−154.

Unfortunately in practical MRI, some scans may be
missing while full scans are required for accurate diagnosis,
tumor segmentation, and so on. Our approach of imputing
such missing scans is briefly illustrated in Fig. 2. Let SA

i

and SA
j be i-th and j-th indexed scans of imaging sequence

A. Similarly, let SB
i and SB

j be i-th and j-th indexed scans
of imaging sequence B. In imaging sequence B, we assume
that SB

i is available, but SB
j is missing.

An encoder-decoder structure (similar to Unet) is built -
which receives SA

i and SA
j at its input and yields an index

registration field Φij at its output. The warping of SB
i and

Φij , denoted by SB
i ◦ Φij , yields the first estimate of SB

j ;
we call this process index registration. Another encoder-
decoder structure is also built, which receives SA

i and SB
i

and yields an intensity registration field ΨAB . The second
estimate of SB

j is obtained if SA
j is concatenated with ΨAB ,

or SA
j + ΨAB ; this process shall be called sequence trans-

lation. Lastly, the two estimates are fused for the final es-
timate. Key components in this imputing process are the
index registration field Φ and the intensity registration field
Ψ. As illustrated in Fig. 3, a single field Φ is learned to be
applicable in different imaging sequences, and a single Ψ is
learned to be applicable in different scan indices. Two reg-
istration fields are called invariant for the salient features.

3.1. Index Registration

Two-dimensional scans within the same imaging se-
quence share similarities in appearances and contrasts,
while showing different anatomical structures (see “Scans
by Indices” of Fig. 1). To capture anatomical differences
among those scans, a smooth index registration field Φ is
adopted. It parameterizes a displacement function u, which
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models the change of pixel positions between the moving
and fixed images3:

Φ(p) = p+ u(p). (1)
Let M(p) and M̃(p) correspond to the intensity value of
pixel p in moving image M and moved image M̃ , respec-
tively. Then,

M̃(p) = M(p′) = M(Φ(p)), (2)
where p′ is the transferred pixel location. This can also be
represented by

M̃ = M ◦ Φ (3)

where M is said to be “warped” to registration field Φ. To
model the distribution of anatomical differences, we com-
pute the registration field that warps moving image M to
fixed image F using

Φ = fθIR(F,M) (4)
where fθIR(·, ·) is a parametric function with learnable pa-
rameters θIR that we describe in Section 3.4.

3.2. Sequence Translation by Intensity Registration

Two-dimensional scans with the same scan index of dif-
ferent imaging sequences share similar anatomical struc-
tures, while showing different appearances and contrasts
(see “Scans by Sequences” of Fig. 1). For sequence trans-
lation, a new concept of intensity registration is introduced
for nonlinear mapping of contrasts between two scans. Sim-
ilar to index registration field Φ, intensity registration field
Ψ parameterizes function v demonstrating the change of
pixel intensity values between moving and fixed images.
For an intensity registration of a specific intensity I , one
can denote a transferred intensity as:

Ψ(I) = I + v(I). (5)
Without any movement of pixel location p in the moving
image M , a substitution of pixel intensity values with the
transferred values gives

M̂(p) = Ψ(M(p)) = M(p) + v(M(p)) (6)
where M̂ refers to the moved image. Nonlinear mappings
of contrasts between moving image M and fixed image F
are modeled by

Ψ = gθST
(F,M) (7)

where gθST
(, ) is a parametric function with learnable pa-

rameters θST described further in Section 3.4.

3.3. Imputation Procedure

Let {Sx} be a set of two-dimensional scans with scan in-
dex x, and let {SY } represent a set of scans taken by imag-
ing sequence Y . SY

x denotes a single scan with scan index x
and imaging sequence Y . Non-negative integers in increas-
ing order, {0, 1, 2, 3, ...} is assumed for x; Y is an accessi-

3In medical image registration, moving image is the image to be
matched to the fixed image. Moved image, also called registered image,
is the moving image warped to the registration field. Fixed and moved
images must be alike with a well-made registration field.
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B
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j
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Index Registration Sequence Translation

. . . .

. . . .

A

Figure 3. Visualized explanation of invariant registration fields.
All squares indicate MRI image scans, horizontally sharing the
same scan index and vertically sharing the same imaging se-
quence. White squares are available scans, while gray squares
are missing scans. Blue bold and orange bold arrows visualize
each registration field obtained by available scans of index regis-
tration and sequence translation, and dashed arrows visualize each
copied field. Colored squares with dashed boundaries show esti-
mated scans using each registration field.

ble imaging sequence, e.g., Y ∈ {T1, T2 , T1ce, Flair, ...}.
We assume that the scan index is uniquely determined by
the anatomical position that is represented by a scan. For
example, if sequence A contains scans of index {1, 2, 3, 4}
and sequence B contains scans of index {1, 3}, two scans
indexed 1 and 3 originate from the same position.

For simplicity of presentation, let us assume four scans
from imaging sequences A and B. SB

j is assumed to be
missing while scans SA

i , SA
j , and SB

i are available. An
index registration field from SA

i to SA
j is acquired by spec-

ifying the scans as moving and fixed image input of fθIR .
Similarly, an intensity registration field for sequence trans-
lation from SA

i to SB
i can be acquired by specifying the

scans as moving and fixed image input of gθST
. The two

registration fields are given by
fθIR(S

A
i , S

A
j ) = ΦA

ij , gθST
(SA

i , S
B
i ) = ΨAB

i . (8)
Both fields Φ and Ψ are trained as invariant registra-

tion fields with the assumption that scans across diverse
imaging sequences with the same scan index reveal the
same anatomy. The assumption practically holds while it is
not exactly true as distinct sequences are taken at different
phases. Invariant registration field is a novel concept de-
fined as a registration field that can be copied along the par-
allel direction of alignment to match other pairs of images.
As visualized in details in Fig. 3, blue and orange arrows
represent index registration field Φ and intensity registra-
tion field Ψ, respectively. Dashed arrows show fields copied
from bold arrows from the parallel direction - blue dashed
arrows are copied from blue bold arrows on the left, and
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orange dashed arrows are copied from orange bold arrows
above. Two invariant fields can be formulated as following:

fθIR(S
A
i , S

A
j ) = ΦA

ij = Φij = fθIR(S
Y
i , SY

j )

for all Y ∈ {T1, T2, T1ce, Flair,...},
(9)

gθST
(SA

i , S
B
i ) = ΨAB

i = ΨAB = gθST
(SA

x , S
B
x )

for all x ∈ {0, 1, 2, 3, ...}.
(10)

Consequently, in order to impute the missing scan SB
j ,

we directly warp the index registration field Φij to SB
i and

concatenate intensity registration field ΨAB to SA
j as

S̃B
i = SB

i ◦ Φij , ŜA
j = SA

j +ΨAB . (11)

S̃B
i shows structural changes while preserving contrast de-

tails of sequence B, and ŜA
j shows contrast changes while

preserving anatomical structures of index j. To show both
sides of aspects (anatomy and contrast) blended in the final
substitute, a fusion process is carried out as below:

SAB
ij = h(S̃B

i , ŜA
j ) (12)

where h(, ) is a fusion function. Image averaging is used in
experiments.

3.4. Learning

Functions fθIR and gθST
are obtained using an encoder-

decoder structure similar to Unet [31]. The moving and
fixed images are concatenated into a 3D volume for an input
of each network. From two networks, we aim to capture the
distributions of anatomical differences via index registra-
tion field Φ, and nonlinear mappings of contrasts between
imaging sequences via intensity registration field Ψ.

Both fields are trained to be invariant, so that index regis-
tration fields can be applied regardless of imaging sequence
and intensity registration fields can be applied regardless
of scan index. Unsupervised losses that evaluate the two
networks using only input scans and generated registration
fields are given by:

LA
IR = Lsim(SA

j , S̃
A
i ) = Lsim(SA

j , S
A
i ◦ Φij), (13)

Li
ST = Lsim(SB

i , ŜA
i ) = Lsim(SB

i , SA
i +ΨAB). (14)

Losses to train the two registration fields as invariant are

LB
IR = Lsim(SB

j , S̃B
i ) = Lsim(SB

j , SB
i ◦ Φij), (15)

Lj
ST = Lsim(SB

j , ŜA
j ) = Lsim(SB

j , SA
j +ΨAB), (16)

to guarantee that re-using obtained registration fields with-
out a new acquisition procedure is practical. An auxiliary
fusion loss that matches the final fused image with the de-
sired one is given by

LF = Lsim(SB
j , SAB

ij ) = Lsim(SB
j , h(S̃B

i , ŜA
j )). (17)

Lsim is an image-wise similarity loss that is used to eval-
uate the similarity of predicted synthetic image and real im-

age, and is defined by

Lsim(F,M ′) =
1

Ω

∑
p∈Ω

[F (p)−M ′(p)]2 (18)

where F and M ′ denote the fixed and moved image, re-
spectively, defined over spatial domain Ω ⊂ Rn. This is
applicable when fixed and moved images have similar im-
age intensity distributions and local contrast. Our total loss
function is now given by

L = σIR(L
A
IR + LB

IR) + (Li
ST + Lj

ST ) + LF (19)
where hyperparameter σIR is the weight for losses of index
registration. Loss functions are also illustrated in Fig. 2.

4. Experiments
4.1. Datasets

We use the publicly available BraTS and iSeg-2017 data
set. Both consist of MRI brain scans for multiple sub-
jects, where all 3D volumes are preprocessed by skull strip-
ping. Voxel intensities are normalized into [0, 1] to guaran-
tee comparable ranges across subjects.
BraTS [27] : Four types of imaging sequences are as-
sociated with 494 patients in BraTS: T1 , T2, T1ce, and
Flair. Some imaging sequences are paired for our imputa-
tion: (T1, T2), (T2, T1), (T1, T1ce), (T1, Flair), and (T2,
Flair), where the first and second components each corre-
spond to sequence A and B, respectively. From 3D vol-
umes of resolution 240 × 240 × 155, we use 8 center axial
scans out of 155 to construct the data set for experiments.
This leads to 8C2 = 28 pairs of scan index combinations
and correspondingly, 28 groups (each group composed of 4
scans SA

i , S
A
j , S

B
i , SB

j ) per every patient and sequence pair.
The overall data are all split into 3 sets: 10332 for training,
1750 for validation, and 1750 for test.
iSeg-2017 [36] : Two types of imaging sequences are as-
sociated with 22 infants in iSeg-2017: T1 and T2. Imaging
sequences are paired in bi-direction: (T1, T2), (T2, T1).
From 3D volumes of resolution 192× 144× 256, 16 center
axial scans out of 256 are used. This leads to 16C2 = 120
pairs of scan index combinations and thus, 120 groups per
every patient and sequence pair. The overall data are all
split into 3 sets: 2040 for training, 240 for validation, and
360 for test.

4.2. Baselines

The proposed method is compared to two versions of
VoxelMorph, two implementations of pGAN-cGAN, Col-
laGAN, ResViT, and PTNet. All training procedures are
carried out without any changes to each setting that is set in
the original paper to guarantee their best performance. For
data sets, the same number of center scans in the axial plane
is used for fair comparison.
VoxelMorph [4] : This is the state-of-the-art learning-
based method for medical image registration. Two ver-
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Real Target VoxelMorph-A VoxelMorph-B pGAN cGAN CollaGAN ResViT PTNet Proposed
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?

?

?
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Figure 4. Visual comparison of methods. Synthesized scans from seven baseline methods (VoxelMorph-A, VoxelMorph-B, pGAN,
cGAN, CollaGAN, ResViT, PTNet) and proposed method, compared to Target. Magnified parts of the center of brain are shown above
each image. Yellow and blue arrows point out remarkable parts of the results. Zoom in to see details.
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Datasets BraTs iSeg-2017
Transitions T1 → T2 T2 → T1 T1 → T1ce T1 → Flair T2 → Flair T1 → T2 T2 → T1

SSIM ↑ 0.902 0.918 0.892 0.875 0.904 0.747 0.710
NMSE ↓ 0.109 0.063 0.093 0.084 0.074 0.149 0.170VoxelMorph-A [4]
PSNR ↑ 28.823 29.361 29.953 28.673 29.946 23.873 22.603
SSIM ↑ 0.921 0.899 0.899 0.883 0.883 0.779 0.695
NMSE ↓ 0.084 0.057 0.081 0.083 0.083 0.116 0.171VoxelMorph-B [4]
PSNR ↑ 30.459 28.499 30.424 28.883 28.883 25.231 22.337
SSIM ↑ 0.908 0.915 0.928 0.895 0.894 0.863 0.839
NMSE ↓ 0.598 0.273 0.310 0.319 0.345 0.121 0.169pGAN [11]
PSNR ↑ 23.778 21.297 25.555 23.258 22.821 25.271 22.503
SSIM ↑ 0.917 0.915 0.917 0.896 0.907 0.833 0.840
NMSE ↓ 0.208 0.159 0.184 0.231 0.177 0.155 0.212cGAN [11]
PSNR ↑ 25.290 24.625 24.950 22.944 26.607 23.825 23.596
SSIM ↑ 0.740 0.712 0.683 0.719 0.802 0.451 0.457
NMSE ↓ 1.806 0.867 3.702 1.649 0.775 0.858 0.488CollaGAN [25]
PSNR ↑ 19.035 19.993 18.478 19.278 22.109 17.277 15.384
SSIM ↑ 0.910 0.908 0.915 0.884 0.888 0.864 0.842
NMSE ↓ 0.379 0.159 0.275 0.203 0.319 0.167 0.153ResViT [10]
PSNR ↑ 23.426 22.008 24.315 23.007 22.406 25.701 24.233
SSIM ↑ 0.921 0.918 0.911 0.886 0.902 0.865 0.759
NMSE ↓ 0.725 0.264 0.305 0.509 0.358 0.127 0.489PTNet [43]
PSNR ↑ 23.338 21.457 25.868 22.634 22.477 24.670 19.028
SSIM ↑ 0.927 0.920 0.961 0.920 0.912 0.869 0.852
NMSE ↓ 0.074 0.052 0.058 0.077 0.079 0.103 0.138Proposed
PSNR ↑ 30.775 29.746 32.734 30.797 30.313 27.132 24.725

Table 1. Assessment of proposed method against VoxelMorph-A, VoxelMorph-B, pGAN, cGAN, CollaGAN, ResViT, and PTNet. The
best results are in bold, and the second best results are underlined.

sions of VoxelMorph model are built: VoxelMorph-A and
VoxelMorph-B. Each is trained by scans of sequence A
and B, respectively, building registration fields for mapping
pairs of scans in each sequence.
pGAN-cGAN [11] : Two implementations for MRI se-
quence translation - pGAN and cGAN - are provided for
use. The pGAN model is useful when two images of differ-
ent contrast for the same anatomy are available. It contains
one pair of generator and discriminator, which is trained
with pixel-wise loss and perceptual loss. The cGAN model
can be used when two images of different contrast cannot
be paired for the same anatomy. Two pairs of generator
and discriminator are contained: one for synthesizing one
contrast from the other (e.g., T2 from T1) and the other for
taking care of synthesis in the opposite direction. The two
pairs are combined to synthesize the missing image while
trained by a cycle loss function.
CollaGAN [25] : CollaGAN is a general GAN based
method for imputing a single missing data within a particu-
lar set of closely related images.
ResViT [10] : ResViT is a transformer-based generative ad-
versarial model for multi-modal medical image synthesis.
Within scans of the same anatomical structure, imputing a
single missing sequence from either a group of available se-
quences or a single available sequence is possible.
PTNet [43] : It employs transformer layers in the bottle-
neck of a Unet structure for a high resolution MRI scan
synthesis task. As in cross-modality translation models, it
shows synthesis of a missing sequence scan from an ob-
tained sequence scan with the same anatomy.

4.3. Settings and Evaluation Metrics

Settings : The proposed method is implemented using Py-
Torch [29] library, and a single NVIDIA Tesla V100 32GB
GPU is used along with CUDA 11.2. All models are opti-
mized using the ADAM [22] optimizer, and are trained with
a learning rate of 0.0001 and minibatch size of 4.
Evaluation Metrics : Three standard evaluation metrics are
chosen to quantitatively compare and assess different meth-
ods: structural similarity index measure (SSIM), normal-
ized mean square error (NSME), and peak signal to noise
ratio (PSNR). High scores for SSIM and PSNR, and a low
score for NMSE correspond to a well-performed method.

5. Results and Discussion

5.1. Qualitative Comparisons

Missing scan SB
j is synthesized by seven baseline meth-

ods as well as the proposed method, and six test cases are
visualized in Fig. 4. The target scan is provided to visu-
ally assess each synthesized image. Center part of brains
indicated by yellow boxes is magnified and shown in sepa-
rate images; yellow and blue arrows point out parts that are
enhanced more competitively by the proposed method.

Synthesized images from VoxelMorph and pGAN-
cGAN both show missing or unnecessary anatomical parts.
Moreover, some images from VoxelMorph fail to capture
colors or contrasts, and pGAN-cGAN shows blurry results
in some cases. These limitations are due to the fact that both
rely on a single scan for synthesis, which may not be suffi-
cient enough to capture many variables that affect the struc-

1955



Datasets BraTs iSeg-2017
LF Transitions T1 → T2 T2 → T1 T1 → T1ce T1 → Flair T2 → Flair T1 → T2 T2 → T1

SSIM ↑ 0.918 0.873 0.929 0.861 0.887 0.779 0.824
NMSE ↓ 0.115 0.121 0.094 0.108 0.140 0.138 0.194Without
PSNR ↑ 29.971 27.160 30.589 28.366 28.809 25.878 24.149
SSIM ↑ 0.923 0.903 0.960 0.911 0.895 0.811 0.842
NMSE ↓ 0.086 0.060 0.060 0.092 0.134 0.106 0.142With
PSNR ↑ 30.774 29.362 32.556 30.253 29.372 26.714 24.606

Table 2. Ablation study of proposed method with and without auxiliary loss LF . The best results are in bold.

Datasets BraTs iSeg-2017
σIR Transitions T1 → T2 T2 → T1 T1 → T1ce T1 → Flair T2 → Flair T1 → T2 T2 → T1

SSIM ↑ 0.923 0.903 0.960 0.911 0.895 0.831 0.842
NMSE ↓ 0.086 0.060 0.060 0.092 0.104 0.106 0.1421
PSNR ↑ 30.774 29.362 32.556 30.253 29.372 26.714 24.606
SSIM ↑ 0.927 0.920 0.961 0.920 0.912 0.869 0.852
NMSE ↓ 0.074 0.052 0.058 0.077 0.079 0.103 0.1382
PSNR ↑ 30.775 29.746 32.734 30.797 30.313 27.132 24.725
SSIM ↑ 0.898 0.885 0.959 0.911 0.889 0.809 0.824
NMSE ↓ 0.121 0.103 0.063 0.105 0.128 0.130 0.1444
PSNR ↑ 29.583 28.387 32.521 30.118 29.261 26.395 24.287

Table 3. Effect of loss weight σIR. The best results are in bold, and the second best results are underlined.

tures and appearances of MRI images. Particularly, Voxel-
Morph learns to capture only spatial displacements, which
makes synthesizing new structures unseen in the input im-
age and eliminating unnecessary anatomical parts difficult.
The results of CollaGAN are also unreliable, showing in-
complete anatomical structures and pixels with low resolu-
tion. Originally in the paper, CollaGAN attempts to im-
pute a single missing data from remaining data within a
group of closely related images. Specifically, if three im-
ages with similar anatomical structures are provided, Col-
laGAN synthesizes a new one that also resembles three
others. This assumption does not fit the MRI imputation
that we discuss. ResViT synthesizes images that visualize
wrong colors or contrasts, and PTNet displays structurally
missing or poor images. These pitfalls are similar to those
of VoxelMorph and pGAN-cGAN. As both methods per-
form synthesis by using other imaging sequences, structures
and contrasts from those inputs are insufficiently adjusted.

As discussed above, visualization of the results by base-
lines shows failure in either structural or contrast aspects;
or even both. On the other hand, the images from the pro-
posed method are very close to the targets, improving both
structural and contrast details. Furthermore, it captures even
small anatomical parts located in the center of brain. Unlike
general images, clinically important data in medical images
are often subtle and focused on small regions; in the case
of brains, the center - where most registration, translation,
and imputation methods fail to reconstruct or enhance. With
a visual inspection, we find that the proposed method pro-
vides an actual clinically useful substitute.

5.2. Quantitative Comparisons

SSIM, NMSE, and PSNR scores are calculated between
synthesized images and the targets as shown in Table 1.
For every data set and sequence transition, the proposed

method shows superiority by all measures - achieving the
second best result for only one and the best result for the
rest. Notably for T1 → T1ce transitions of BraTS, it dras-
tically outperforms competing methods, achieving SSIM of
0.961, NMSE of 0.058, and PSNR of 32.734. All measures
for transitions of BraTS are shown by SSIM of above 0.9,
NMSE of below 0.1, and PSNR of around 30. Measures for
transitions of iSeg-2017 are shown by SSIM of above 0.85,
NMSE of slightly above 0.1, and PSNR of around 25.

5.3. Ablation Study and Choice of Hyperparameter

Effectiveness of Fusion Loss : We evaluate the effective-
ness of the auxiliary fusion loss LF by training models with
and without the loss. Table 2 summarizes the results. Re-
sults show that for all data sets, transitions, and measures,
models including the auxiliary loss to match the final fused
image to the desired real image show improvements.
Weight of Index Registration : Between various attempts
of changing σIR, a portion of the results are shown in Ta-
ble 3. For all kinds of data sets, transitions, and measures,
models with σIR set to 2 show the best results, and σIR set
to 1 show the second best results. Due to the hardness of
spatial adjustments, σIR, which is a weight for training the
index registration field, heavily affects the learning model.

6. Conclusion
An MRI imputation method using novel invariant regis-

tration fields was presented. The proposed method provides
clinically useful substitute results where anatomical and vi-
sual aspects are preserved and subtle details are captured.
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dem, and T. Çukur. Image synthesis in multi-contrast MRI
with conditional generative adversarial networks. CoRR,
abs/1802.01221, 2018.

[12] B. D. de Vos, F. F. Berendsen, M. A. Viergever, M. Staring,
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