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Abstract

Recently, thermal image based 3D understanding is
gradually attracting attention for an illumination condition
agnostic machine vision. However, the difficulty of the ther-
mal image lies in insufficient training supervision due to
its low-contrast and textureless properties. Also, introduc-
ing additional modality requires further constraints such
as complicated multi-sensor calibration and synchronized
data acquisition. To leverage additional modality informa-
tion without such constraints, we propose a novel train-
ing framework that consists of self-supervised learning of
unpaired multi-spectral images and feature-level adversar-
ial adaptation. In the training stage, we utilize unpaired
RGB/thermal video and partially shared network architec-
ture consisting of modality-specific feature extractors and
modality-independent decoder. Through the shared network
design, the depth decoder can leverage the self-supervised
signal of the unpaired RGB images. Feature-level adversar-
ial adaptation minimizes the gap between RGB and ther-
mal features and eventually makes the thermal encoder ex-
tract representative and informative features. Based on the
proposed method, the trained depth network shows outper-
formed results than previous state-of-the-art methods.

1. Introduction
Self-supervised learning of 3D understanding tasks such

as depth, pose, and scene flow estimation [45, 44, 35, 11,
3, 15, 16, 24] have been researched to reduce the burden of
expensive and careful ground-truth data creation process.
Also, recent self-supervised learning research for depth and
pose estimation [43, 13, 3] almost reached comparable per-
formance with supervised baselines [9, 28, 1]. However,
most studies have been researched on the RGB image do-
main. Therefore, these works show critical vulnerability and
performance drop according to illumination and weather
conditions, such as in low-lighted, cloudy, rainy, and foggy,
and snowy scenes.

Long-wave infrared camera, also known as a thermal
imaging camera, maintain consistent image quality because
a thermal camera is less affected by weather and lighting
condition changes. In addition, since it has sufficient image
resolution, dense machine perceptions, such as dense se-
mantic segmentation [38, 39] and depth estimation [27, 37],
are also possible. Therefore, thermal image based 3D vi-
sion applications for a robust robot vision [7, 20, 37, 27] are
gradually attracting attention recently. However, the diffi-
culty of thermal image lies in its image properties. Thermal
image tend to have low contrast and low texture informa-
tion, which are the most fundamental sources in previous
self-supervised depth and pose estimation approaches.

To takle the issue of thermal properties, the previous
self-supervised depth estimation methods for thermal im-
age [20, 37, 27] exploits RGB color images. Kim et al. [20]
and Lu et al. [27] utilizes spatial image reconstruction with
paired stereo RGB images and stereo RGB-thermal images.
For this purpose, they need a specialized sensor system that
consists of stereo RGB and one thermal cameras that shares
the same principal axis with a beam splitter, or that con-
sists of very closely located stereo RGB and stereo ther-
mal cameras (Fig. 1-(a)). Shin et al. [37] use temporal im-
age reconstruction with paired RGB-thermal images. Based
on the method, they bring a performance improvement in
the thermal image based depth estimation task. However,
the method also inherited the above-mentioned multi-sensor
problems such as complicated multi-sensor calibration and
synchronized data acquisition (Fig. 1-(b)).

To address the thermal properties and multi-sensor prob-
lems, in this paper, we propose a novel training frame-
work that combines self-supervised learning of unpaired
multi-spectral images and feature-level adversarial adapta-
tion for monocular depth estimation of thermal image. The
proposed method effectively leverages additional modal-
ity information without requiring any extra constraint, such
as specialized hardware, multi-sensor calibration process,
and sensor synchronization compared to the previous meth-
ods [20, 27, 37] (Fig. 1-(c)).
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(a) Strict spatio-temporal constraints [20, 27] (b) Relieved spatio-temporal constraints [37] (c) No spatio-temporal constraints (Ours)

Figure 1: Required constraints on RGB-Thermal Training Data. Previous self-supervised depth estimation methods for
thermal image utilized RGB images in a training stage as an auxiliary self-supervision source. However, for this purpose, the
previous methods [20, 27, 37] requires specialized hardware setup to built accurately aligned RGB-thermal image pair [20,
27], difficult multi-sensor extrinsic calibration process [37], and time synchronization between RGB and thermal streams [20,
27, 37]. On the other hand, our proposed method fully resolves the constraints between RGB and thermal images.

Our contributions can be summarized as follows:

• We propose a self-supervised learning method of
unpaired RGB-thermal images to provide self-
supervisory signal and effectively transfer RGB do-
main knowledge to the thermal domain by exploiting
depth decoder sharing, unpaired multi-spectral image
reconstruction, and locally consistent thermal image
scaling method.

• We propose an adversarial feature adaptation method
to enhance a feature representation ability of the ther-
mal image encoder by minimizing feature-space do-
main gap between RGB and thermal features.

• We demonstrate that the proposed method outperforms
previous state-of-the-art approaches on the ViViD
benchmark dataset [23] both quantitatively and qual-
itatively without requiring any extra constraints.

2. Related Works
2.1. Self-supervised Depth from Thermal Image

Recently, self-supervised depth estimation methods from
thermal images are getting attention [20, 27, 37, 36] to
leverage weather and lighting condition agnostic properties
of the thermal image. However, the difficulty of a thermal
image lies in its image properties, such as low contrast ra-
tio and low texture information, which weakens the self-
supervisory signal of the image reconstruction loss.

Therefore, most previous works [20, 27, 37] utilize auxil-
iary self-supervision source to train a depth estimation net-
work. Kim et al. [20] exploited spatial image reconstruc-
tion with paired stereo RGB images and estimated depth
map from a thermal image. For this purpose, they design a
sensor system consisting of two RGB cameras, one thermal
camera, and a beam splitter for the principal axis alignment
of RGB-thermal cameras [7]. Lu et al. [27] also needs a
specialized hardware system that has very closely located

RGB stereo and thermal stereo camera. They exploit an im-
age translation network to synthesize a thermal-like left im-
age. After that, the spatial reconstruction loss between the
thermal-like left and real right thermal images is used to
train the depth network. Shin et al. [37] utilizes a tempo-
ral reconstruction loss with paired RGB-thermal images to
train single-view depth and multiple-view pose networks.

These methods [20, 27, 37] bring a performance
improvement by leveraging additional self-supervision
sources. However, these methods require extra constraints
such as a specialized image setup, complicated multi-sensor
calibration, and synchronized data acquisition. On the other
hand, our proposed method does not require any extra con-
straints by exploiting adversarial domain adaptation and
self-supervised learning of unpaired RGB-thermal videos.

2.2. Unsupervised Domain Adaptation

Unsupervised Domain Adaptation (UDA) aims to trans-
fer the knowledge from the labeled source domain to the
unlabeled target domain. It has shown remarkable progress
on many computer vision tasks such as image classifica-
tion [41], semantic segmentation [40], and object detec-
tion [5]. A common strategy for UDA is to reduce the do-
main gap by constructing shared embedding space across
both source and target domains. Under this goal, many
works introduce adversarial training [14] and the main dif-
ference among them is in which the embedding space is
shared (e.g. image-level [29, 31, 46, 29, 6, 18, 12], feature-
level [41, 5, 18, 32], and prediction-level [40, 4, 26, 30,
21, 25]). However, most works still target the scenario from
label-rich domain to unlabeled domain in RGB modality.

Apart from the previous works, we investigate the cross-
modality transfer learning setup, viewing each modality as
an independent domain. In addition, instead of expensive
annotations, we leverage self-supervised learning of depth
and pose estimation on both domains. Thus, our network is
trained in a fully unsupervised manner.
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Figure 2: Overall pipeline of our proposed training framework. The overall architecture of our framework consists of two
domain-specific encoders (Ethr and Ergb), a domain-shared decoder, and discriminator ψ. Given unpaired RGB and thermal
images, the networks estimate depths (Drgb and Dthr) and relative poses (P rgb and P thr) on each image domain. After
that, the networks are trained with a self-supervised loss Lself by reconstructing each image sequence. At the same time,
feature-level domain adaptation explicitly guides the thermal extractor to encompass representative feature extraction ability
via adversarial loss Ladv between RGB and thermal feature maps (frgb and fthr).

3. Method

3.1. Method Overview

The proposed method aims to solve the weak self-
supervision problem of thermal images by utilizing addi-
tional modality information without requiring multi-sensor
calibration, synchronized data acquisition, and a specialized
hardware setup. The ideas of the proposed method to utilize
unpaired RGB and thermal images are shown in Fig. 2.

First, we designed a partially shared network architecture
to propagate a self-supervised loss Lrgbself of unpaired RGB
images. Here, we consider modality-specific encoders be-
cause we observed the RGB and thermal images have a high
appearance gap and data distribution differences. Through
the shared network design, the depth decoder can leverage
the self-supervised losses of both the unpaired RGB and
thermal images (Lrgbself , Lthrself ).

However, the thermal encoder Ethr still suffers from in-
sufficient self-supervision since the loss Lrgbself is not prop-
agated to the thermal encoder. Therefore, secondly, we ex-
ploit a domain adaptation method in the feature space to
provide an additional self-supervision and transfer the rep-
resentative feature extraction ability of the RGB encoder
Ergb to the thermal encoder Ethr. As a result, the ther-
mal encoder can learn to extract informative feature maps
even from the low-textured thermal images. Based on the
network design, self-supervised learning of unpaired RGB-

thermal video, and feature-level adaptation, our proposed
method effectively leverages additional modality informa-
tion without relying on the multi-sensor calibration, syn-
chronized data acquisition, and specialized hardware setup.

3.1.1 Training Objective

The proposed method utilizes unpaired RGB and ther-
mal images in the training stage to leverage efficient self-
supervisory signal of the RGB domain. Our proposed
method mainly consists of two learning methods; self-
supervised learning via unpaired RGB-Thermal images
(Lrgbself and Lthrself ) and feature-space domain adaptation via
adversarial loss Ladv between RGB and thermal features.
Our overall training loss to train single-view depth and
multiple-view pose estimation network is as follows:

Ltotal = Lrgbself + Lthrself + λadvLadv, (1)

where Lself indicates the self-supervised learning loss and
λadv is a scale factor for the adversarial loss Ladv . Self-
supervised learning loss of RGB domain Lrgbself propagates
depth extraction knowledge via the shared depth decoder
from the RGB source to the thermal target domain. Ad-
versarial loss Ladv enhances the feature extraction ability
of the thermal feature encoder Ethr by minimizing domain
gap between RGB and thermal feature spaces. Note that the
discriminator ψ is trained with the discriminator loss Ldis.

5800



3.2. Adversarial Multi-spectral Feature Adaptation

Under the guidance of a self-supervised signal on both
modalities, the shared depth decoder is trained in a domain
invariant way so that both features, fthr and frgb, are well
decoded into the depth space. However, the thermal fea-
ture extractor Ethr still tends to extract less discriminative
features compared to the RGB feature extractor Ergb. Al-
though RGB and thermal images have a large discrepancy
in input distribution, their feature space should share strong
spatial and local similarities according to depth of scene.
Thus, we utilize this insight to transfer the knowledge from
RGB to thermal domain via an adversarial alignment of
their features.

3.2.1 Discriminator Loss

The discriminator ψ attempts to distinguish whether a given
feature is generated from RGB or thermal domain. The
competition between the feature extractor Ethr and the dis-
criminator ψ helps the feature extractor Ethr to generate
indistinguishable feature fthr with RGB feature frgb from
the thermal image. The loss function LDis to train the dis-
criminator ψ is defined as follows:

LDis = LMSE(ψ(fthr), 0) + LMSE(ψ(frgb), 1), (2)

where ψ(·) denotes prediction result of the discriminator ψ,
LMSE is Mean Squared Error loss.

3.2.2 Adversarial Loss

The purpose of adversarial loss is to enhance the represen-
tation ability of the thermal extractor Ethr by minimizing
domain gap between RGB feature frgb and thermal feature
fthr. This process is accomplished by the competition be-
tween the feature extractor Ethr and the discriminator ψ.
Thermal feature extractor Ethr struggles to make the dis-
criminator ψ misclassify the given thermal feature fthr as
belonging to the RGB feature space. The adversarial loss,
which makes the feature extractor Ethr extracts an RGB
domain like feature, is defined as follows :

Ladv = LMSE(ψ(fthr), 1),
(3)

3.3. Self-supervised Training

As shown in Fig. 2, the networks are trained in a self-
supervised manner by reconstructing each spectrum image
with intrinsic matrix, estimated depth map, and estimated
relative camera pose. Even if a thermal image based recon-
struction loss provides a weak self-supervisory signal, RGB
image based loss signal is propagated to the shared depth
decoder Dsh and leads to knowledge transfer from RGB to

the thermal domain. Self-supervised training loss to train
single-view depth and multiple-view pose estimation net-
work is as follows:

Lself = Lrec + λgcLgc + λsmLsm, (4)

where Lrec indicates image reconstruction loss, Lgc is geo-
metric consistency loss, Lsm is edge-aware depth smooth-
ness loss, and λgc and λsm are hyper parameters. In the fol-
lowing subsections, we use two consecutive images [It, Is]
(i.e., target and source images) for a concise explanation.

3.3.1 Image Reconstruction Loss

As shown in Fig. 2, the depth and pose networks estimate
a depth map Dt and relative camera pose Pt�s from a con-
secutive images It, Is. After that, a synthesized image Ĩt is
generated with the source image Is, target depth map Dt,
and relative pose Pt�s in the inverse warping manner [45].
The image reconstruction loss, which consists of L1 differ-
ence and Structural Similarity Index Map (SSIM) [42], is
calculated by measuring the difference between the synthe-
sized and original target images, as follows:

Lpe(It, Ĩt) =
γ

2
(1− SSIM(It, Ĩt)) + (1− γ)||It − Ĩt||1,

(5)

where γ indicates scale factor between SSIM and L1 loss.

3.3.2 Locally Consistent Thermal Image Scaling

As shown in Fig. 3, a typical thermal camera generates a
relative scale thermal image in a built-in pipeline [8]. The
camera convert a RAW thermal image into a scaled thermal
image by normalizing the RAW image with its min and max
values. Therefore, as the temperature distribution within a
scene change, the overall contrast of the scaled thermal im-
age also change. Furthermore, too high- or low- temperature
objects lead to a zero-contrast image like indoor images.

Therefore, we propose a locally consistent thermal im-
age scaling method to preserve a temporal consistency and
increase image details for the image reconstruction process.
The proposed scaling method is formulated as follows :

ITt,t−1,t+1 = clamp

(
IT,rawt,t−1,t+1 − τmin

τmax − τmin
, τmin, τmax

)
,

(6)
where the local min-max values (τmin, τmax) are defined
as τmin = 1

|N |
∑N
n=1 percent(I

T,raw
n , σ) and τmax =

1
|N |
∑N
n=1 percent(I

T,raw
n , 1− σ). The local min-max val-

ues are adaptively decided by averaging over σ-th and
(1 − σ)-th percentile values of each image. We utilize the
percentile values to exclude too high- and low- temperature
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frame t-1 frame t frame t+1 frame t-1 frame t frame t+1
(a) Default thermal camera (b) Our proposed method

Figure 3: Locally consistent thermal image scaling. Typical thermal camera produce a relative scale thermal image in a
default setting (a). Therefore, as the temperature distribution within a scene change, the overall contrast of the thermal image
also change (Bottom left images). In addition, too high- or low- temperature measurement leads zero-contrast image like
indoor images (Top left images).

observation. After that the local min-max values are used
to generate locally consistent scaled thermal images. The
clamp(·) function clamps a value between an upper and
lower bound. We use a RAW thermal image as a network
input.The locally consistent scaled images are used for the
reconstruction and smoothness loss calculation.

3.3.3 Smoothness Loss

As the image reconstruction loss usually does not provide
informative self-supervision in low-texture and homoge-
neous regions, we regularize the estimated depth map to
have smooth property by adding edge-aware smoothness
loss Lsm [11].

Lsm =
∑
p

|∇Dt| · e−|∇It|, (7)

where ∇ is first differential operator along spatial direction.

3.3.4 Geometric Consistency Loss

Geometric consistency loss Lgc [2] regularizes the esti-
mated depth maps (Dt, Ds) to have scale-consistent 3D
structure by minimizing geometric inconsistency. The ge-
ometry consistency loss Lgc and inconsistency map Ddiff

are defined as follows :

Lgc =
1

|Vp|
∑
p∈Vp

Ddiff , Ddiff =
|D̃t −D

′

t|
D̃t +D

′
t

, (8)

where D̃t is the synthesized depth map by warping the
source depth mapDs and relative pose Pt�s.D

′

t is the inter-
polated depth map of Dt to share the same coordinate with
the synthesized depth map D̃t.

3.3.5 Invalid Pixel Masking

We filtered out invalid reconstruction signals by checking
depth consistency [3] and static pixel [11] as follows:

Lrec =
1

|Vp|
∑
Vp

Mself ·Mauto · Lpe(It, Ĩt), (9)

where self discovery mask Mself [3] excludes moving ob-
jects and occluded regions defined as Mself = 1 −Ddiff ,
auto mask Mauto [11] excludes the static and low-texture
pixels which remains the same between adjacent frames,
defined as Mauto =

[
Lpe(I

eh
t , Ĩeht ) < Lpe(I

eh
t , Iehs )

]
, Vp

stands for valid points that are successfully projected from
Is to the image plane of It, and |Vp| defines the number of
points in Vp. Lastly, [·] is the Iverson bracket.

4. Experimental Results
4.1. Implementation Details

4.1.1 Dataset

We utilize ViViD benckmark dataset [23] to evaluate our
proposed method. ViViD dataset [23] provides various sen-
sor data streams; a thermal camera, an RGB-D camera, an
event camera, and Lidar information. Also, the dataset con-
sists of 10 indoor sequences and 4 outdoor sequences. Each
sequence is taken under different lighting and motion con-
ditions. To train monocular depth network, We follow the
dataset split used in Shin et al. [37]. The indoor training
set consists of 5 well-lit image sequences, and the remain-
ing sequences are divided into indoor well-lit and zero-
light(dark) evaluation sets. The outdoor training set consists
of 2 day-light sequences, and the remaining sequences are
used for the outdoor night evaluation set.

5802



4.1.2 Network Architecture

We utilize ResNet-18 backbone [17] as domain specific fea-
ture extractors, decoder part of DispResNet [35] as a do-
main shared depth decoder, PoseNet [35] as a pose decoder,
and discriminator of PatchGAN [19] as a feature space
discriminator ψ. The first layer of the thermal feature ex-
tractor is modified to take single-channel thermal image.
The RGB domain networks are initialized with the KITTI
dataset [10] pre-trained weights to leverage the large-scale
dataset trained task-specific knowledge by following com-
mon UDA strategy.

4.1.3 Training Setup

We utilize the PyTorch library [33] to implement our pro-
posed method. We trained a depth network for the 200
epochs on the single RTX Titan GPU with 24GB memory.
We take about 12 hours to train the depth and pose networks
with a batch size 8. During the training, we used a pose net-
work as an auxiliary network to exploit self-supervised loss.
The hyper-parameters for the loss function are set to as fol-
lows. The scale values (λgc, λsm, γ, and λadv) are set to
0.5, 0.1, 0.85, and 2e−5. The percentile value σ is set to
1%. The discriminator loss Lψ is also multiplied with the
scale factor 2e−5. We utilize three Adam optimizer [22] to
train the depth, pose, and discriminator networks. Two op-
timizers are used for the depth and pose network of RGB
branch and thermal branch networks. The other one is used
for the discriminator network. The learning rates of RGB,
thermal, and discriminator optimizers are set to 1e−6, 1e−4,
and 1e−6. We utilize random crop and horizontal flip for the
data augmentation of both RGB and thermal images.

4.2. Single-view Depth Estimation Results

We compare our proposed method with the state-of-the-
art self-supervised depth networks [2, 3, 37] to validate the
effeteness of our method. Note that we cannot reproduce
the previous works [20, 27] because they don’t release their
source code and needs paired stereo RGB and thermal im-
ages with a specific condition. The supervised baselines,
such as DispResNet [35] and Midas-v2 [34], provides an
upper bound of the self-supervised learning network.

The experimental results are shown in Tab. 1 and Fig. 4.
Overall, the RGB image based depth networks (i.e., RGB
input of Tab. 1) records high accuracy and low error score
in the well-lit indoor evaluation set. However, the perfor-
mance significantly decreases when sufficient lighting con-
dition is not guaranteed, such as indoor dark and outdoor
night evaluation sets. On the other hand, the thermal image
based depth networks (i.e., Thermal input of Tab. 1) show
consistent depth estimation performance regardless of illu-
mination condition.

However, as shown in Fig. 4, the self-supervised monoc-
ular depth networks for thermal images (i.e., Bian et al. and
Shin et al. (T)) show inaccurate depth estimation results, es-
pecially in the indoor scenario. Depending on the surround-
ing environments, self-supervised loss of thermal image
shows different aspects. Thermal image of indoor scenes
generally has high noise and low contrast and leads to train-
ing failure. On the other hand, thermal image of outdoor
scenes has relatively high contrast and low noise. There-
fore, it can generate enough self-supervisory loss to the net-
works (i.e., Bian et al. and Shin et al. (T) in outdoor re-
sults). However, both outdoor and indoor thermal images
still doesn’t contain enough texture, color, and contrast in-
formation compared to RGB images.

Therefore, additional information such as RGB video
can be a great rescue for thermal image based depth net-
work. Shin et al. [37] exploits paired RGB images, extrin-
sic parameters, and forward warping module to propagate
image reconstruction loss of RGB images to the thermal
image depth network. However, this method requires ad-
ditional extrinsic calibration and synchronized data acquisi-
tion processes that typically require high expertise. On the
other hand, the proposed method is not restrained by these
processes because it learns from unpaired RGB and ther-
mal video. Also, despite the absence of these processes, the
proposed learning method shows outperformed or compa-
rable depth estimation performance in all evaluation sets.
Furthermore, as shown in Fig. 4, our method demonstrates
clean and sharp depth map results via adversarial feature
adaptation, compared to the previous state-of-the-art self-
supervised depth networks.

4.3. Ablation Study

4.3.1 Self-supervised Learning of Unpaired RGB-
Thermal Videos

We conduct ablation study about the self-supervised learn-
ing of unpaired RGB-thermal video, as shown in Tab. 2. For
the baseline model (i.e., Baseline), we trained depth net-
works with a self-supervised loss Lthrself of thermal video
only. After that, we design a network architecture that has
modality specific encoders and shared depth decoder head
to exploit unpaired RGB-thermal video. The model (1) are
trained with the self-supervised losses of both RGB and
thermal video (Lrgbself and Lthrself ). The self-supervised learn-
ing of unpaired videos improves overall network perfor-
mance by propagating of self-supervised loss of RGB video
to the shared depth decoder. However, the thermal feature
encoder cannot leverage the loss of RGB video and still suf-
fer from lack of self-supervision signal.
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Table 1: Quantitative comparison of depth results on ViViD evaluation sets [23]. We compare our network with state-of-
the-art self-supervised depth networks [2, 3, 37]. Overall, Ours shows outperformed and comparable results in all evaluation
sets without requiring multi-sensor calibration and synchronized data acquisition. The best performance in each block is
highlighted in bold.

(a) Depth estimation result on the ViViD indoor well-lit/zero-light testset.

Scene Methods Input Supervision Cap
Error ↓ Accuracy ↑

AbsRel SqRel RMS RMSlog δ < 1.25 δ < 1.252 δ < 1.253

In
do

or
W

el
l-l

it

Midas-v2 (ResNext101) [34] RGB Depth 0-10m 0.194 0.348 0.370 0.210 0.928 0.979 0.991
DispResNet (ResNet18) Thermal Depth 0-10m 0.117 0.097 0.462 0.170 0.869 0.960 0.991

Midas-v2 (EfficientNet-Lite3) Thermal Depth 0-10m 0.062 0.044 0.282 0.107 0.946 0.983 0.995
Midas-v2 (ResNext101) Thermal Depth 0-10m 0.057 0.039 0.269 0.102 0.954 0.984 0.995

Bian et al. [2] (ver.NeurIPS) RGB RGB 0-10m 0.327 0.532 0.715 0.306 0.661 0.932 0.979
Bian et al. [3] (ver.IJCV) Thermal Thermal 0-10m 0.274 0.317 0.897 0.316 0.544 0.840 0.969

Shin et al. [37] (T) Thermal Thermal 0-10m 0.225 0.201 0.709 0.262 0.620 0.920 0.993
Shin et al. [37] (MS) Thermal RGB&T 0-10m 0.156 0.111 0.527 0.197 0.783 0.975 0.997

Ours Thermal RGB&T 0-10m 0.160 0.129 0.554 0.203 0.793 0.961 0.992

In
do

or
D

ar
k

Midas-v2 (ResNext101) [34] RGB Depth 0-10m 0.351 0.545 0.766 0.327 0.624 0.875 0.976
DispResNet (ResNet18) Thermal Depth 0-10m 0.124 0.094 0.466 0.174 0.854 0.963 0.992

Midas-v2 (EfficientNet-Lite3) Thermal Depth 0-10m 0.060 0.036 0.273 0.105 0.950 0.985 0.996
Midas-v2 (ResNext101) Thermal Depth 0-10m 0.053 0.032 0.257 0.099 0.958 0.987 0.996

Bian et al. [2] (ver.NeurIPS) RGB RGB 0-10m 0.452 0.803 0.979 0.399 0.493 0.786 0.933
Bian et al. [3] (ver.IJCV) Thermal Thermal 0-10m 0.277 0.311 0.866 0.318 0.540 0.833 0.967

Shin et al. [37] (T) Thermal Thermal 0-10m 0.232 0.222 0.740 0.268 0.618 0.907 0.987
Shin et al. [37] (MS) Thermal RGB&T 0-10m 0.166 0.129 0.566 0.207 0.768 0.967 0.994

Ours Thermal RGB&T 0-10m 0.160 0.124 0.547 0.202 0.789 0.969 0.994

(b) Depth estimation result on the ViViD outdoor night testset.

Scene Methods Input Supervision Cap
Error ↓ Accuracy ↑

AbsRel SqRel RMS RMSlog δ < 1.25 δ < 1.252 δ < 1.253

O
ut

do
or

N
ig

ht

Midas-v2 (ResNext101) [34] RGB Depth 0-80m 0.264 2.187 7.110 0.306 0.571 0.833 0.955
DispResNet (ResNet18) Thermal Depth 0-80m 0.159 1.101 5.019 0.212 0.857 0.964 0.980

Midas-v2 (EfficientNet-Lite3) Thermal Depth 0-80m 0.090 0.464 3.385 0.130 0.910 0.981 0.995
Midas-v2 (ResNext101) Thermal Depth 0-80m 0.078 0.369 3.014 0.118 0.933 0.988 0.996

Bian et al. [2] (ver.NeurIPS) RGB RGB 0-80m 0.617 9.971 12.000 0.595 0.400 0.587 0.720
Bian et al. [3] (ver.IJCV) Thermal Thermal 0-10m 0.133 0.848 4.639 0.175 0.834 0.976 0.993

Shin et al. [37] (T) Thermal Thermal 0-80m 0.157 1.179 5.802 0.211 0.750 0.948 0.985
Shin et al. [37] (MS) Thermal RGB&T 0-80m 0.146 0.873 4.697 0.184 0.801 0.973 0.993

Ours Thermal RGB&T 0-80m 0.111 0.778 4.177 0.153 0.889 0.981 0.994

Table 2: Ablation study of the proposed method on ViViD outdoor evaluation set. Our proposed method exploits two
learning methods; self-supervised learning of unpaired multi-spectral videos and adversarial domain adaptation between
multi-spectral features. We validate the effect of each component of our proposed method and another selectable option.

Model
Self Sup Domain Adapt Error ↓ Accuracy ↑

Lthrself Lrgbself feat pred AbsRel SqRel RMS RMSlog < 1.25 < 1.252 < 1.253

Baseline ✓ 0.132 0.926 5.090 0.182 0.823 0.965 0.990
(1) ✓ ✓ 0.120 0.801 4.545 0.167 0.853 0.974 0.992
(2) ✓ ✓ ✓ 0.118 0.802 4.561 0.165 0.862 0.977 0.993
(3) ✓ ✓ ✓(2nd) 0.111 0.778 4.177 0.153 0.889 0.981 0.994
(4) ✓ ✓ ✓(3rd) 0.137 0.986 5.029 0.185 0.820 0.964 0.990
(5) ✓ ✓ ✓(2nd) ✓ 0.118 0.872 4.386 0.160 0.876 0.978 0.993
Ours ✓ ✓ ✓(2nd) 0.111 0.778 4.177 0.153 0.889 0.981 0.994
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Figure 4: Qualitative comparison of depth estimation results on ViViD dataset [23]. Our method demonstrates clean
and sharp depth map results via adversarial feature adaptation and self-supervised learning of unpaired multi-spectral video,
compared to previous state-of-the-art self-supervised depth networks. *We visualize RGB images to show light conditions.

4.3.2 Feature-level Adversarial Domain Adaptation

We adopted the principal idea of domain adaptation to com-
pensate for the insufficient self-supervision of the thermal
encoder. There are two ways to leverage RGB domain in-
formation. We can provide self-supervision via prediction-
level domain adaptation (i.e., depth map) or feature-level
domain adaptation (i.e., feature vector). We found the do-
main adaptation in the first scale low-level feature (1st) and
high-level feature map (4th) immediately converged to a
trivial solution. It seems that this phenomenon occurs be-
cause too early low-level features or high-level features are
too easy or difficult for the discriminator to distinguish at
the beginning of training.

The prediction-level domain adaptation (2) leads to
marginal performance improvement. On the other hand,
feature-level domain adaptation (3) brings high perfor-
mance boosting. We found the feature-level domain adap-
tation explicitly guides the thermal extractor to encompass
representative feature extraction ability via adversarial loss
between RGB and thermal features. Further analysis can be
found in the supplementary material.

5. Conclusion

In this paper, we propose a novel training framework
that combines self-supervised learning of unpaired multi-
spectral images and adversarial multi-spectral feature adap-
tation for monocular depth estimation from thermal im-
age. The proposed method aims to solve the weak self-
supervision problem of thermal images by utilizing addi-
tional modality information without requiring multi-sensor
calibration, synchronized data acquisition, and a specialized
hardware setup. Based on the proposed method, the trained
depth estimation network shows outperformed results than
previous state-of-the-art networks.
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