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Channels from the same cluster modifying nose in FFHQ. Channels from the same cluster modifying pattern in Fashion.

Channels from the same cluster modifying hair in Metfaces.

Channels from different clusters in LSUN Cars. Channels from different clusters in AFHQ Cats.

Figure 1: Our submodular framework uses the notion of clusters to select the most representative and diverse set of style
channels. Channels performing similar or different manipulations are shown in the clusters above. The input images are
displayed in the first column.

Abstract

The discovery of interpretable directions in the latent
spaces of pre-trained GAN models has recently become a
popular topic. In particular, StyleGAN2 has enabled var-
ious image generation and manipulation tasks due to its
rich and disentangled latent spaces. However, the discov-
ery of such directions is typically made either in a super-
vised manner, which requires annotated data for each de-
sired manipulation, or in an unsupervised manner, which
requires a manual effort to identify the directions. As a
result, existing work typically finds only a handful of di-
rections in which controllable edits can be made. In this
study, we design a novel submodular framework that finds
the most representative and diverse subset of directions in
the latent space of StyleGAN2. Our approach takes advan-
tage of the latent space of channel-wise style parameters,
so-called stylespace, in which we cluster channels that per-
form similar manipulations into groups. Our framework

promotes diversity by using the notion of clusters and can
be efficiently solved with a greedy optimization scheme. We
evaluate our framework with qualitative and quantitative
experiments and show that our method finds more diverse
and disentangled directions.

1. Introduction
Recent GAN models such as StyleGAN2 [12] and Big-

GAN [2] have achieved phenomenal success due to their
ability to produce images with high visual quality and fi-
delity. StyleGAN, in particular, introduces a style-based
approach to transform random latent vectors into realis-
tic images. Unlike traditional GAN architectures [23, 10],
style-based designs first transform the random latent vectors
into an intermediate latent code using a mapping function,
and then modify the channel-wise activation statistics of the
model. Due to its rich and disentangled latent spaces, sev-
eral approaches have been proposed to study the structure
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of the latent space of StyleGAN2 in a more principled way
[24, 8]. Some of these works aim to discover specific direc-
tions such as expression or gender using supervision [24],
while others propose unsupervised approaches to identify
semantically meaningful directions [8, 31]. Typically, the
identified directions are used to modify the image semantics
by shifting the latent code by a certain amount in the iden-
tified direction to increase or decrease the desired property.
However, while supervised methods such as [24] manage to
find the directions the user is interested in, they are limited
since it is not always possible to find labeled data for the
desired attribute. On the other hand, unsupervised methods
such as [8, 31] find a certain number of directions, but the
user has to manually explore what these directions are capa-
ble of. Not only this approach provide limited insight into
the manipulation capabilities of latent space, but it is also
time consuming for the user to explore these directions.

Recently, it has been shown that the StyleGAN2 method
provides a variety of different latent spaces suitable for dif-
ferent image editing and manipulation tasks. For example,
it has been shown that the W+ space is suitable for image
inversion [1, 30], while S, the space of channel-wise style
parameters (so-called stylespace), allows disentangled edits
[34]. This space offers rich editing capabilities where an ar-
bitrary style channel is responsible for a particular edit, such
as smile, eye color, hair type. In other words, it is possible to
perform disentangled manipulations by perturbing channel-
wise style parameters of the image. While some previous
work [21, 34] explores stylespace to find specific channels
that perform a desired in a supervised manner, types of ma-
nipulations stylespace has to offer in a fine-grained and un-
supervised manner has not yet been explored.

In this work we aim to find a subset of diverse and repre-
sentative directions in latent spaces. We consider the search
for directions in the latent space as a combinatorial op-
timization problem, where we view the latent space as a
discretized set of items using the notion of style channels.
Our task is then to select a subset of channels that cov-
ers the stylespace, while respecting the diversity in terms
of types of manipulations they perform. This aspect is
particularly important since stylespace provides more than
9K style channels and there is redundancy in what these
channels cover. In particular, it has been shown that there
are over 300 style channels dedicated to the control of the
hair, and over 180 channels dedicated to the ears or back-
ground [34]. Therefore, an objective function should con-
sider diversity into account when covering the stylespace.
In other words, if a channel modifying the hair style at-
tribute is already selected, the gain of covering another hair
style channel should diminish. To address this issue, we
design a novel framework that considers representativeness
of the channels while incorporating diversity. Our diversity
objective benefits from clustering the latent space, where

channels that perform similar edits are grouped under the
same cluster (see Figure 1). Our framework then ensures
that selecting a channel from a cluster that has not yet been
explored yields a higher gain. We formulate this task as
a monotone submodular function maximization, for which
there is a simple greedy algorithm guarantees that the solu-
tion obtained is almost as good as the best possible solution
[15]. Our contributions are as follows:

• We propose the problem of finding diverse and rep-
resentative style channels in the latent space of Style-
GAN2 and design a submodular objective function that
exhibits a natural property of diminishing returns, for
which we can efficiently provide a near-optimal solu-
tion [17].

• To the best of our knowledge, our framework is the
first work to propose a submodular framework for find-
ing latent directions, and the first attempt to provide a
complete guide to discovering semantically meaning-
ful groups of style channels.

2. Related Work
Recent research has shown that the latent space of GANs

contains semantically meaningful directions that can be
used for editing images in a variety of ways [8, 9, 31]. Our
approach builds on recent successes in discovering disen-
tangled directions using stylespace. We also benefit con-
cepts from document summarization in the NLP literature
[15] to design our submodular framework.

Several techniques are proposed to exploit the latent
structure of GANs in supervised and unsupervised ways.
Supervised approaches to exploit the latent space typically
use pre-trained classifiers to guide the optimization process
and discover directions. [24] trains a Support Vector Ma-
chine (SVM) [19] with labeled data such as age, gender
and expression. The normal vector of the resulting hyper-
plane is used as the latent direction. [7] uses an exter-
nally trained classifier to discover directions for cognitive
image attributes in the latent space of BigGAN. Other ap-
proaches attempt to find interpretable directions in an un-
supervised manner. [31] uses a classifier-based technique
that finds a collection of directions that correlate with a
variety of image modifications. [9] presents an approach
that is self-supervised and uses task-specific edit functions.
[25] directly uses closed-form optimization of the interme-
diate weight matrix of GANs and selecting the eigenvectors
with the largest eigenvalues as directions. GANSpace [8]
uses principal component analysis (PCA) [33] on randomly
sampled latent vectors from the intermediate layers of Big-
GAN and StyleGAN2 and treats the generated principal
components as latent directions. [36] uses a self-supervised
contrastive learning-based method to discover interpretable
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directions in the latent space of pre-trained BigGAN and
StyleGAN2 models.

Existing work either provides limited exploration of
stylespace in a supervised manner [34] or aims to iden-
tify relevant style channels using text-based prompts with
a CLIP model [21]. In particular, [34] retrieves relevant
channels based on a region or attribute classifier. However,
what kind of manipulations stylespace has to offer in a fine-
grained way has not yet been explored.

An important component of our framework requires that
the channels in the stylespace are grouped into clusters. As
discussed later in Section 3, we use the notion of clusters to
measure the diversity when covering the stylespace. There
are several works that use clustering in the latent space of
GAN models. We use clustering as a form of identifying
similar channels and use this insight as a way to diversify
coverage. [5] aims to edit an image based on a particular
part of a reference image using k-means [16]. Given a ref-
erence image and a target image, they exchange style codes
based on regional differences to transfer the appearance of
an object. [4] improves upon [5] by finding more success-
ful image-specific manipulation directions and eliminating
the per-image matching overhead. [20] clusters the feature
maps to find meaningful and interpretable semantic classes
that can be used to create segmentation masks. Compared
to these methods, we aim to cluster style channels directly
based on the regions they modify and use this as a way to
diversify channel selection.

3. Methodology
In our work, we view the latent space of StyleGAN2

as a discrete set of items using the notion of style chan-
nels in stylespace. The task we are interested in is then to
select a subset of representative and diverse channels that
cover the stylespace. An overview of our framework can
be found in Figure 2. Our method benefits from clustering
style channels by grouping channels that perform similar
manipulations. These clusters are then used in our submod-
ular framework to promote diversity.

3.1. Background on Stylespace

The generation process of StyleGAN2 consists of sev-
eral latent spaces, namely Z , W , W+, and S. More for-
mally, let G be a generator which is a mapping function
G : Z → X , where X is the target image domain. The
latent code z ∈ Z is drawn from a prior distribution p(z),
typically chosen as a Gaussian distribution. The z vectors
are transformed into an intermediate latent space W using a
mapper function consisting of 8 fully connected layers. The
latent vectors w ∈ W are then transformed into channel-
wise style parameters and form the stylespace, denoted S,
which is the latent space that determines the style parame-
ters of the image. It has been shown that [34] style channels

provide the most disentangled, complete, and informative
space compared to others. However, it is still largely unex-
plored what style channels are capable of.

3.2. Background on Submodularity

Let V represent a set of elements V = {v1, . . . vn},
often called as the ground set. Let F : 2V → R rep-
resent a function that gives a real value for any subset
P ⊆ V . The task we are interested in is then to select
a small subset |P| ≤ n that maximizes the function such
that P∗ ∈ argmaxP⊆V F(P). Solving this problem is in-
tractable in general, but it has been shown that a greedy
algorithm can be used to solve this equation almost opti-
mally with an approximation factor of (1− 1/e), under the
condition that the function F is monotone, non-decreasing,
and submodular [28]. The greedy algorithm simply starts
with an empty set and at each iteration adds the item that
maximizes the objective function. In other words, the so-
lution P∗ obtained by the greedy algorithm is a constant
factor approximation to the best possible solution (say Popt)
such that F(P∗) ≥ (1 − 1/e) Popt ≈ 0.63 F(Popt). More
formally, submodularity is defined as:

Definition 1 The function F is called submodular if for ev-
ery P the following inequality holds: F(P∪{v})−F(P) ≤
F(R ∪ {v}) − F(R), if R ⊆ P ⊆ V and v ∈ V \ P . This
form of submodularity directly satisfies the diminishing re-
turns property; the value of the addition of v never becomes
larger as the context becomes larger [17].

3.3. A Submodular Framework to Cover Stylespace

Let V represent the set of style channels in the stylespace.
Then, we are interested in selecting a small subset of chan-
nels P ⊆ V that are most representative and diverse. To
measure the overall coverage or fidelity of the channels in
P , we can define a set function as follows,

Fcoverage(P) =
∑

vi∈V,vj∈P
Fsim(vi, vj) (1)

which simply computes the similarity between the summary
set P and the ground set V . In other words, it measures
some form of coverage of V by P . Fsim measures the simi-
larity between two channels (see Section 3.3.2).

However, this function does not take diversity into ac-
count, since the value of the covering a particular type of
edit (such as hair or background) never diminishes. For
example, such a coverage function might favor selecting
several background channels without considering diversity,
since background is one of the most popular types of edits
in stylespace (see Appendix Figure 1. In contrast, if we al-
ready have a channel that modifies the background in our
summary set P , then we want the gain for selecting another
background channel to decrease. A common approach is

4733



Figure 2: We randomly sample M latent vectors z ∈ Z , which are transformed into style vectors s. An arbitrary channel v in
S are perturbed by a certain amount α in positive and negative directions such that (s+α∆sv) and (s−α∆sv), where ∆sv
is a vector containing all zeros except one of its dimensions, which is equal to one for channel v. LPIPS and SSIM scores are
computed for the images obtained from the perturbed vectors, which are then used to generate clusters and select channels
using the submodular framework.

to apply a diversity regularization to our objective function
[15], where we aim to reward items selected from different
groups of directions such that:

Fdiversity(P) =

K∑
k=1

(
log

(
1 +

∑
vi∈Ck∩P

Freward(vi)

))
(2)

where the ground set V of style channels is partitioned into
K separate clusters. The clusters Ck are disjoint, where k =
1, . . .K and

⋃
k Ck = V . For each style channel vi, we have

a reward Freward(vi) ≥ 0, which indicates the importance of
adding channel vi to the empty set (see Section 3.3.1).

Let us explain the intuition behind Fdiversity in more
detail. The idea is that when a channel is selected, the gain
decreases for channels from the same cluster due to the con-
cave function log(1 + x). For example, suppose that the
candidate channels in cluster C1 are v1 and v2, which have
rewards of 5 and 4, respectively. Similarly, the cluster C2
has a candidate channel, v3 with a score of 3. When we
evaluate the objective function in Eq. (2) for the first time,
we select v1 since it has the largest marginal gain. However,
the next time we choose channel v3, even though the score
of v2 is higher, because log(5 + 4) < log(5) + log(3). In-
tuitively, this means that selecting a channel from a cluster
that has not yet been explored will yield a higher gain than
selecting a channel from a cluster that we already covered.
Thus, the objective function rewards diversity by selecting
elements from different clusters and prevents popular chan-
nels such as background from dominating the selected set.

Then, the overall objective function we want to solve is
a combination of both:

F(P) = Fcoverage(P) + λFdiversity(P) (3)

where λ ≥ 0 is the tradeoff coefficient between coverage
and diversity. Since we are interested in selecting a small
subset, we aim to maximize the following objective func-
tion,

P∗ = argmax
P⊆V:|P|≤n

F(P) (4)

subject to a cardinality constraint n, which denotes the to-
tal number of channels in the set P∗. This objective func-
tion combines two aspects in which we are interested: 1)
it encourages the selected set to be representative of the
stylespace, and 2) it positively rewards diversity. Finding
the exact subset that maximizes this equation is intractable.
However, it has been shown that maximizing a monotone
submodular function under a cardinality constraint can be
solved near optimally using a greedy algorithm [17]. In par-
ticular, if a function F is submodular, monotone and takes
only non-negative values, then a greedy algorithm approx-
imates the optimal solution of the Eq. (4) within a factor
of (1− 1/e) [17]. Note that this property is particularly at-
tractive because it is a worst-case bound. In most cases, the
quality of the obtained solution of submodular optimization
problems is much better than this bound suggests [15].

Theorem 1 Given two functions F : 2V → R and f :
R → R, the composition F ′ = f ◦ F : 2V → R is non-
decreasing submodular, if F is non-decreasing concave and
F is non-decreasing submodular. [15]

Claim 1 : The function in Eq. (3) is submodular.

Proof The Fcoverage(P) is a sum of modular functions with
non-negative weights (hence, monotone). Similarly, the sum
of non-negative rewards in Fdiversity(P) is also monotone.
This monotone function is surrounded by a non-decreasing
concave function log(1 + x). Applying a concave function
to a monotone function, we obtain a submodular function
(see Theorem 1). Finally, the sum of a collection of sub-
modular functions is submodular [27], so F(P) in Eq. (3)
is submodular.

3.3.1 Reward of channels

Our framework requires a singleton reward associated with
each style channel for the diversity objective. To this end,
we use the LPIPS[37] metric as a proxy for the reward
score, where channels with more perceptual changes have
a larger value. First, we sample M random latent vectors z
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∈ Z and pass them through the mapping network of Style-
GAN2 to obtain their corresponding style vectors s. Given
an arbitrary channel v1 ∈ S, we perturb the value of channel
v in each style vector s, while leaving the other channels un-
changed, and generate modified images, G(s + α∆sv) and
G(s − α∆sv). ∆sv is a vector containing all zeros except
one of its dimensions, which is equal to one for channel v,
and α denotes the magnitude of the perturbation. We run
both images through the VGG16 [26] network and com-
pute the L2 difference between their feature embeddings.
This process is repeated for M style vectors and the average
LPIPS score for each channel v is calculated as the reward
value Freward(v).

3.3.2 Clustering Stylespace

Our method quantifies diversity by using the notion of clus-
ters Ck, k = 1, . . .K, where channels performing similar
edits are grouped together. Using the same approach as
above, we first obtain the perturbed images for each style
vector s such that G(s+α∆sv) and G(s−α∆sv). Then we
compute the structural similarity index (SSIM) [32], which
is a metric for measuring the similarity between two im-
ages. In particular, we obtain the image difference between
two images, where the difference is represented as a value
in the range [0, 255]. This process is repeated for each
style channel in S for a total of M style vectors, result-
ing in |S| × M matrices of SSIM scores. We then com-
pute the cosine distance between the SSIM matrix of each
style channel, with the distance between channels averaged
over M style vectors. We use the resulting matrix as a dis-
tance matrix in agglomerative clustering [6] to cluster style
channels into groups. We have experimented with both ag-
glomerative clustering and k-means algorithms and found
that they yield similar clusters. We use agglomerative clus-
tering to group the channels since it uses a precomputed
distance matrix to speed up the clustering process and does
not require tuning the number of clusters. We note that clus-
tering at individual layers leads to finer-grained clusters for
models such as FFHQ. For such large models, we perform
clustering at each layer and then group the clusters based on
the regions they modify (e.g., hair, ear, background) using
a segmentation model [14].

SSIM scores are also used to compute the similarity be-
tween two style channels. Given two style channels vi and
vj , Fsim in Eq. (1) is calculated as the cosine similarity be-
tween the SSIM matrix of each channel, averaged over M
style codes.

4. Experiments
We conduct several qualitative experiments to demon-

strate the effectiveness of the submodular framework and
1We drop the subscript of v in the rest of this paper for clarity.
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Figure 3: Sample clusters for various datasets. The
first column represents the input image and the remaining
columns show the manipulation performed by a random
channel in the cluster.

compare our method to supervised [34] and unsupervised
methods [8, 25]. We also explore clusters of StyleGAN2
on a variety of datasets, including FFHQ [12], LSUN Cars
[35], AFHQ Cats [3], Metfaces [11], and Fashion. For
Fashion model, we train a StyleGAN2 model with dataset
collected from [29, 18]. Finally, we present two applica-
tions that leverage our framework to allow users to explore
stylespace.

4.1. Experimental Setup

For all experiments, we use the StyleGAN2 model [11]
with truncation value 0.7. For the LPIPS and SSIM scores,
α is set to 20 and the number of style codes is set to M =
128. It takes 1 hour to compute LPIPS and SSIM scores. We
use Scikit-learn [22] for agglomerative clustering, with the
distance threshold parameter set to 0.7, resulting in about 20
to 40 clusters depending on the layer. Clustering per layer
takes 5-15 seconds. Following [34], we exclude RGB layers
as they cause entangled manipulations, and we exclude the
last 4 blocks as they represent very fine-grained features that
are difficult to use for editing tasks. For the submodular
framework, we use the diversity tradeoff λ as 25. For our
experiments, we use a single NVIDIA Titan RTX GPU.

4.2. Qualitative Results

Clustering Stylespace Our submodular framework re-
lies on the clusters to encourage diversity. Figure 1 and Fig-
ure 3 show clusters from the FFHQ, Fashion, AFHQ Cats,
LSUN Cars, and Metfaces datasets. We note that clusters
that modify similar regions are grouped together, such as
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Figure 4: Top 5 channels ranked by our submodular
framework for individual layers. As can be seen from
the results, our method is able to select diverse channels for
each layer.

smile, expression in FFHQ, neck type, pattern in Fashion,
eye color, ear type in AFHQ Cats, roof type, bumper type in
LSUN Cars, eyebrow type, expression in Metfaces, shown
in Figure 3.

Covering Stylespace Our framework is flexible in terms
of which groups of layers to cover. We can choose to cover
only channels from a single layer or from multiple layers.
In either case, one just needs to form the clusters based on
the particular layers of interest. Next, we investigate both
cases.

• Single layers We first experiment with selecting a sub-
set of channels on single layers. Figure 4 shows the
top 5 channels for individual layers L = 6, 8, 9, 12.
We see that our framework selects diverse channels for
each layer, such as channels that modify hair, ear, face,
expression, mouth as in layer L = 6 or background,
gender, beard, hair, expression as in layer L = 9. Note
that performing submodular ranking allows us to get
the top channels for each layer, but is still not sufficient
to cover the stylespace, as channels that perform sim-
ilar edits may be ranked at top for different layers and
cause redundancy. For example, channels that change
background are placed at the top in different layers (see
first and second channels in layers L = 9, 8, 12, re-
spectively). Therefore, submodular selection at mul-

0

10

5

3

1

0

Di
ve

rs
ity

 Tr
ad

eo
ff

Number of Regions Covered

Figure 5: The effect of the diversity tradeoff. The number
of regions (indicated by different colors) covered by the top
25 channels in FFHQ. Our model covers more regions as we
increase the diversity tradeoff λ due to diminishing returns.

tiple layers is required to achieve adequate stylespace
coverage, as we show below.

• Multiple layers Figure 6 shows the top 10 channels
ranked by our method considering multiple layers. As
can be seen from the results, our method selects a va-
riety of channels that modify regions such as back-
ground, hair, face, mouth, eye, ear, and clothing. We
note that our method places a channel that modifies
background first, as this is one of the most popular
types of editing offered by the stylespace. Covering
another background channel then has diminishing re-
turns thanks to the submodularity property, and pref-
erence is given to channels that modify other diverse
regions before placing another background channel at
the 8th position.

• Diversity tradeoff We also examine the effects of the
diversity parameter λ (see Figure 5). When the diver-
sity parameter λ = 0, we find that the number of re-
gions in the top 25 channels covers only two regions.
When we increase the parameter λ, we find that more
regions are covered and the balance between regions
improves since the submodular framework accounts
for diversity.

4.3. Comparison with Unsupervised Methods

Next, we compare our results with the state-of-the-art
unsupervised methods GANSpace [8] and SeFa [25].
GANSpace applies PCA to randomly sampled w vectors
of StyleGAN2 and uses the resulting principal components
as directions. SeFa uses a closed-form approach where
it factorizes the weight matrix and uses the resulting
eigenvectors with the highest eigenvalues as directions. We
used the official implementations for both methods2 and
obtained the top 10 principal components for GANSpace
and the top 10 eigenvectors for SeFa methods using the
default parameters. Note that since the directions vary by
the choice of layers used in SeFa, we experimented with
all options (layers 0-1, 2-5, 6-13, all) and chose layers

2http://github.com/harskish/ganspace, http:
//github.com/genforce/sefa
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Figure 6: Comparison of the top 10 directions for Ganspace[8], SeFa[25] and our method. The first column shows the
original image.

6-13 because they have the most diverse and semantically
meaningful directions (see Appendix Figure 4). As can be
seen from Figure 6, our method yields more disentangled
and diverse directions compared to GANSpace and SeFa.
For example, while both GANSpace and SeFA change
semantics in the input, such as gender, age, eyeglasses,
while also changing other semantics such as background,
position, highlight at the same time. In contrast, our method
performs disentangled edits by changing one semantic at a
time. To verify our observations, we also conduct a user
study with N = 25 participants. For the user study, we list
the top 10 manipulations of each method along with the
original image and ask the following questions:

(Q1) ‘How disentangled do you think the change in each
image is?’ (Note that disentanglement is the degree
to which each latent dimension captures at most one
attribute.) (1=Not Disentangled 5=Very disentangled)

(Q2) ‘How semantically meaningful do you think the
change in each image is?’ (1=Not Semantically Meaningful
5=Very Semantically Meaningful)

Model GANSpace SeFa Ours
Q1 2.46 ± 0.45 2.91 ± 0.41 4.32 ± 0.31

Q2 3.45 ± 0.41 3.26 ± 0.28 4.20 ± 0.29

Table 1: Comparison with GANSpace and SeFa for Disen-
tanglement ↑ (Q1) and Semantically Meaningful ↑ (Q2).

As can be seen from Table 1, our method has more dis-
entangled and semantically meaningful directions. All re-
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Figure 7: Comparison of channels retrieved using our
method and [34] for cloth, hair and mouth regions. Our
method can capture more diverse channels than [34].

sults are statistically significant with a p-value of < 0.0001.
Our method shows a significant performance especially on
the disentanglement question, with an improvement of 49%
over the closest competitor since we operate in S-space,
while other methods operate in W-space.
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4.4. Comparison with Supervised Methods

Both our work and [34] use stylespace to find style chan-
nels that can be used as directions. While our method pro-
poses an unsupervised method for finding the top channels
in stylespace, [34] uses a supervised approach where chan-
nels are retrieved based on a specific region (such as mouth)
or based on a specific attribute classifier. Since [34] does
not provide a way to list the top channels in stylespace, we
compare our results with [34] as follows: we select three
regions; hair, mouth and background. Then, using the offi-
cial implementation of [34]3, we determined top 3 channels
for a given region. For our method, we determined 3 clus-
ters with the highest match for a given region and selected a
random channel from the obtained clusters. Figure 7 shows
the results for both methods. As can be seen from the figure,
our method is able to obtain diverse channels for the regions
clothing, hairstyle and mouth. To verify our observations,
we also conduct a user study with N = 25 participants. We
list the results for each method with the original image on
the left and ask the question ‘How diverse do you think the
changes are? (1=Not Diverse 5=Very Diverse)’ to partic-
ipants 4. As can be seen from the results in Table 2, our
method shows significantly better diversity than [34] with a
p-value of < 0.0001. This is due to the fact that [34] re-
trieves channels without considering their similarity, while
our method considers channels from different clusters.

Model [34] Ours
Cloth 2.26 ± 1.63 4.32 ± 0.48

Hair 2.68 ± 1.16 4.35 ± 0.18

Mouth 2.16 ± 0.38 3.64 ± 0.64

Table 2: Comparison with supervised method [34] on Di-
versity ↑.

4.5. Applications

Our framework also opens up possibilities for interesting
applications that help users discover new directions.

Interactive Editing Users can navigate the stylespace by
drawing a region of interest such as hair and retrieving rel-
evant clusters and corresponding channels. Figure 8 shows
the background region with the retrieved clusters (a random
channel from each cluster is shown). See Appendix Figure
2 for more examples.

Exploration Platform We also provide a web-based
platform called Style Atlas at http://catlab-team.

github.io/styleatlas where users can explore the
stylespace in a fine-grained way (see Appendix Figure 3).
This tool allows users to explore the manipulations made

3http://github.com/betterze/StyleSpace
4Note that since both methods use the S-space for disentangled edits,

we do not compare for disentanglement.
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Figure 8: Filtered clusters based on a region specified
by the user. The two images in the upper left show the
input image and the user-specified region. The remaining
images show randomly selected channels from the retreived
clusters.

by specific channels based on the region and discover style
channels of interest.

5. Social Impact and Limitations
Our method uses a pre-trained GAN model as input, so

it is limited to manipulating GAN -generated images. How-
ever, it can be extended to real images using GAN inversion
methods [38] by encoding the real images into the latent
space. Like any image synthesis tool, our method poses
similar misuse concerns and dangers, as it can be applied
to images of people or faces for malicious purposes, as dis-
cussed in [13]. Our method is currently applicable to style-
based GAN methods such as StyleGAN2, since it directly
benefits from the stylespace. However, we also note that
our architecture is applicable to any GAN model where the
latent space can be represented as a collection of discretized
items. We leave the exploration of our framework to other
GAN models such as BigGAN to future work. However,
we also note that our architecture is applicable to any GAN
model where the latent space can be represented as a collec-
tion of discretized items.

6. Conclusion
In this work, we consider the selection of diverse edits

in the latent space of StyleGAN2 as a coverage problem.
We formulate our framework as a submodular optimization
for which we provide an efficient solution. Moreover, we
provide a complete guide to the stylespace in which one
can explore hundreds of diverse directions formed by style
channels using clusters. In our experiments, we have shown
that our method can identify a variety of manipulations, and
performs diverse and disentangled edits.
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