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Figure 1. Balloon video: First frames from the video are shown and next to them temporal slices taken from the red strip are illustrated for
visualization of balloon bursts motion. Motion magnification can be perceived as more motion in the balloon (also visible in the temporal
slice) as compared to the input. While the other methods produce distortions such as ringing artifacts, spurious motion etc (highlighted in
the red box). The proposed method produces better magnification with lesser distortions. (a) Input video, (b) Acceleration based method
[39], (c) Jerk-Aware method [30], (d) Anisotropy method [28], (e) Oh et al. [23], (f) Ours Base model, and (g) Ours lightweight model.
Please zoom in for a clearer view. https://github.com/jasdeep-singh-007/LightweightNetworkForVideoMotionMagnification

Abstract
Video motion magnification provides information to un-

derstand the subtle changes present in objects for applica-
tions like industrial, healthcare, sports, etc. Most state-of-
the-art (SOTA) methods use hand-crafted bandpass filters,
which require prior information for the motion magnifica-
tion, produces ringing artifacts, and small magnification
etc. While others use deep-learning based techniques for
higher magnification, but their output suffers from artifi-
cially induced motion, distortions, blurriness, etc. Further,
SOTA methods are computationally complex, which makes
them less suitable for real-time applications. To address
these problems, we proposed deep learning based simple yet
effective solution for motion magnification. The proposed
method uses a feature sharing and appearance encoder
for better motion magnification with fewer distortions, arti-
facts etc. Additionally, for reducing magnification of noise
and other unwanted changes, proxy-model based training
is proposed. A computationally lightweight model (∼ 0.12
M parameters) is proposed along with the base model. The
performance of the proposed models is tested qualitatively
and quantitatively, with the SOTA methods. Results demon-
strate the effectiveness of the proposed lightweight and base
model over the existing SOTA methods.

1. Introduction

The understanding of subtle motion present in dynamic
or still objects, is a very challenging task. For example,
slight skin deformation occurs while throwing something,
small chest movements while breathing, small distortions
that occur in objects while moving, etc. These small mean-
ingful motion are difficult to see with the naked eye. E.g.
as shown in Figure 1, subtle motions generated in balloon
while bursting, are hard to perceived with the naked eye, but
easy to see in the magnified frames. Due to this, magnifi-
cation of these changes in the video, become important and
result in many industrial and healthcare applications [25],
[17], [5], [3], [2], [26], [21], [8]. But these videos also
contain noise which is introduced during the photographic
process ( low light levels, high sensor gain, short exposure
time, and so on) [28] . As this noise is at the same level
as minute changes, which makes it difficult to distinguish
between signal of interest from noise and makes the motion
magnification task more challenging.

To address the problem of motion magnification initially,
hand-design based approaches were introduced. Many
SOTA hand-crafted methods were based on temporal filters
which gave good results [36], [33], [34] on static scenarios
but they cannot work in dynamic scenarios. To mitigate this,
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later [39], [30] methods were proposed which can work in
both static and dynamic scenarios. But their outputs were
prone to ringing artifacts or small magnification etc. Also,
their filters were not optimal [23]. To solve these issues
of hand-crafted filters, the deep learning-based method [23]
was proposed. Even without temporal filters, it shows some
robustness to noise and produces higher magnification with-
out ringing artifacts. But it has some limitations.

• They extract motion information from shape informa-
tion to make the network robust to intensity changes.
But, their separation of shape information from tex-
ture, is not efficient. Sometimes it results in distorted
intermediate features which produce unwanted flicker-
ing or superious motion.

• Their texture features sometimes deviate much from
input textures and this might be responsible for blurry
distortions in some frames.

• They did not take computational complexity into ac-
count. As real-time applications like respiration rate
monitoring, or in industries where time-constrained
output is needed, require low latency.

Currently deep learning based approaches in different
tasks like deraining, deblurring, object detection [38],[14],
[15] etc show promise for real-time applications. Inspire
by this we propose a lightweight network for video motion
magnification. Our proposed lightweight method does not
produce unwanted distortions like [23] and is sensitive to-
ward subtle motions. It produces more magnification than
SOTA methods in both static and dynamic scenarios. It has
a simple yet efficient architecture. Further, different exper-
iments are done to show the qualitative, quantitative analy-
sis, and physical accuracy of the proposed method in com-
parison to SOTA methods. The main contributions of the
proposed work are as follows:

• A lightweight deep learning model is proposed for
video motion magnification.

• A feature sharing encoder module is proposed for mo-
tion magnification. This module is responsible for ap-
propriate feature map generations for motion extrac-
tion and for reducing the effect of the noise before
magnification.

• An appearance encoder is proposed to extract common
appearance across the frames with its output being re-
stricted by input frames. This module is responsible
for appropriate texture synthesis of the output.

• A proxy model based regularization loss is proposed to
reduce the magnification of noise and other unwanted
changes in motion features.

In the next Section 2, related work to motion magnifica-
tion is discussed. Further, in Section 3, the proposed method
is explained in detail. In Section 4, qualitative and quantita-
tive comparison of natural and synthetic videos is provided.

2. Related Work
Initially, two different approaches were proposed: 1)

Eulerian-based motion magnification and 2) Lagrangian-
based motion magnification. The Eulerian [36] was a filter-
ing based and Lagrangian, [19] an optical flow-based mo-
tion magnification approach. Liu et al. [19] suggests the use
of Lagrangian based method for video motion magnifica-
tion for the first time. They assume that in videos, changes
that occur in certain object locations over time can be esti-
mated using the optical flow. It extracts the features from
the frames and traces those features to cluster them into
a group of points, where the changes are magnified. But
computing optical flow in this task is expensive. Flotho et
al. [9] suggest local Lagrangian based motion magnifica-
tion approach, which was specifically targeted for micro-
expression magnification.

Unlike Lagrangian approaches, Eulerian based methods
[36], [33], [34], [39], [30] do not explicitly need tracking of
object to detect color and subtle motion changes over a fixed
point. To magnify color changes Eulerian based methods
[36], [39], [30] first decompose the input frames using spa-
tial pyramids. They used gaussian pyramids for color mag-
nification and [33], [34], [39], [30] use complex-steerable
pyramids [10] for subtle motion magnification. After spa-
tial decomposition, they apply temporal filter across each
pixel at every pyramid level. These bandpass temporal fil-
ters help to select the frequency which needs to be magni-
fied and ignore the noise. They generate good magnification
results in static scenarios. But, they cannot differentiate be-
tween static motion and dynamic changes that occur in the
videos. So, they generate distorted, blur output in dynamic
scenarios. Recently, different methods were developed to
solve this problem [39], [30]. They ignore the large mo-
tion and magnify only small variations. However, they have
small magnification for subtle changes and depend on nar-
row band filters for mitigating the effects of noise.

For magnification of meaningful subtle signals, Elgharib
et al. [7], Verma et al. [31], Kooij et al. [18] suggest meth-
ods that require user intervention or a specific environment.
While other methods are independent of these constraints.
Verma et al. [32] applied the local Laplacian filter (LLP)
[24] for better spatial decomposition and to reduce the noise
and artifacts. Wu et al. [37] used PCA to decompose
the input frames and then select the component which best
matches spatial variation with the subtle signal that needs
to be magnified. But, it requires meaningful changes to be
larger as compared to the other changes in a principal com-
ponent. Takeda et al. [28] suggest the use of Fractional
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Anisotropy (FA) to magnify meaningful subtle motions and
ignore non-meaningful ones. Takeda et al. [29] proposed
a more accurate temporal filtering while ignoring the large
changes as compared to the previous methods. But, all these
methods require fine-tuning of hyperparameters from video
to video basis. Also, they have small magnification and they
did not take occlusion into account [23] etc.

To solve the problems related to hand-crafted filters, re-
cently deep learning based approaches were proposed [23],
[4], [6]. Chen et al. [4] uses gradient ascent to magnify sub-
tle color and motion changes, but it has small magnification
and requires a lot of pre-processing. Nowara et al. [22] use
[4] and explore the possibility of motion magnification as a
pre-processing task in recovering the photoplethysmogram.
Dorkenwald et al. [6], disentangle shape and appearance
features. But, generating output on different scenarios, it
requires training on videos of that respective scenario [6].
Oh et al. [23] proposed the use of synthetic data to train
a deep neural network. It takes two frames and a magni-
fication factor as an input at a time to produce a motion
magnified output frame. It gives better noise performance
and more magnification as compared to other methods [23]
by using only two frames. However, sometimes it produces
spurious motion. Also, these methods are computationally
complex, which makes it difficult to use them in different
real-time healthcare or industrial applications.

3. Proposed Method
In the subsequent subsections first, the proposed method

is explained in detail. Later, the final loss function, training
dataset, procedure, and the proposed base and lightweight
model are discussed.

3.1. Network Architecture

We propose a lightweight deep learning based network
to magnify the subtle motions in the videos. It consists
of encoder-decoder based architecture. It uses two feature
sharing based encoders, to translate input frames from im-
age space to feature space where motion information can be
extracted. Handcrafted methods [33], [34], [39], [30] use
complex steerable pyramids for the same task. But, Oh et
al. [23] uses simple encoders and gives its features to shape
encoders to extract shape features. It extracts motion infor-
mation from the shape features. For separating shape in-
formation from image features, it puts regularization across
the encoders to constrain the feature space. Instead of that,
we let the network decide the encoding feature space for
motion extraction.

A major issue with motion magnification is to reduce
the effects of changes due to noise, illumination etc while
magnifying meaningful changes. This is a hard problem.
Hand-crafted methods [33], [34], [39], [30] depend on nar-
row band pass filter (which require prior information about

the frequency of interest). Whereas Oh et al. [23] method
presumes that noise, unwanted illumination etc changes are
part of intensity changes and motion information is present
in shape changes. So, they try to separate shape from texture
representation (intensity information). For this, while train-
ing the network they provide intensity perturbed frames that
have the same shape information as un-perturbed frames.
Then they take L1 loss across perturbed and un-perturbed
frames features. They assume that shape information across
intensity change should remain the same. They take the dif-
ference between these shape features, magnify it and add it
to the texture encoder features. But their method is not effi-
cient. It sometimes results in distorted intermediate features
which produce flickering or superious motion. Whereas the
proposed method uses feature sharing encoder for the mo-
tion extraction and proxy model based feature loss with ap-
pearance encoder loss to reduce the effects of noise before
magnification. The denoising signal in network training,
comes from three different places 1) from the final predicted
output, 2) common appearance based regularization loss 3)
proxy model based feature loss. Jointly optimizing across
these losses helps to reduce the effects of noise in motion
magnification (a detailed discussion is given in section be-
low). The manipulator multiplies the motion features to
the magnification factor (which decides the amount of mag-
nification), and apply non-linear transforms using residual
blocks. The manipulator output is added to the common
appearance encoder output and given to the decoder. The
decoder converts intermediate features to image space and
generates the final magnified output. Figure 2 (A) describes
the proposed model.

Feature Sharing Encoder (E(.)): Feature Sharing En-
coder is used to reduce the effect of noise before magni-
fication (decoder is used to reduce the effect of noise after
magnification). We assume different frames will have dis-
tinct noise. With concatenation operation across features,
each encoder will have information about the input frames
and improved features of the other encoder. The network
can compute weighted averages to decrease the effects of
illumination, noise etc. It’s also used to convert the input
from image space to feature space for motion extraction.
Unlike [23], its output features (Ea, Eb) are not restricted
by regularization. Residual blocks [11] are used to map in-
put frames to a feature space where motion information is
extracted by taking the feature differences as shown in Fig-
ure 3. Max-pooling is used to down-sample the features to
reduce the computation and increase the receptive field. The
feature sharing encoder is illustrated in Figure 2 (A).

Appearance Encoder (A(.)): Relevant texture content is
required to combine with motion information to generate
the magnified frame. For generating texture content, [23]

2043



Figure 2. (A) Proposed deep learning model for motion magnification. It consists of feature sharing encoder, appearance encoder, manip-
ulator, and decoder. Ft and Ft−1 the two consecutive frames, with Mf as the magnification factor, are given as input to the network. Fo

is the magnified output frame. Residual Blocks with 3×3×48 show that there is a 3 × 3 convolution filter with 48 channels, similarly
for Residual Blocks with 3×3×24. Ea and Eb are the output features and E′

a and E′
b are the intermediate features of the feature sharing

encoder. (B) Proxy model feature loss across the manipulator block. Please zoom in for a clearer view.

proposes a regularization term to minimize the difference
in texture feature representation between the frames. To
satisfy this regularization term both texture encoders with
different input tries to generate a common representation.
But this representation can deviate from actual texture rep-
resentation. We assume this can be the probable reason for
producing texture distortion (blurry distortions) sometimes.
To solve this, we propose Appearance Encoder (A(.)). Gen-
erally, the magnified frame has a high correlation with the
input frames as most of the objects are still. In A(.) we
exploited this fact for appropriate texture generation. Loss
between appearance encoder A(.) features and input frames
are used to extract common appearance features. This also,
prevents the learn able parameters to generate features that
deviate from Ft and Ft−1. For calculating this loss, no
noise is added to the ground truth (input frames). So, it will
also force denoising characteristics in common texture fea-
tures. This will help in the better generation of the output.
Both encoder intermediate features E′

a and E′
b (as shown

in Figure 2 (A), as the output of both encoders) are con-
catenated (ζ represents the concatenation operation) and is
given as input to the appearance encoder. Then residual
blocks are applied on them for feature transformation to
produce output A(ζ(E′

a, E
′
b)). The regularization loss LA

between input frames Ft, Ft−1 and appearance encoder out-
put A(ζ(E′

a, E
′
b)) is defined in Eq. (1)

LA = |ϕ(A(ζ(E′
a, E

′
b)))− Ft)|1+

|ϕ(A(ζ(E′
a, E

′
b)))− Ft−1)|1

(1)

where ϕ represents the convolution operation with 3×3×3
filters and tanh activation.

Manipulator (M(.)): We assume motion information
can be extracted from the difference in encoder features.
This is somewhat different from [23] assumption, where
they presume motion information can be extracted from the
difference of encoder shape features. The manipulator (M )
gets the non-linear transformed encoder shared features of
Ea and Eb as input. It takes their difference and multiplies
them with the magnification factor Mf . Then these features
are given to residual blocks for non-linear transformations
to generate output M((Ea−Eb)×Mf ) (the structure of ma-
nipulator is similar to [23]). Figure 3 shows the difference
features of the feature sharing encoder block that highlight
the motion information.

Decoder: The combined output of the appearance en-
coder and manipulator is given to the decoder as shown
in Figure 3. In the decoder, ten residual blocks before
up-sampling are used, as they decrease the computation
requirements and increase the receptive fields. The up-
sampled features are passed through three residual blocks.
In the end, a convolution layer with 3×3 filter size and tanh
activation is used to generate the magnified output Fo (the
structure of the decoder is similar to [23]).

Proxy Model Based Feature Loss: The proxy model has
the same architecture as the proposed model but it is trained
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Figure 3. (a) depicts the input frames, (b) shows the motion fea-
tures (after subtraction of encoder features). These features high-
light the object of motion.

without adding noise. The proxy model features (of the
noiseless image) are taken as the ideal features and the main
model features (with noisy input) should try to get close to it
(It can also be viewed as teacher-student training paradigm
[12], [20], [13], where the teacher has the same network as
a student, but teacher network is used to pass denoising in-
formation to the student network in the feature space). At
the time of training of the main model, proxy model weights
are fixed. For calculating the distance between proxy model
noiseless features and main model noisy features L1 loss
is used. This feature space loss is only sensitive to noise
present in the motion information. Whereas the appearance
encoder loss term is sensitive to noise present in texture,
and predicted output loss terms are sensitive to the magni-
fied noise (particularly which can cause large variations af-
ter magnification). So, proxy model based feature loss will
help to make motion information more robust. Loss is taken
in between the manipulator features after subtraction and
multiplication with magnification factor ((Ea−Eb)×Mf )
as shown in Figure 2 (B). We assume that this will help to
prevent any distortions that can be generated due to mag-
nification of noise, illumination changes etc. Proxy model

based feature loss can be defined as follows:

LM = |((E∗
a − E∗

b )×Mf )− ((Ea − Eb)×Mf )|1 (2)

where superscript notation ∗, indicates the proxy model.

Final Loss Function: We consider the L1 loss, loss be-
tween edges (Ledge) and Perceptual Loss (Lp) for bettering
of output quality. The L1 loss computes the pixel level dif-
ference of predicted label ŷ and ground truth y. L1 loss is
illustrated as

L1 =
∑

|ŷ − y|1 (3)

In the motion magnification problem, the L1 loss is less sen-
sitive to object motion because most of the region in output
frames does not have motion. Further, there may exist many
minima in L1 which produce blur output [35] around the
motion parts (near the edges). So, to put more focus on the
edges of the output, we take the loss between the edges of
the predicted and ground truth frames (Ledge), (as defined
in [1] ). Ledge, helps to make the model more sensitive to-
wards the edges [1] of the reconstructed motion magnified
frames. Ledge is given as

Ledge =
∑

|∇ŷ −∇y|1 (4)

∇ shows the finite differences in a horizontal and verti-
cal direction [1] for computing edges. Another issue with
the texture of the moving object is that there still exist many
minima which can give low loss but with bad perceptual
quality. For this, a loss in a higher dimension is needed.
Hence, to increase the perceptual quality of the motion mag-
nified frames, we use the perceptual loss (Lp) [16] along
with the L1 and Ledge. The Lp is given as

Lp =
∑

|ϕi(ŷ)− ϕi(y)|1 (5)

Where, ϕi represents the VGG-16 [27] feature space ac-
tivations. The final loss of the proposed network (Ltotal) is
given in Eq. (6)

Ltotal = λ1L1 + λ2Lp + Ledge + LA + LM (6)

Where λ1 and λ2 are the weights for L1 loss and Perceptual
Loss (Lp) [16] respectively. λ1 = 10.0, and λ2 = 0.1
values are considered for the network training and they are
determined experimentally.

Dataset and Training: The proposed models, base
model, and lightweight model are trained on the training
dataset provided by [23]. In the network, C channels are
used in primarily layers, and after down-sampling C × 2
channels. For base model C = 24 and for lightweight
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Figure 4. A toy is vibrating and moving along the table from right to left. The spatial-temporal slices from the respective methods are
taken from the red strip. The proposed method shows more magnification (also higher motion of the background is highlighted in the red
bounding boxes). (a) Input video, (b) Acceleration based method [39], (c) Jerk-Aware method [30], (d) Anisotropy method [28], (e) Oh et
al. [23], (f) Ours Base model, and (g) Ours lightweight model.

Table 1. Comparison of the SOTA learning method [23] with the
proposed base network (M1) and the lightweight network (M2)
in terms of number of parameters, FLOPS, and run time. (Run
time values are calculated at 720X720 resolution on NVIDIA 2080
RTX for higher quality output).

Model Parameters GFLOPs Run Time

Oh et al. [23] 0.98M 268.6 95 ms

M1 1.10M 375.5 142 ms

M2 0.12 M 42.4 38 ms

model C = 8 is considered. For training, the learning rate
is set to .0001, and an ADAM optimizer is used. Models are
trained for 47 epochs. The proposed lightweight model has
7.6 × lesser parameters and 6.3 × lesser flops as compared
to [23] as show in Table 1.

4. Experimental Results
The proposed model is evaluated qualitatively and quan-

titatively on real-life and synthetic videos and is compared
with the SOTA methods [30], [23], [39], [28] for motion
magnification (linear filter based method [33] is not con-
sidered for comparisons as they produce distortions in dy-
namic scenarios). Also, an ablation study is conducted to
show different aspects of the proposed method. With least
computational complexity, the proposed lightweight model
provides better results than SOTA methods. The detailed
discussion is given in the following subsections.

4.1. Analysis on Real Videos

Analysis on Balloon video: In the balloon video, a wa-
ter cannon is fired on a balloon to rupture it, as shown in
Figure 1. Due to this, small motions are developed in the
balloon along with its large bursting motion. Our aim is to
magnify the minute balloon motion while producing min-
imum distortions due to sudden large motion. Figure 1
shows the motion of the balloon at the red strip along time.
Hand-crafted methods [30, 28, 39] create ringing artifacts

along the balloon (visible as white edges near the balloon
and white spikes in the temporal slices highlighted in the
red boxes, in Figure 1 ). Further, Oh et al. [23] produce
blurry distortions in some frames (in the balloon and the
background object), visible as spikes in the temporal slice
(illustrated in red bounding box in Figure 1 temporal slice).
Whereas, the proposed method shows better magnification
with lesser distortions around the balloon.

Analysis on Toy Video: The toy video is illustrated in
Figure 4. In this video, the toy is moving on the table along
with vibrations. Our goal is to produce large magnification
for the toy’s subtle motions in presence of toy linear motion
(moving along the table from left to right). The Jerk-aware
[30], Acceleration [39] and Anisotropy [28] methods pro-
duce less magnification. Further, the Acceleration [39] and
Oh et al. [23] produce some blurriness in the output. Oh
et al. [23] method produces good magnification but causes
spurious motion (visible in red box as sharp spikes in Fig-
ure 4 (e)). Whereas, our proposed models produce better
magnification of the vibrating toy as compared to [30], [39],
[28], [23].

Analysis on Gun-shooting Video: Figure 6 show the re-
sults of different SOTA methods on gun-shooting video.
This video contains a large background movement due to
camera motion and quick gun recoil produces the fore-
ground motion. Our aim is to magnify the minute fore-
arm motion in presence of a large camera motion. Figure
6 shows the motion of the forearm using spatio-temporal
slices at a red strip. Higher forearm motion can be perceived
as more bending in the temporal slice (shown in the red box
of Figure 6). Jerk -aware method [30], Anisotropy [28],
Acceleration [39] methods produce lower magnification as
compared to the proposed method. Oh et al. method [23]
induce spurious motion in some frames and generate blurry
distortions (visible as large spikes in Oh et al. [23] tempo-
ral slice). Whereas, the proposed method generates higher
magnification of subtle forearm movements with fewer dis-
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Figure 5. Drill Video: Comparison of proposed method with existing methods for magnification of the drill rotational motion. First, output
from respective methods and then their spatio-temporal slices with respect to the red strip are shown. The proposed method produces better
results with fewer artifacts. (a) Input video, (b) Acceleration based method [39], (c) Jerk-Aware method [30], (d) Anisotropy method [28],
(e) Oh et al. [23], (f) Ours Base model, and (g) Ours lightweight model.

Figure 6. Gun-shooting video: Visualizing the impact of gun re-
coil through the arm. We take temporal slices at red strip to show
the effect of magnification on the forearm. The proposed method
output has the highest magnification (shown as more bending of
the forearm in the red box). (a) Input video, (b) Acceleration
based method [39], (c) Jerk-Aware method [30], (d) Anisotropy
method [28], (e) Oh et al. [23], (f) Ours Base model, and (g) Ours
lightweight model.

tortions, even in presence of large camera motion as com-
pared to SOTA methods.

Analysis on rotational motion: Figure 5 illustrates a
hand drill producing rotational motion along its axis. To
analyze the effects of magnification on rotational motion
a still video is taken. In 2D, hand drill rotational motion
can be perceived as spiral motion. Our aim is to increase
the spiral motion (higher spiral motion is displayed as more
outwards extension of rod radius). The rotational motion of
the hand drill is depicted in spatial temporal slice of Figure
5. Hand design filter-based methods [30, 28, 39] generate
ringing artifacts around the rod (seen as white edges near
the rod and white spikes in the temporal slices in Figure 5
(b),(c),(d)). Oh et al. method [23] magnifies the motion
but delivers some distortions in the magnified frames (ob-
servable as white spikes in Figure 5(e) temporal slice). Our
proposed models have better magnification and fewer arti-
facts in motion as compared to SOTA methods.

Whether our magnified output is physically accurate?
To check the physical accuracy of the proposed method, we

Figure 7. Physical Accuracy: Comparison between our method
and other SOTA methods output (in red) with the sensor signal (in
blue) respectively. The direction of optical flow in the patch re-
gion is computed to extract the magnified signal (in blue) from the
video. (a) Input, (b) Our base model (c) Our lightweight model,
(d) Oh et al. method [23] (e) Jerk-aware method [30], (f) Acceler-
ation method [39] and (g) Anisotropy [28] method respectively.

Table 2. Mean Absolute Error (MAE) on SOTA methods of
Anisotropy [28], Jerk-aware method [30], Acceleration method
[39], Oh et al. method [23], Ours base method (M1), and Ours
lightweight model (M2). MAE is computed between the extracted
signal from the magnified video and sensor measured signal. The
proposed method has the minimum MAE values. (First best shown
in bold and second best shown in italic.)

Methods [28] [30] [39] [23] M1 M2

MAE 0.146 0.149 0.146 0.144 0.121 0.131

perform this experiment. A mechanical rod as shown in
Figure 7 is displaced up and down using universal vibra-
tion apparatus. An ultrasonic sensor is used, to measure
the displacement signal of the mechanical rod and at the
same time, it is recorded in the video. For extraction of mo-
tion signal from the video first, the optical flow is computed
by taking input frame t-1 and magnified frame t along the
region marked in the red box in Figure 7. Then the aver-
age direction of motion along the image patch is calculated.
Both the optical flow and sensor measure signal is rescaled
from 0 to 1. From the rescaled signal, mean absolute error
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Table 3. Aggregate Mean Square Error (MSE) of synthetic videos
with different backgrounds on Acceleration method [39], Jerk-
aware method [30], Anisotropy [28], Oh et al. method [23] Ours
base method (M1), and Ours lightweight model (M2) respectively.
The proposed method has the minimum error. (First best shown in
bold and second best shown in italic.)

Methods [28] [30] [39] [23] M1 M2

MSE 36.4 55.3 68.0 38.8 23.07 27.8

Table 4. Aggregate Mean Square Error (MSE) computed across
synthetic videos on (a) Without proxy model based feature loss
training, (b) Without feature sharing encoder, (c) Without appear-
ance Encoder, (d) Without Ledge loss, (e) Without Lp loss and (e)
Ours base model (M1) on synthetic videos. The proposed method
has the minimum error. (First best shown in bold.)

Methods M1 (a) (b) (c) (d) (e)

MSE 23.07 27.85 30.1 37.7 31.1 40.2

(MAE) is calculated for different SOTA methods as shown
in Table 2. The proposed method has the minimum MAE.

4.2. Analysis on Synthetic Videos

For quantitative analysis, we generate 25 different syn-
thetic videos with various backgrounds. To mimic photo-
graphic noise, Gaussian noise is also added in the videos.
This will help to see how each method behaves in different
backgrounds and their robustness towards the noise. Each
video contains three circles to mimic motion in a different
direction (one in horizontal, one in vertical, and one in di-
agonal). This will help to analyse how different methods
[30], [23], [28] and [39] magnify motions individually. For
synthetic videos, we choose a simple range of motion (up-
down, left-right, and diagonal motion of circle). As it is
easier to generate accurate ground truths for simpler cases,
compared to the complex motion (random movement of a
circle). Input videos contain a circle with 0.1 sub-pixel
movement, while the ground truth has 10 pixels movement.
For different methods, to generate the same amount of out-
put motion, their magnification factor is changed. Table 3
depicts the average MSE of 25 different synthetic videos,
on different SOTA methods [30], [23], [28], [39] and ours.
Our method produces better results with minimum aggre-
gate MSE.

Ablation Study: Ablation study is conducted on the pro-
posed architecture to see the importance of different mod-
ules. For this, five different models are trained (a) Without
proxy model based feature loss training (b) Without fea-
ture Sharing Encoder, (c) Without appearance Encoder, (d)
Without Ledge loss, and (e) Without Lp loss. We test them
on synthetic videos and give their aggregate MSE in Table
4. The proposed method shows the minimum MSE value.

The proposed feature based proxy loss is used to reduce
the magnification of unwanted changes. Appearance en-
coder based loss helps to give denoising signal to make
the network robust to illumination changes. Further, fea-
ture sharing encoder is used to reduce the effects of noise.
Also, the appearance encoder, Ledge and Lp loss help in the
generation of a magnified frame of appropriate quality. As
shown in Table 4, after the inclusion of all the modules and
losses in the training process, the proposed method has the
minimum MSE value.

5. Limitation

The dataset produced by Oh et al. [23] is used for train-
ing the proposed network. Since the dataset is synthetic
(due to the unavailability of real ground truth ), there is a
domain gap. As hand-crafted method ignores fast large mo-
tion acceleration and jerk motion. Whereas in the dataset,
the maximum input pixel displacement for magnification is
up to 10 pixels. If objects with unwanted subtle motion like
snow or rain etc come in this input range, they will also
be magnified. Additionally, hand-crafted methods can also
magnify color changes. But the SOTA deep learning meth-
ods are only for motion magnification (including ours). Hy-
brid approaches can be explored as an interesting area of re-
search to close this domain gap. Also, deep learning meth-
ods produce some blur and texture smoothing for reducing
the effects of noise. So, there is a gap between the base
model and the lightweight model. More work needs to be
done to further improve the lightweight model.

6. Conclusion

In this paper, we propose a deep learning based model
for video motion magnification. It consists of proxy model
based feature loss, feature sharing based encoders, and ap-
pearance encoder based regularization terms, to reduce the
effects of noise, illumination etc and refine the motion fea-
tures. The appearance encoder also helps to extract com-
mon appearance in the input frames, and combine it with
the manipulator output, which is given to the decoder to pro-
duce a magnified frame. Additionally, a lightweight model
with reduced computational complexity is proposed along
with the base model. The results of the proposed models
are evaluated qualitatively and quantitatively on real and
synthetic videos with SOTA methods. Results show that
the proposed models perform better than the SOTA methods
both qualitatively and quantitatively for motion magnifica-
tion.
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William T Freeman. Phase-based video motion processing.
ACM Transactions on Graphics (TOG), 32(4):1–10, 2013.

[34] Neal Wadhwa, Michael Rubinstein, Frédo Durand, and
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