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Abstract

The convolutional layers of the standard convolutional
neural networks (CNNs) are equivariant to translation. Re-
cently, a new class of CNNs is introduced which is equivari-
ant to other affine geometric transformations such as rota-
tion and reflection by replacing the standard convolutional
layer with the group convolutional layer or using the steer-
able filters in the convloutional layer. We propose to em-
bed the 2D positional encoding which is invariant to rota-
tion, reflection and translation using orthogonal polar har-
monic transforms (PHTs) before flattening the feature maps
for fully-connected or classification layer in the equivari-
ant CNN architecture. We select the PHTs among several
invariant transforms, as they are very efficient in perfor-
mance and speed. The proposed 2D positional encoding
scheme between the convolutional and fully-connected lay-
ers of the equivariant networks is shown to provide signif-
icant improvement in performance on the rotated MNIST,
CIFAR-10 and CIFAR-100 datasets.

1. Introduction

Convolutional neural networks (CNNs) have achieved
state-of-the-art performance for various computer vision
tasks, especially the task of image recognition for which
CNNs have surpassed the human-level intelligence on the
ImageNet dataset. The architectures of standard CNN mod-
els consist of feature extraction layers, pooling layers, non-
linear activation functions and fully-connected layers [14].
The convolutional layer is responsible to learn the abstrac-
tions from the given input data. However, the convolutional
layers of the CNN are only equivariant to translation and the
fully-connected layers are neither equivariant nor invariant
to any affine geometric transformation. A network is equiv-
ariant if the transformation T applied to the input produce
predictable transformation T ′ of the feature space and in-
variant if the transformation T applied to the input does not
affect the output. In real-life scenarios, the images are gen-

erally distorted by different geometric transformations such
as rotation, translation, reflection, etc., which increases the
complexity of image recognition task by manifolds. The
one straightforward solution is to encode these transforma-
tions via data augmentation simply by transforming the in-
put images while keeping the labels fixed. However, there
are inevitable downsides of data augmentation which are
1) invariance to these transformations is not guaranteed, 2)
it only captures geometric invariance globally and 3) the
network capacity is spend on learning geometric behavior
which implicitly affects the descriptive representation learn-
ing. Worrall et al. [28] discussed the importance of rela-
tive local pose preservation throughout the network layers
which is only possible through equivariance and it also con-
veys more information about an input to the deeper layers.
Moreover, the equivariance also guarantees of no informa-
tion loss when the input get transformed. Thus, it is im-
portant that the intermediate layers of CNN models must be
equivariant not invariant which has led to the idea of design-
ing the equivariant neural networks. As per our knowledge,
the equivariant CNNs developed so far eliminates the spatial
dimensions of the filter responses by performing equivari-
ant convolutions and down-sampling to get the final feature
vector for classification because the fully-connected layers
cannot retain the equivariant representations learned by the
intermediate equivariant layers of the equivariant CNNs.
Our contributions are as follows:

• With the assumption that intermediate layers of the
network are equivariant to rotation, reflection and
translation, we use polar harmonic transforms (PHTs)
to encode the global invariance with respect to rotation,
reflection and translation.

• The PHTs encode the high-order 2D positional differ-
ences of the filter responses or feature maps into the
fully-connected layer, as a result, fully-connected layer
retain the spatial information in addition to being in-
variant.

• The proposed invariant encoding scheme adds one
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more degree of freedom to the design of equivariant
neural networks by removing the restriction to elimi-
nate the spatial dimensions of the feature maps to get
the final classification vector.

2. Related Work

2.1. Equivariant 2D CNNs

In the seminal work on equivariant CNNs, Cohen and
Welling [4] proposed a framework for group equivairant
CNNs (G-CNNs). In G-CNNs, the convolutional, pooling,
batch normalization and activation operators are redefined
in terms of action on a transformation group. G-CNN is
defined as the composition of group operations to ensure
the equivariance throughout the network. G-CNN showed a
significance gain in performance over the standard CNN be-
cause it exploits more symmetries in the images. However,
G-CNN is limited to discrete transformations such as 90-
degree rotations and reflections which leaves the pixel grid
intact. Subsequent works on G-CNN are focused on ex-
panding the transformation groups. Hoogeboom et al. [10]
proposed the HexaConv network which has a 6-fold ro-
tational symmetry in contrast to the original G-CNN [4].
Chidester et al.[2] introduced the Conic Convolutional and
DFT Network (CFNet) which enforce equivariance and in-
variance in CNN with respect to rotation in the conic re-
gions which originates from the center of an image. Equiv-
ariance is enforced by using conic convolutional layer and
2D-DFT is used to enforce invariance. Bekkers et al. [1] in-
troduced the SE(2) equivariant G-CNN for arbitrary angu-
lar resolutions by using bilinear interpolation to efficiently
transform convolutional kernels. Romero et al. [16] pro-
posed the attention based G-CNN in which the attention is
applied during convolution to exploit meaningful symme-
tries and while suppressing the non-plausible and mislead-
ing symmetries.

Based on the idea of exploiting the more symmetries
in the data, Cohen and Welling [6] proposed the steerable
CNNs. The steerable representation is a composition of el-
ementary feature types where each feature type is associated
with a particular symmetry. Worall et al. [28]proposed the
Harmonic networks (H-Nets) equivariant to 360-rotations
and patch-wise translations by restricting the CNN filters to
circular harmonic filters. Weiler et al. [25] proposed the
Steerable Filter CNN (SFCNN) jointly equivariant to trans-
lation and rotation. SFCNN efficiently computes orienta-
tion dependent responses without suffering interpolation ar-
tifacts for filter rotation.

Ruthotto and Haber [17] has provided a new understand-
ing on convolutional filters in which a conventional convo-
lutional filter is viewed as a linear combination of partial
differential operators (PDOs). Based on this new under-
standing, Shen et al. [18] introduced the PDO equivariant

convolution network (PDO-eCOnvs) which is equivariant to
n-dimensional Euclidean group (a more general continuous
group) instead of discrete transformation group [4].

2.2. Equivariant 3D CNNs

Equivariance is also important in 3D cases because 3D
symmetries are inevitable in 3D objects around vertical
axis. Winkels and Cohen [26]proposed the 3D roto-
translation G-CNN for pulmonary nodule detection. Wor-
rall and Brostow [27] introudced the CubeNet, a G-CNN
with linear equivariance to translation and right angle ro-
tations in 3D. Weiler et al. [24] presented a SE(3)-
equivariant CNN which is equivariant to rigid body mo-
tions. Shen et al. [19] extended their previous work [18]
and employed PDO to design 3D PDO-eConv networks.
Thomas et al. [22] introduced the Tensor field network
which is equivariant to 3D rotations, translation and permu-
tations for 3D point clouds. Further, the equivariant CNN
such as spehrical [5] and gauge equivariant CNN [3] are
introduced for data defined in other spaces.

3. Group Equivariant Neural Networks
The convolutional layer of a standard CNN is equivariant

to translation. Let f be a feature map f : Z2 → RK and
Ot a translation operator which translate f by t ∈ Z2. The
translation equivariance is expressed as follows [4, 10]:

[[Otf ] ∗ ψ] (x) = [Ot [f ∗ ψ]] (x) , (1)

where ψ represent a filter. Instead of translation, if we con-
sider a rotation r, (1) is rewritten as follows:

[[Orf ] ∗ ψ] (x) = [Or [f ∗Or−1ψ]] (x) . (2)

Here, the convolution of a rotated feature map f by a fil-
ter ψ equals to the rotation of convolution between f and
inversely rotated filter Or−1ψ. It is clear from (2) that con-
volution is not equivariant translation.

Let g be a particular transformation (e.g. rotation or re-
flection) from a larger group G. Then G-convolutional op-
eration for the first layer operates on functions on Z2 as
follows:

[f ∗ ψ] (g) =
∑
z∈Z2

∑
k

fk(z)ψk(g
−1z). (3)

where k denotes the input channels, fk and ψk are function
on Z2. The G-convolutional operation for all other layers is
defined as follows:

[f ∗ ψ] (g) =
∑
h∈G

∑
k

fk(h)ψk(g
−1h). (4)

Here, fk and ψk are functions on G instead of Z2. It can be
easily shown that the G-convolution is equivariant to trans-
formations defined by group g ∈ G as follows:

[[Ogf ] ∗g ψ] (g) = [Og [f ∗g ψ]] (g) . (5)
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4. Mathematical Framework for Polar Har-
monic Transforms

Polar Harmonic transforms (PHTs) are 2D orthogonal
transforms defined over the unit disk in the polar coordinate
system. PHTs consist of polar complex exponential trans-
forms (PCETs), polar cosine transforms (PCTs) and polar
sine transforms (PSTs). Let f(r, θ) be a 2D feature map
which is defined in the continuous polar domain. The PHTs
of order n and repetitionm for f(r, θ) is defined as [29, 15]:

An,m(f) = λ

∫ 2π

0

∫ 1

0

[Hn,m(r, θ)]
∗
f(r, θ)rdrdθ, (6)

where [Hn,m(r, θ)]
∗ is the complex conjugate of

Hn,m(r, θ) which can be rewritten in the separable
form of the kernel or radial basis function and angular
function as follows:

Hn,m(r, θ) = Rn(r)e
imθ, (7)

where i =
√
−1. The mathematical framework of PHTs

defined in (6) is similar for PCETs, PCTs and PSTs while
they differ in the form of their kernel or radial basis func-
tion Rn(r) and the normalizing parameter λ which are ex-
pressed as [29]:

PCET : Rn(r) = ei2πnr
2

, λ =
1

π
,

|n| = |m| = 0, 1, . . . ,∞.
(8)

PCT : Rn(r) = cos(πnr2),

n, |m| = 0, 1, . . . ,∞.
(9)

PST : Rn(r) = sin(πnr2),

n = 1, 2, . . . ,∞,

|m| = 0, 1, . . . ,∞.

(10)

where

λ =

{
1
π n = 0
2
π n ̸= 0.

for PCTs and PSTs.
The kernel function and the angular function of the PHTs
satisfies the orthogonality condition∫ 2π

0

∫ 1

0

[Hn,m(r, θ)]
∗
Hn′,m′(r, θ)rdrdθ = πδn,n′δm,m′ ,

(11)
where δnn′ = 1 if n = n′, and 0 otherwise. Also the ra-
dial basis function Rn(r) satisfies the orthogonal condition
separately ∫ 1

0

Rn(r)[Rn′(r)]∗rdr =
1

2
δn,n′ . (12)

Figure 1. Mapping from rectangular cartesian domain in the left to
unit disk in polar domain in the right.

Deriving PHTs using (6) is difficult because the filter re-
sponses (feature maps) generated by the CNNs are discrete
and defined in the cartesian coordinate system while the
PHTs are defined in the continuous polar domain. There-
fore, a mapping is performed from cartesian domain to polar
domain. Let f(a, b) be a feature map of size, say M ×M ,
and (a, b) is a coordinate in f(a, b). A mapping is per-
formed from theM×M square domain to [−1, 1]×[−1, 1],
shown in Fig. 1 using the following transformation [20]:

xa =
2a+ 1−M

M
√
2

, yb =
2b+ 1−M

M
√
2

,

a, b = 0, 1, 2, . . .M − 1,

(13)

with ∆x = ∆y = 2
M

√
2

.
Let (a, b) be a coordinate in the rectangular cartesian

coordinate system then the corresponding location in po-
lar domain (rab, θab) is derived as rab =

√
x2a + y2b and

θab = tan−1 (yb, xa), where θab ∈ [0, 2π). Since there is
no analytical solution exist to the double integration given
in (6), generally, the zeroth order approximation is used:

An,m(f) =
4λ

2M2

M−1∑
a=0

M−1∑
b=0

f(a, b)[Hn,m(xa, yb)]
∗∆x∆y.

(14)

5. Invariance Properties of PHT
In this section, we discuss the rotation, reflection and

translation invariance properties of PHTs.

5.1. Rotation Invariance

Let f(r, θ) be a function rotated by an arbitrary an-
gle α (anti-cloclkwise) becomes fα(r, θ) = f(r, θ + α)
then the PHTs of the rotated An,m(fα) and unrotated func-
tion An,m(f) has the following relationship [8, 7] (see Ap-
pendix A) :

An,m(fα) = An,m(f)e−imα. (15)

It is clear from the above relationship that rotation by an
angle α shift in the phase by −mα. The magnitude cancels
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out the exponential factor and become invariant to rotation
as follows:

|An,m(fα)| = |An,m(f)|. (16)

5.2. Reflection Invariance

Let fh(a, b) and fv(a, b) are the horizontal and verti-
cal flipped versions of the original function f(a, b) then the
relationship between the PHTs of the original and flipped
functions are defined as follows (see Appendix B) [13]:

An,m(fh) = (−1)m[An,m(f)]∗. (17)

and
An,m(fv) = [An,m(f)]∗. (18)

where [.]∗ is the complex conjugate. The magnitude of (17)
and (18) is invariant to horizontal and vertical flipping.

5.3. Translation Invariance

For PHTs, the invariance to translation can be simply
achieved by shifting the center of the coordinate system
(a, b) in such a way that it coincides with the centroid of
the feature maps. Let f ′(a + ∆a, b + ∆b) is the trans-
lated version of f(a, b) by the translation factor ∆a and ∆b.
The central PHTs invariant to translation are computed by
replacing the center of coordinate system (M/2,M/2) of
(a, b) with its centroid as follows [21]:

AMn,m(f) = λ

M−1∑
a=0

M−1∑
b=0

f(xa, yb)Rn(ra,b)e
−imθab ,

(19)
where xa and yb are obtained as follows:

xa =
2a+ 1− x

D
, yb =

2b+ 1− y

D
. (20)

The centroid (x, y) are obtained as follows[13]:

x =

∑M−1
a=0

∑M−1
b=0 a.f(a, b)∑M−1

a=0

∑M−1
b=0 f(a, b)

, y =

∑M−1
a=0

∑M−1
b=0 b.f(a, b)∑M−1

a=0

∑M−1
b=0 f(a, b)

.

(21)

6. Invariant 2D Positional Encoding Using
PHTs

In a general standard CNN architecture, some number
of fully-connected layers are applied after the final convo-
lution layer. As discussed earlier, the equivariant CNNs
are the composition of equivariant operations (e.g., con-
volution, pooling, batch normalization, and activation) to
ensure the equivariance throughout the network. Since
the fully-connected layers are not equivariant/invariant to
the transformations, therefore, can not preserve the equiv-
ariant/invariant representations learned by the equivariant

Table 1. Test error(%) obtained using proposed G-CNN+PCETs
and G-CNN+PCTs for different transform order (nmax).

Methods 3 5 7 9 11 13

G-CNN(p4) 1.78 1.60 1.62 1.66 1.71 1.74
+PCETs
G-CNN(p4) 1.80 1.61 1.64 1.68 1.76 1.81
+PCTs

CNNs. The convolution and down-sampling is applied to
eliminate the spatial dimensions of the feature maps until
feature maps become merely a vector in order to retain the
learned equivariance/invariance representations.

Let F be a equvariant CNN which is defined as a compo-
sition of L equivarint layers and l is a particular layer in F .
The feature maps Y l generated by F at a particular layer l
are denoted as:

Y l = F l(X), (22)

where Y l is of dimensions hl × wl × θ × cl and h,w, θ, c
represent the height, width, transformations and channels,
respectively. The feature maps Y l are functions on group
G, a mapping function Ωl

θ is applied which maps G into
Z2 which eliminates the transformation axis θ by linearly
concatenating the transformation groups to the channels cl

one after another and sort the feature maps based on their
activation. The operation is defined as:

W l = Ωl
θ(Y

l), (23)

where W l is of dimensions hl × wl × clθ and clθ = θ × cl.
It is important to note that mapping function Ωl

θ is equivari-
ant and can retain the equivariance representations learned
by the intermediate equivariant layers of CNN. Finally, the
central PHTs are computed over cl as follows:

Ik = |AMn,m(W l
k)|, k = 1, 2, . . . clθ, (24)

where Ik is a vector of size (nmax + 1)2 and (nmax) is the
maximum PHT order. The final invariant representation I is
obtained by linearly concatenating the vectors Ik, obtained
as I = [I1, I2, . . . Iclθ

] and passed to the following fully-
connected layer for classification. The proposed invariant
2D positional encoding scheme using the equivariant and
invariant operators for equivariant CNN is shown in Fig. 2.
In CFNet[2], DFTs is used to encode invariance with re-
spect to rotation only. We selected PHTs among the various
orthogonal transforms due to their invariance to the large
group transformations (i.e., rotation, reflection and transla-
tion), high performance and low-computation complexity.
Moreover, we can compute the infinite number of invariants
with the help of PHTs in contrast to DFTs which are lim-
ited and finite to the size of f . The reason is that the PHTs
are continuous transforms in contrast to DFT which is dis-
crete. In the proposed framework for equivariant CNNs, the
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Figure 2. Network architecture with equivariant intermediate layers and invariant fully-connected layers:(a) Intermediate equivariant layers
and (b) PHTs-based 2D positional encoding followed by fully-connected layers.

Table 2. Test error(%) obtained by existing and proposed methods
on rotated MNIST dataset.

Methods Test error (%) params

Z2CNN [4] 5.03 22k
Z2CNN+data aug [4] 3.50 22k
G-CNN(p4) [4] 3.21 25k
CFNet [2] 2.00 -
H-Net [28] 1.69 33k
PDO-eConv(p8) [18] 1.87 26k
G-CNN+PCETs(p4) 1.60± 0.002 26.5k
G-CNN+PCTs(p4) 1.61± 0.003 26.5k
PDO-eConv+PCETs(p8) 1.56± 0.004 27.5k
PDO-eConv+PCTs(p8) 1.58± 0.004 27.5k

intermediate layers of the equivariant CNNs are equivari-
ant to the transformations which preserve the local relative
poses without loosing any vital information and the final
fully-connected layers become invariant to the transforma-
tion globally. Moreover, the intuition behind using all the
transformations is that the learned feature maps are unique
and represent the independent information or features of the
input data. This aspect is very useful and further validated
using experiments in Section 7. Another important use of
the proposed integration is for the high-resolution represen-
tation learning [23] which is important for the sensitive
vision problems such as human pose estimation, semantic
segmentation, and object detection including image classi-
fication because it resolve the issue of down-sampling of
feature maps to a vector for final classification.

7. Experimental Results

In this section, we evaluate the proposed invariant 2D
positional encoding scheme on top of G-CNN and PDO-
eConv on rotated MNIST, CIFAR-10, and CIFAR-100

datasets. The rotated MNIST dataset is chosen to evalu-
ate the performance of the proposed equivariant and invari-
ant architecture under rotation. CIFAR-10 and CIFAR-100
are the more natural large-scale color benchmarking image
datasets commonly used to evaluate the deep neural net-
works architecture. The experiments are conducted on a
NVIDIA Quadro P4000 8GB GPU and the proposed 2D in-
variant positional encoding scheme using PCETs is imple-
mented using TensorFlow 1.14.

7.1. Rotated MNIST

The rotated MNIST dataset [12] is most frequently used
to investigate the equivariance properties of the equivariant
CNNs. It is split into train, validation and test sets of size
10000, 2000 and 50000 images, respectively. The test split
is rotated to random rotations in [0, 2π). For experimental
purpose, G-CNN(p4)1 architecture is used [4] which con-
tains 6 layers of 3× 3 convolutional kernels. The proposed
invariant 2D positional encoding scheme is integrated af-
ter layer 6 (l = 6) in the architecture of G-CNN followed
by a fully-connected layer. The dimensions of the feature
maps (Y 6) at layer 6 are 4× 4× 4× 10, and after applying
the mapping operator (Ωl

θ), W
l is obtained and the dimen-

sions of W l are 4 × 4 × 40. In the case of PDO-eConv
(p8), the dimensions of (Y 6) at layer 6 are 4 × 4 × 8 × 7
and W l are 4 × 4 × 56. The proposed model architecture
is trained using the Adam optimizer with a weight decay of
0.01 and the weights of the fully-connected layer are initial-
ized using Xavier initialization. The model is trained using
a batch of size 128 upto 200 epochs. The initial learning
rate is set to 0.001 and divided by 10 after 50% and 75%
of the total 200 epochs. The recognition rates obtained by
PHTs (PCETs and PCTs) are shown in Table 1 for different

1pn denotes a group generated by translations and rotations by 2π/n
and pnm denote a group generated by translations, reflections and rota-
tions by 2π/n.
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Table 3. Test error(%) obtained by existing and proposed methods on CIFAR-10 and CIFAR-100.

Methods G Depth CIFAR-10 CIFAR-100 params

ResNet Z2 44 5.61 24.1 2.64M
G-CNN p4m 44 4.98 23.24 2.62M

PDO-eConv p8 44 3.76 20.1 2.62M
G-CNN+PCETs p4m 44 4.76 23.02 2.63M
G-CNN+PCTs p4m 44 4.80 23.08 2.63M

PDO-eConv+PCETs p8 44 3.58 18.23 2.63M
PDO-eConv+PCTs p8 44 3.62 18.51 2.63M

transform orders(nmax). PHTs obtains lowest test error at
order nmax = 5 which is selected for further experiments
in this section. For order nmax = 5, the invariant 2D po-
sitional encoding scheme adds 36 × 40 and 36 × 56 num-
ber of learning parameters to G-CNN and PDO-eConv, re-
spectively. Table 2 shows the recognition accuracy obtained
by existing Z2CNN, Z2CNN with data augmentation (i.e.,
Z2CNN+data aug.) G-CNN, CFNet, H-Net, PDO-eConv
and the proposed G-CNN+PCETs, G-CNN+PCTs, PDO-
eConv+PCETs, PDO-eConv+PCTs. As it can be easily ob-
served from the table that the proposed invariant scheme on
top of G-CNN and PDO-eConv networks reduces the test
error significantly as compared to the existing methods.

7.2. Natural Image Classification

Here, we evaluate the performance of the proposed in-
variant 2D positional encoding scheme using two more
natural image datasets which are CIFAR-10 and CIFAR-
100 [11]. The CIFAR-10 and CIFAR-100 datasets consists
of colored natural images of size 32 × 32. The CIFAR-
10 dataset is categorized into 10 classes while CIFAR-
100 dataset is categorized into 100 classes. Both CIFAR
datasets are divided into training and test sets of size 50000
and 10000 images, respectively. The experiments are per-
formed according to the specification specified in [18]. The
5000 images are selected as a validation set from the train-
ing set and the model with lowest validation error is se-
lected during training. The training set is augmented us-
ing the standard augmentation scheme which is by mir-
roring/shifting [18] and the images are normalized by the
means and standard deviation of their corresponding chan-
nels. ResNet [9] is choosen as the basis model to evaluate
the proposed invariant 2D positional encoding on top of G-
CNN and PDO-eConv. The ResNet model consist of an ini-
tial convolutional layer, followed by three stages of 2n con-
volutional layers using ki filters at stage i, and a final clas-
sification layer which makes total 6n+2 layers. The results
are shown in Table 3 for ResNet-44, where ki = 11, 23, 45
and n = 7. The convolutional layers of ResNet-44 are re-
placed by G-convolutional layers and PDO-eConv layers
for G-CNN and PDO-eConv networks, respectively. The
models are trained using stochastic gradient descent (SGD)

with momentum 0.9 with a batch of size 128 for 300 epochs.
The initial learning rate is set to 0.1, weight decay is 0.001
and the learning rate is divided by 10 at 50% and 75% of
the total training epochs which are 300. The weights of the
fully-connected layer are initialized using Xavier initializa-
tion method [18]. The dimensions of the filter responses
after the final convolutional stage is 8 × 8 × 8 × 45 for G-
CNN and 8 × 8 × 8 × 45 for PDO-eConv. After mapping
using the Ωl

θ(Y
l) the dimensions get mapped to 8×8×360

and 8× 8× 360 for G-CNN and PDO-eConv, respectively.
The proposed invariant 2D positional encoding scheme is
applied which generates the feature vectors of size 36×360
for G-CNN and 36 × 360 for PDO-eConv. The number of
additional parameters added to the network is 12,960. It
can again observed from the Table 3 that the proposed in-
variant scheme on top of G-CNN and PDO-eConv networks
reduces the test error significantly for both the datasets.

8. Conclusion

In this paper, we have proposed a 2D positional en-
coding scheme using orthogonal PHTs to learn the invari-
ant representations in the equivariant CNNs by integrat-
ing the orthogonal PHTs in the transition between equiv-
ariant convolutional layers and fully-connected layers. The
proposed encoding scheme is invariant to rotation, reflec-
tion and translation. Moreover, the kernel computation of
PHTs is extremely simple and has no numerical instabil-
ity issues. The experiments are conducted using PCETs
and PCTs on rotated MNIST to evaluate the equivariance
and invariance properties of the proposed architecture and
CIFAR-10 and CIFAR-100 datasets. The proposed invari-
ant encoding scheme provides improved recognition accu-
racy as compared to CNN(Z2-CNN), Z2CNN+data aug.,
G-CNN(p4, p4m), CFNet, PDO-eConv(p8) and H-Net and
put off the need to remove the spatial dimensions by down-
sampling filter responses for equivariant CNNs.
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image analysis by moments. John Wiley & Sons, 2016.

[8] Jan Flusser, Barbara Zitova, and Tomas Suk. Moments and
moment invariants in pattern recognition. John Wiley &
Sons, 2009.

[9] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Identity mappings in deep residual networks. In European
conference on computer vision, pages 630–645. Springer,
2016.

[10] Emiel Hoogeboom, Jorn WT Peters, Taco S Cohen, and Max
Welling. Hexaconv. In International Conference on Learn-
ing Representations, 2018.

[11] Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple
layers of features from tiny images. 2009.

[12] Hugo Larochelle, Dumitru Erhan, Aaron Courville, James
Bergstra, and Yoshua Bengio. An empirical evaluation of
deep architectures on problems with many factors of varia-
tion. In Proceedings of the 24th international conference on
Machine learning, pages 473–480, 2007.

[13] Miros law Pawlak. Image analysis by moments: reconstruc-
tion and computational aspects. Oficyna Wydawnicza Po-
litechniki Wrocławskiej, 2006.

[14] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep
learning. nature, 521(7553):436–444, 2015.

[15] Yue Nan Li. Quaternion polar harmonic transforms for color
images. IEEE Signal Processing Letters, 20(8):803–806,
2013.

[16] David Romero, Erik Bekkers, Jakub Tomczak, and Mark
Hoogendoorn. Attentive group equivariant convolutional
networks. In International Conference on Machine Learn-
ing, pages 8188–8199. PMLR, 2020.

[17] Lars Ruthotto and Eldad Haber. Deep neural networks moti-
vated by partial differential equations. Journal of Mathemat-
ical Imaging and Vision, 62(3):352–364, 2020.

[18] Zhengyang Shen, Lingshen He, Zhouchen Lin, and Jinwen
Ma. Pdo-econvs: Partial differential operator based equivari-
ant convolutions. In International Conference on Machine
Learning, pages 8697–8706. PMLR, 2020.

[19] Zhengyang Shen, Tao Hong, Qi She, Jinwen Ma, and
Zhouchen Lin. Pdo-s3dcnns: Partial differential operator
based steerable 3d cnns. In International Conference on Ma-
chine Learning, pages 19827–19846. PMLR, 2022.

[20] Chandan Singh and Amandeep Kaur. Fast computation of
polar harmonic transforms. Journal of Real-Time Image Pro-
cessing, 10(1):59–66, 2015.

[21] Chandan Singh and Jaspreet Singh. A survey on rotation
invariance of orthogonal moments and transforms. Signal
Processing, page 108086, 2021.

[22] Nathaniel Thomas, Tess Smidt, Steven Kearnes, Lusann
Yang, Li Li, Kai Kohlhoff, and Patrick Riley. Tensor field
networks: Rotation-and translation-equivariant neural net-
works for 3d point clouds. arXiv preprint arXiv:1802.08219,
2018.

[23] Jingdong Wang, Ke Sun, Tianheng Cheng, Borui Jiang,
Chaorui Deng, Yang Zhao, Dong Liu, Yadong Mu, Mingkui
Tan, Xinggang Wang, Wenyu Liu, and Bin Xiao. Deep
high-resolution representation learning for visual recogni-
tion. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 43(10):3349–3364, 2021.

[24] Maurice Weiler and Gabriele Cesa. General e(2)-equivariant
steerable cnns. arXiv preprint arXiv:1911.08251, 2019.

[25] Maurice Weiler, Fred A Hamprecht, and Martin Storath.
Learning steerable filters for rotation equivariant cnns. In
Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pages 849–858, 2018.

[26] Marysia Winkels and Taco S Cohen. 3d g-cnns for pul-
monary nodule detection. arXiv preprint arXiv:1804.04656,
2018.

[27] Daniel Worrall and Gabriel Brostow. Cubenet: Equivariance
to 3d rotation and translation. In Proceedings of the Euro-
pean Conference on Computer Vision (ECCV), pages 567–
584, 2018.

[28] Daniel E Worrall, Stephan J Garbin, Daniyar Turmukham-
betov, and Gabriel J Brostow. Harmonic networks: Deep
translation and rotation equivariance. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recogni-
tion, pages 5028–5037, 2017.

[29] Pew-Thian Yap, Xudong Jiang, and Alex Chichung Kot.
Two-dimensional polar harmonic transforms for invariant
image representation. IEEE Transactions on Pattern Anal-
ysis and Machine Intelligence, 32(7):1259–1270, 2009.

Appendix A. Rotation Invariance

Let fα(r, θ) is the rotated version of f(r, θ) rotated by an
angle α then the relationship between the PHTs of original
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and rotated function is defined as follows[8]:

AMn,m(fα) = λ

∫ 2π

0

∫ 1

0

fα(r, θ)Rn(r)e
−imθrdrdθ,

= λ

∫ 2π

0

∫ 1

0

f(r, θ + α)Rn(r)e
−imθrdrdθ,

= λ

∫ 2π

0

∫ 1

0

f(r, θ
′
)Rn(r)e

−im(θ
′
−α)rdrdθ

′
,

= λ

∫ 2π

0

∫ 1

0

f(r, θ
′
)Rn(r)e

−imθ
′

eimαrdrdθ
′
,

= eimαAMn,m(f).

(A1)

This relationship shows that PHTs of the original and the
rotated function undergo phase-shift by an angle mα and
the magnitude cancels out the effect of rotation angle α.

Appendix B. Reflection Invariance
Let fv(a, b) = f(a,−b) is the vertical flipped version

of f(a, b) then the PHTs of the original and vertical flipped
version has the following relationship[13]:

AMn,m(fv) = λ

M−1∑
a=0

M−1∑
b=0

f(xa,−yb)Rn(ra,b)e
−imθab ,

= λ

M−1∑
a=0

M−1∑
b=0

f(xa, yb)Rn(ra,b)e
−im(−θab),

= λ

M−1∑
a=0

M−1∑
b=0

f(xa, yb)Rn(ra,b)e
imθab ,

= AM∗
n(f).

(A2)

Similarly, the relationship for horizontal flipped version
fh(a, b) = f(−a, b) is defined as follows:

AMn(f
h) = λ

M−1∑
s=0

M−1∑
t=0

f(−xa, yb)Rn(ra,b)e
−imθab ,

= λ

M−1∑
a=0

M−1∑
b=0

f(xa, yb)Rn(ra,b)e
−im(π−θab),

= λ

M−1∑
a=0

M−1∑
b=0

(−1)mf(xa, yb)Rn(ra,b)e
imθab ,

= (−1)mAM∗
n,m(f).

(A3)
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