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Abstract

Current methods for spatio-temporal action tube detec-
tion often extend a bounding box proposal at a given key-
frame into a 3D temporal cuboid and pool features from
nearby frames. However, such pooling fails to accumulate
meaningful spatio-temporal features if the position or shape
of the actor shows large 2D motion and variability through
the frames, due to large camera motion, large actor shape
deformation, fast actor action and so on. In this work, we
aim to study the performance of cuboid-aware feature ag-
gregation in action detection under large action. Further,
we propose to enhance actor feature representation under
large motion by tracking actors and performing temporal
feature aggregation along the respective tracks. We de-
fine the actor motion with intersection-over-union (IoU) be-
tween the boxes of action tubes/tracks at various fixed time
scales. The action having a large motion would result in
lower IoU over time, and slower actions would maintain
higher IoU. We find that track-aware feature aggregation
consistently achieves a large improvement in action detec-
tion performance, especially for actions under large motion
compared to cuboid-aware baseline. As a result, we also re-
port state-of-the-art on the large-scale MultiSports dataset.

1. Introduction
Spatio-temporal action detection, which classifies and

localises actions in space and time, is gaining attention,
thanks to the AVA [15] and UCF24 [40] datasets. How-
ever, most of the current state-of-the-art works [12, 21,
28, 37, 53] focus on pushing action detection performance
usually by complex context modelling [28, 41, 53], larger
backbone networks [11, 22, 25], or by incorporating an
optical flow [37, 52] stream. The above methods use
cuboid-aware temporal pooling for feature aggregation. In
this work, we aim to study cuboid-aware action detec-
tion under varying degrees of action instance motion using
the MultiSports [20] dataset which contains instances with
large motions, unlike AVA [15] as shown in Fig. 1.

Large object motion can occur for various reasons, e.g.,

Figure 1: Cumulative density function of IoU measure-
ments for ground-truth bounding box pairs taken one
second apart in the training sets of AVA, UCF24, and
MultiSports, plotted as percentage of instances falling in
cumulative bins shown on the Y-axis. For example, 20%
of MultiSports instances has an IoU less than or equal to
0.0 signifying that 20% of instances has very large motion
present. In contrast, only 10% of AVA instances has an
IoU less than 0.5, meaning that 90% of its instances have
a large overlap after one second, i.e. large amount instance
has small motion.

fast camera motion, fast action, body shape deformation due
to pose change, or mixed camera and action motions. These
reasons are depicted in Fig. 2. Furthermore, the speed of
motions within an action class can vary because of a mix-
ture of the above reasons and the nature of the action type,
e.g., pose based or interaction based action. Either of these
reasons can cause sub-optimal feature aggregation and lead
to errors in action classification of a given reason.

We propose to split actions into three categories: Large-
motion, medium-motion, and small-motion, as shown in
Figs. 1 and 3. The distinction is based on the IoU of boxes
of the same actor over time, which we can compute using
the ground truth tubes of the actors. We propose to study
the performance on different motion categories of a base-
line cuboid-aware method, without further bells and whis-
tles like context features [27, 28, 41] or long-term features
[41, 47], because large-motion happens quickly in a small
time window, as seen in Fig. 1 and 2. In large-motion cases
the IoU would be small (Fig. 3 (a)), and as a result a 3D
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(c) Aerobic pike jump

(Fast action)

(b) Basketball drive

(Camera motion + fast action)

(a) Football block

(Large camera motion)

Figure 2: Reasons for large motions: (a) large camera motion (b) camera motion plus actor motion (c) static camera but super
fast action. Note that, (b) shows camera zoom out and translation at the same time, and (c) shows Pike-jump action which
involves jumping from standing position to air while bringing head and knee close to each other, then lending in horizontal
shape on the ground, all this in close to one second. All these images contain pairs of boxes of the same actor, separated by
one second in a tube with 0.0 IoU.

(a) Large movement

IoU: 0.00

(b) Medium movement

IoU: 0.44

(c) Small movement

IoU: 0.85

Figure 3: Varying degrees of motion observed for actors in bounding boxes with one second time window with mostly static
camera: (a) large motion where actor performs spiking action, results in IoU of 0.0, meaning large-motion. (b) some pose
change as resulting in 0.44 IoU, meaning medium-motion. (c) change in body pose at same location with IoU being close to
0.85, i.e. small-motion.

cuboid-aware feature extractor will not be able to capture
features centred on the actor’s location throughout the ac-
tion. To handle the large-motion case, we propose to track
the actor over time and extract features using Track-of-
Interest Align (TOI-Align); resulting in Track Aware Ac-
tion Detector (TAAD). Further, we study different types of
feature aggregation modules on top of TOI-Aligned features
for our proposed TAAD network, shown in Fig. 4.

To this end, we make the following contributions: (a) we
are the first to study large-motion action detection system-
atically, using evaluation metrics for each type of motion,
similar to object detection studies on MS COCO [23] based
on object sizes. (b) we propose to use tube/track-aware fea-
ture aggregation modules to handle large motions, and we
show that this type of module helps in achieving great im-
provements over the baseline, especially for instances with
such large motion. (c) in the process, we set a new state-
of-the-art for the MultiSports dataset by beating last year’s
challenge winner by a substantial margin.

2. Related Work
Action recognition [4, 11, 12, 22, 25, 34, 44, 46] models

provide strong video representation models. However, ac-
tion recognition as a problem is not as rich as action detec-
tion, where local motion in the video needs to be understood
more precisely. Thus, action detection is the more relevant
problem for understanding actions under large motion.

We are particularly interested in the spatio-temporal ac-
tion detection problem [13, 14, 15, 47, 53], where an action
instance is defined as a set of linked bounding boxes over
time, called action tube. Recent advancements in online ac-
tion detection [1, 18, 21, 37, 39, 49] lead to performance
levels very competitive with (generally more accurate) of-
fline action detection methods [15, 29, 31, 32, 35, 36, 43,
44, 52] on the UCF24 [40] dataset.

UCF24 has been a major benchmark for spatio-temporal
action detection (i.e. action tube detection), rather than
AVA [15]. The former is well suited for action tube detec-
tion research, as it provides dense action tube annotations,
where every frame of the untrimmed videos is annotated
(unlike AVA [15], in which videos are only annotated at one
frame per second). More recently, Li et al. [20] proposed
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the MultiSports dataset, which resolves two main problems
with the UCF24 dataset. Firstly, it has more fine-grained
action classes. Secondly, it has multiple actors performing
multiple types of action in the same video. As a result, the
MultiSports dataset is comparable to AVA in terms of diver-
sity and scale. Moreover, the MultiSports dataset is densely
annotated, every frame at a rate of 25 frames per second,
which makes it ideal to understand action under large mo-
tion, as shown in Fig. 1.

At the same time, there have been many interesting pa-
pers [6, 11, 12, 28, 41] that focus on keyframe based ac-
tion detection on AVA [15]. AVA has been helpful in push-
ing action detection research on three fronts. Firstly, back-
bone model representations are much better now thanks to
works like [6, 11, 12, 25, 44]. Secondly, long-term feature
banks (LBF) [47] came to the fore [28, 41, 51], capturing
some temporal context, but without temporal associations
between actors. Thirdly, interactions between actors and
object have been studied [27, 28, 41, 51]. Once again, the
problem we want to study is action detection under large
motion, which happens quickly at a small temporal scale.
All the above methods use cuboid-aware pooling for local
feature aggregation, which - as we will show - is not ideal
when the motion is quick and large. As a result, we bor-
row the SlowFast [12] network as the baseline network for
its simplicity and spatio-temporal representational power.
Also, it has been used for MultiSports [20] as baseline and
in many other works on UCF24 as a basic building block.

The work of Weinzaepfel et al. [45] is the first to use
tracking for action detection. That said, their goal was dif-
ferent than ours. They used a tracker to solve the linking
problem in the tube generation part, where action classifica-
tion was done on a frame-by-frame basis given the bound-
ing box proposals from tracks. We, on the other hand, pro-
pose action detection by pooling features from within en-
tire tracks. Gabriellav2 [8] is another method that makes
use of tracking to solve the problem of temporal detection
of co-occurring activities, but it relies on background sub-
traction which would fail in challenging in-the wild videos.
Singh et al. [36], Li et al. [21] and Zhao et al. [53] are the
only works generating flexible micro-tube proposals with-
out the help of tracking. However, these approaches are
limited to a few frames (2-10). Without the possibility to
scale to larger time windows of 1-2 seconds as required for
multi-frame tube anchors/query to regress box coordinates
on a large number of frames, performance drops after a few
frames.

3. Methodology
In this section, we describe the proposed method to han-

dle actions with large motions, which we call Track Aware
Action Detector (TAAD). We start by tracking actors in
the video, using a tracker described in Section 3.2. At the

same time, we use a neural network designed for video
recognition, SlowFast [12], to extract features from each
clip. Using the track boxes and video features, we pool
per-frame features with a RoI-Align operation [16]. After-
wards, a Temporal Feature Aggregation (TFA) module re-
ceives the per-track features and computes a single feature
vector, from which a classifier predicts the final action label.
Figure 4 illustrates each step of our proposed approach.

3.1. Baseline Action Detector

We select a SlowFast [12] network as our video back-
bone. The first reason for this choice is that its performance
is still competitive to larger scale transformer models, such
as VideoSwin [25] or MViT [10, 22], on the task of spatio-
temporal action detection. Furthermore, SlowFast is com-
putationally more efficient than the transformer alternatives,
with a cost of 65.7 GFLOPS compared to 88, at least, and
170 for VideoSwin [25] and MViT [10] respectively, and
offers features at two different temporal scales. Having dif-
ferent temporal scales is important, especially since we aim
at handling fast and/or large motions, where a smaller scale
is necessary. Finally, SlowFast is the default backbone net-
work of choice for the MultiSports and UCF24 datasets,
which are the main benchmarks in this work, facilitating
comparisons with existing work.

We implement our baseline using pySlowFast [9] with
a ResNet-50 [17] based SlowFast [12] architecture, build-
ing upon the works of Feichtenhofer et al. [12] and Li et
al. [20]. First, we add background frames (+bg-frames),
i.e. frames erroneously detected by our detector, YOLOv5,
as extra negative samples for training the action detector.
Next, we replace the multi-label with a multiclass classifier,
switching from a binary cross entropy per class to a cross
entropy loss (CE-loss). Finally, we also added a down-
ward FPN block (see Sup.Mat. for details). Through these
changes, we aimed to build the strongest possible baseline.

3.2. Tracker

We employ a class agnostic version of YOLOv5-
DeepSort [2] as our tracker, which is based on YOLOv5
[30, 42] and TorchReID[54]. We fine-tune the medium
size version of YOLOv5 as the detection model for ‘per-
son‘ classes. A pretrained OsNet-x0-25 [55] is used as re-
identification (ReID) model. As we will show in the exper-
iment section, a tracker with high recall, i.e. small number
of missing associations, is key for improving performance
action tube detection. We will also show that fine-tuning the
detector is a necessary step, particularly for UCF24, where
the quality and resolution of the videos is small.

The tracker can also be used as bounding box proposal
filtering module. Sometimes, the detector produces multi-
ple high scoring detections which are spurious and lead to
false positives but these detections do not match to any of
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Figure 4: Proposed Track Aware Action Detector (TAAD): Given an input clip with T frames, we extract features using a
video recognition network [12] and Nt per-actor tracks from a tracker. The TOI-Align operation extracts per-track features
from the entire video sequence, using an RoI-Align operation and the track boxes, returning a Nt × T × C feature array.
Next, the Temporal Feature Aggregation (TFA) module aggregates the features along the temporal dimension and passes the
resulting Nt × C array to the action classifier that predicts the action label.

the tracks being generated because they are not temporally
consistent. The proposals generated by tracks can be used
with the baseline methods at test-time. This helps improve
the performance of the baseline method.

3.3. Temporal Feature Aggregation

Track-of-Interest Align (TOI-Align): The SlowFast video
backbone processes the input clip and produces a T ×H ×
W feature tensor, while our tracker returns an array with
size Nt × T × 4 that contains the boxes around the sub-
jects. An RoI-Align [16] takes these two arrays as input
and produces a feature array of size Nt × T ×H ×W , i.e.
one feature tube per track. In case the length of the track
is smaller than the length of the input clip, we replicate the
last available bounding box in the temporal direction, which
occurs around 3% of input clips in MultiSports dataset.
Feature aggregation: In order to predict the label of a
bounding box in a key-frame, we need to aggregate fea-
tures across space and time. First we apply average pooling
in spatial dimensions on features extracted by TOI-Align,
then the Temporal Feature Aggregation role is performed
by one of the following variants considered:

1. Max-pooling over the temporal axes (MaxPool).

2. A sequence of temporal convolutions (TCN).

3. A temporal variant of Atrous Spatial Pyramid Pooling
(ASPP) [5]. We modify Detectron2’s [48] ASPP im-
plementation, replacing 2D with 1D convolutions.

We also tried a temporal version of ConvNeXt [24] and
VideoSwin [25] blocks, however these resulted in unstable

training, even with the tunning of learning rates and other
hyperparameters. In our experiments, we only used one
layer of temporal convolution for our TCN module, adding
more layers did not help. See the Sup. Mat. for more de-
tails.

3.4. Tube Construction

Video-level tube detection requires the construction of
action tubes from per-frame detections. This process is split
into two steps [32]. The first links the proposals to form
tube hypotheses (i.e. action tracks). The second trims these
hypotheses to the part where there is an action. One can
think of these two steps as a tracking step plus a temporal
(start and end time) action detection step. The majority of
the existing action tube detection methods [20, 21, 33, 36]
use a greedy proposal linking algorithm first proposed by
in [18, 37] for the first step. For the baseline approach, we
use the same method for the tube linking process from [37].
Since for our method (TAAD) we already have tracks, the
linking step is already complete. The temporal trimming of
action tracks is performed using label smoothing optimisa-
tion [32], which is used by many previous works [18, 21].
In particular, we use class-wise the temporal trimming im-
plementation provided by [37].

3.5. Datasets

We evaluate our idea on two densely annotated datasets
(MultiSports [20] and UCF24 [40]) with frame and tube
level evaluation metrics for actions detection, unlike AVA
[15], which is sparsely annotated and mostly used for frame
level action detection.
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MultiSports [20] is built using 4 sports categories, collect-
ing 3200 video clips annotated at 25 FPS, and annotating
37701 action tube instances with 902k bounding boxes. Al-
though it contains 66 action classes, we follow the official
evaluation protocol 1 that uses 60 classes. Due to the fine
granularity of the action labels the length of each action seg-
ment in a clip is short, with an average tube length of 24
frames, equal to one second, while the average video length
is 750 frames. Each video is annotated with multiple in-
stances of multiple action classes, with well defined tempo-
ral boundaries. MultiSports contains action instances with
large motions around actors, as shown in Fig. 1
UCF24 [40] consists of 3207 videos annotated at 25 FPS
with 24 action classes from different sports, 4458 action
tube instances with 560K bounding boxes. Videos are
untrimmed, with an average video length of 170 frames and
average action tube length of 120 frames. The disadvan-
tages of UCF24 are (1) the presence of only one action class
per video and (2) the low image quality, due to compression
and the small resolution, namely 320 × 240 pixels. Even
though UCF24 has less diversity, less motion, fewer classes
and more labelling noise compared to MultiSports, it is still
useful to evaluate action detection performance, thanks to
its temporally dense annotations.

3.6. Implementation Details

We use 32 frames as input with sampling rate of 2, which
means more 2 seconds of video clip. We use Slowfast-R50-
8× 8 [12], meaning speed ratio α = 8 and channel ratio
β = 1/8. We use stochastic gradient descent (SGD) to opti-
mise the weights, with a learning rate of 0.05 and batch size
of 32 on 4 GPUs. We use 1 epoch to warm up the learn-
ing rate linearly, followed by a cosine learning rate sched-
ule [26], with a final learning rate of 0.0005, for a total of 5
epochs. Note that we only train for 3 epochs on UCF24. All
our networks are trained with a batch size equal to 32 on 4
Titan X GPUs. We use the frame-level proposal released by
[20] for MultiSports, for the fairness of comparison. More
details can be found in Sup. Mat..

4. Experiments

In this section, we evaluate our TAAD method along
with TFA modules on the MultiSports and UCF24 datasets.
We start by defining the metrics used in Sec. 4.1 and mo-
tion category classification in Sec. 4.2. Firstly, we study
the impact of different TFA modules under different motion
conditions in Sec. 4.3. Secondly, we compare our TAAD
method with state-of-the-art methods in Sec. 4.4. Later, we
discuss the baseline model and the impact the tracker has in
Sec. 4.5. We finish with a discussion in section Sec. 4.6.

1https://github.com/MCG-NJU/MultiSports/

4.1. Metrics

We report metrics that measure our detector’s perfor-
mance both at frame- and video-level, computing frame and
video mean Average Precision (mAP), denoted as f-mAP
and v-mAP respectively. These metrics are common in ac-
tion detection works [18, 21, 45]. A detection is correct if
and only if its Intersection-over-Union(IoU) with a ground-
truth box or tube, for frame and video metrics respectively,
is larger than a given threshold (e.g. 0.5) and the predicted
label matches the ground-truth one. From this, we com-
pute the Average Precision (AP) for each class and the mean
across classes, to get the desired mAP metric. Tube over-
lap is measured by spatio-temporal-IoU proposed by [45],
similar to [20], we use the ACT2 evaluation code.

4.2. Motion categories

We split actions into three motion categories: large,
medium and small. Computing per-motion-category met-
rics requires labelling the ground-truth action tubes. We
start this process by computing the IoU between a pair of
boxes separated by offsets equal to [4, 8, 16, 24, 36] in slid-
ing window fashion. We average these 5 IoU values and get
the final IoU value as a measure of speed. We then split the
dataset into three bins of equal size. We can then assign a
’large, medium, or small’ motion label to each instance:

MultiSports =


Large, IoU ∈ [0.00, 0.21]

Medium, IoU ∈ [0.21, 0.51]

Small, IoU ∈ [0.51, 1.00]

(1)

UCF24 =


Large, IoU ∈ [0.00, 0.49]

Medium, IoU ∈ [0.49, 0.66]

Small, IoU ∈ [0.66, 1.00]

(2)

Given these labels, we can compute AP metrics per mo-
tion category. There are two options for these metrics. The
first is to compute the AP for large, medium and small mo-
tions per action class and then average across actions. We
call this metric Motion-mAP. The alternative is to ignore
action classes and compute the AP for large, medium and
small motions, irrespective of the action, which we call
MotionAP. This essentially measures action detection accu-
racy w.r.t. to motion speed, irrespective of class. We com-
pute the metrics both on a per-frame and on a per-video
level, following the two methods just described. Video met-
rics are denoted with a video prefix. We will release the
code for training and testing our TAAD network along with
evaluation scripts for both MotionAP and Motion-mAP.

2https://github.com/vkalogeiton/caffe/tree/
act-detector
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Table 1: Motion-wise ablation of Temporal Feature Aggregation modules. We investigate the effect of different feature ag-
gregation modules using frame- and video-mAP to measure model performance, both with the classic definition and with our
proposed motion categories. Aggregating features across tracks, instead of cuboids, improves action detection performance
across all categories, with a particularly noticeable improvement for large motions. For example, the TCN module improves
large motion Motion-mAP by 8.4, with an improvement of only 4.5 points for small motions.

f-mAP@0.5 Motion-mAP@0.5 v-mAP@0.5 Video Motion-mAP@0.5
Method Large Medium Small Large Medium Small

MultiSports [20]

Baseline (SlowFastR50 [12]) 49.6 36.5 49.5 54.9 31.2 14.2 33.6 45.1
Baseline + track† 50.6 39.7 50.1 56.3 33.0 15.4 34.7 45.7
TAAD + MaxPool 53.9 43.8 52.7 57.7 34.8 16.7 35.5 47.4
TAAD + ASPP 54.4 44.2 52.9 58.4 36.0 18.8 37.5 46.0
TAAD + TCN 55.3 44.9 53.4 60.4 37.0 17.9 38.1 47.3

UCF24 [40]

Baseline (SlowFastR50 [12]) 75.9 67.0 77.3 70.6 45.4 33.3 47.0 46.0
Baseline + track† 78.3 68.6 79.0 72.1 47.4 34.8 47.9 50.7
TAAD + TCN 81.5 74.9 83.7 75.1 52.0 38.3 51.2 50.2
†tracks used a filtering module at frame-level and tube construction module at video-level.

4.3. Motion-wise (main) results

As the main objective for this work, we first study how
the cuboid-aware baseline compares against our track-based
TAAD under significant motion. We compare different
choices for temporal feature aggregation. In Tab. 1, we mea-
sure the frame- and video-motion-mAP, for models trained
with different TFAs, on MultiSports and UCF24. Pooling
features across tracks, instead of neighbouring frames, even
with a relatively simple pooling strategy, i.e. Max-Pool over
the spatio-temporal dimensions, results in stronger action
detectors, with a 5.7 % and 5.8 % frame and video mAP
boost on MultiSports. More involved feature aggregation
strategies, such as the temporal convolution blocks (TCN)
or ASPP variant, lead to further gains. Note that the biggest
improvements on MultiSports occur in the large motion cat-
egory, + 8.4 % Motion-mAP, with smaller gains in medium
(+3.9%) and small (+5.5 %) motions.

Tab. 2 contains MotionAP results on MultiSports for dif-
ferent TFA module choices. It is clear that TAAD com-
bined with any of the TFA modules leads to large perfor-
mance gains. Larger motions benefit the most, followed by
medium and small motions. For example, the ASPP mod-
ule helps more with large motions (+7.9) than with small
motions (+4.5). We observe the same trend in Tab. 1, both
for frame and video Motion-mAP.

These results signify that there is a large gap between the
performance for large vs. small motion action instances for
the baseline method. The combination of TAAD with any
of the TFA modules helps to reduce this discrepancy and
improves the overall performance for both datasets.

Table 2: Motion-wise ablation with MotionAP metric. We
investigate the effect of different TFA modules using frame-
level MotionAP to asses the quality of motion-wise action
detection in comparison to baseline on MultiSports dataset.

MotionAP @0.5
Method Large Medium Small

Baseline 63.2 77.7 82.4
Baseline + track† 64.6(+1.5) 78.7(+1.0) 84.4(+2.0)
TAAD +MaxPool 70.2(+7.0) 83.4(+5.7) 86.1(+3.9)
TAAD +ASPP 71.1(+7.9) 83.4(+5.7) 86.9(+4.5)
TAAD +TCN 70.4(+7.2) 83.3(+5.6) 87.3(+4.9)
† tracks used as filtering module.

4.4. Comparison to the State-of-the-art

We compare our proposed detector with the state-of-the-
art for MultiSports and UCF24, for both frame and tube
level action detection, unlike approaches [28, 41] which
solely focus on frame level evaluation. It is important to
note that, similar to the baseline, TAAD does not make use
of any spatial context. Hence, gains are made using track
aware feature aggregation rather than by using other spatio-
temporal context modelling modules [53].

We report frame and video mAP for different meth-
ods in Tab. 3, namely SlowFast variants from the original
MultiSports paper, Ning et al.’s [27] Person-Context Cross-
Attention Modelling network and our improved baseline,
and three versions of our model, the one with MaxPool
along the temporal dimensions, the ASPP variant and the
temporal convolutional network (TCN). Tab. 3 contains the
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Table 3: Comparison of action detection performance of the
proposed method to our baseline model and other state-of-
the-art methods on MultiSports dataset. TAAD combined
with TFA modules leads to state-of-the-art detection per-
formance.

Method f-mAP v-mAP
0.5 0.2 0.5 .1:.9

YOWO [20, 21] 25.2 12.9 9.7 –
MOC [20, 21] 25.2 12.9 9.7 –
SlowFast-R50 [12, 20] 27.7 24.2 9.7 –
SlowFast-R101 [27] 29.5 28.1 8.4 12.3
SlowFast-R101+PCCA [27] 42.2 41.0 20.0 20.9
Baseline (ours) 49.6 54.1 31.3 28.9
Baseline + tracks (ours) † 50.6 56.3 33.0 30.9
TAAD + MaxPool (ours) 53.9 58.6 34.8 32.4
TAAD + ASPP (ours) 54.4 59.2 36.0 33.0
TAAD + TCN (ours) 55.3 60.6 37.0 33.7
∗ evaluated using tracks at test time.

Table 4: Comparison of action detection performance
(f-mAP and v-mAP) of the proposed method along with
our baseline model and other SOTA methods on UCF24
dataset. TAAD with TCN shows performance gain com-
pared to baseline, with competitive performance to other
methods that are specifically designed for UCF24, includ-
ing spatial context [28, 53] module and sophisticated trans-
former head used by [53]. TAAD is even better than some
of the approach that us optical flow (“F”) stream as input
along with visual stream (“V”).

Methods Input f-mAP v-mAP
0.2 0.5 0.5:0.9

ROAD [37] V+F – 76.4 45.2 20.1
AMTnet [31] V+F – 78.5 49.7 24.0
ACT [18] V+F 67.9 76.5 49.2 23.4
TACNet [38] V+F 72.1 77.5 52.9 24.1
FlowDance [52] V+F – 78.5 50.3 24.5
I3D [15] V+F 76.3 – 59.9 –
MOC [21] V+F 78.0 82.8 53.8 28.3
TubeR [53] V+F 81.3 85.3 60.2 29.7

YOWO [19] V 78.0 75.8 48.8 –
TubeR [53] ∗ V 80.1 82.8 57.7 28.7
Baseline V 75.8 76.7 45.5 19.7
Baseline + tracks † V 78.8 77.4 47.4 20.2
TAAD +TCN V 81.5 79.6 52.0 23.0
† evaluated using tracks at test time.
∗ TubeR uses large transformer head plus complex context modelling.

results of these experiments, where we clearly see the bene-
fit of using tracks for action detection. The addition of fea-
ture pooling along tracks, even with the simpler MaxPool
version, outperforms our improved baseline by 4.3 % frame
mAP. Better temporal fusion strategies, i.e. ASPP and
TCN, lead to further benefits. As a result, we set a new

Table 5: Baseline progression on MultiSports dataset with
proposals released by [20]. Adding more negatives propos-
als from non-action frames, in the form of proposals erro-
neously detected by the per-frame detector, converting the
problem from multi-label to multiclass classification and
adding a FPN leads to a more effective action detector.

Method SlowFast[20] SlowFast +bgFrames +CE-loss +FPN

#keyframes unknown 288K 354K 354K 354K
f-mAP@0.5 27.7 34.5 39.7 49.0 49.6

state-of-the-art for the MultiSports dataset. Note that all
our TFA modules add less than 1M FLOPS (< 2%) to the
computation time of the whole network.

Finally, we compare our proposed TAAD model on the
older UCF24 dataset in Tab. 4. Our model outperforms
most existing methods, with the exception of TubeR [53]
and MOC [21]. We think the reason is that TubeR uses a set
prediction framework [3] with a transformer head (plus 3
layers for each encoder- and decoder-transformer) on top a
CNN backbone (CSN-152). Moreover, they use actor con-
text modelling similar to [28]. It is also important that I3D
based TubeR needs 132M FLOPS, which is much higher
than the 97M needed by SlowFastR5-TCN based TAAD.
MOC uses flow stream as additional input and uses DLA-
34[50] as backbone network. Note that our goal is to anal-
yse and improve action detection performance across differ-
ent actor motion speeds. Hence, we do not use any spatial
attention or context modelling [53] between actors. These
are certainly very interesting topics, orthogonal to our pro-
posed approach. This said, our network consistently shows
improvements in all metrics for both datasets when com-
pared to our baseline.

Additionally, the low quality on UCF24 given by
YOLOv5 also hampers performance. We report the cor-
responding YOLOv5 +DeepSort metrics in Tab. 6. Fine-
tuning the detector on each dataset is a necessary step, es-
pecially on UCF24 where the video quality is worse than
MultiSports.

4.5. Building a Strong Baseline on MultiSports

Here, we investigate the effect of our proposed changes
on the performance of the baseline action detector. Tab. 5
contains the f-mAP@0.5 values, computed on MultiSports,
for our re-implementation of the ResNet-50 SlowFast net-
work, the addition of the background negative frames, the
conversion of the multi-label to a multiclass classification
and finally the addition of the FPN. Each component im-
proves the performance of the detector, leading to a much
stronger baseline.
Tracker as filtering module: Using trackers as a post
processing step for action detection has many advantages,
which we demonstrate in all the above tables, including
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Table 6: Recall of Class agnostic YOLOv5 based DeepSort tracker on
MS and UCF24 dataset, with and without fine-tuning the detector on each
dataset. Even though MultiSports is more complex, the tracker has bet-
ter recall on it than UCF24, as the detector works better thanks to high
resolution and quality of the MultiSports images.

Recall
Fine-tune MS UCF24

Tracker detector train val train val

YOLOv5-DeepSort 7 84.0 84.5 25.0 26.8
YOLOv5-DeepSort 3 93.1 91.0 94.9 84.0

Tab. 4, where we get substantial improvement in f-mAP,
labeled as “Baseline + tracks”. Firstly, the tracker helps
filter out false positive person detections with high scores
that spuriously appear for a few frames. This reduces the
load on person bounding box thresholding. Most of the
current SOTA methods use a relatively high threshold to
filter out unwanted false positive person detections, e.g.
pySlowFast [9] uses 0.8 and mmaction2 [7] uses 0.9. Yet,
such strict thresholds can eliminate some crucial true posi-
tives. In contrast to standard methods, we use a relatively
liberal (0.05) threshold value for our track-based method.
Secondly, using a good tracker greatly simplifies tube con-
struction. Trackers are specifically designed to solve the
linking problem, removing the need for greedy linking al-
gorithms used in prior work [18, 21, 37]. The performance
gains, both in v-mAP and f-mAP, obtained by “Baseline +
tracks” rows of Tab. 3 and Tab. 4 over the “Baseline” row,
clearly demonstrate this.

4.6. Discussion

In this work, our main objective is to study action detec-
tion under large motion. The experiments on MultiSports
and UCF24, see Tabs. 1 and 2, demonstrate that TAAD,
i.e. utilizing track information for feature aggregation, im-
proves performance across the board. This does not mean
that there is no room for further improvement. Our method
is sensitive to the performance of the tracker, since this is
the first step of our pipeline. Using a better state-of-the-
art tracker and person detector, such as the ones employed
by other contemporary methods [19, 27, 28, 41]), should
boost performance further, especially on UCF24, where
YOLOv5 struggles. Moreover, we can improve action de-
tection performance by incorporating spatial/actor context
modelling [28, 53], long-term temporal context [41], or a
transformer head [53] or backbone [22, 25] into TAAD.

One could argue that our definition of motion cate-
gories is not precise. Unlike the object size categories in
MS COCO [23], motion categories are not easy to define.
Apart from the complex camera motion (incl. zoom, trans-
lation and rotation), which is pretty common, and quick
actor motion, both of which we show in Fig. 2, special
care has to be taken to avoid mislabelling cyclic motions.

(c)  Basketball-3-point-shot: Large-motion: Speed 0.07 IoU; Overlap: ASPP 68%,  TCN 57 %

(a) Volleyball-serve: Large-motion: Speed 0.17 IoU; Overlap: Baseline 79%, ASPP 79%, TCN 79 %

(b) Football-steal: Large-motion: Speed 0.03 IoU; Overlap: ASPP 77%,  TCN 77%

Figure 5: Large-motion due to fast action and camera movement in Volley-
spike instance (a) detected by all the methods including baseline, but
in (b), Football-steal instance is only detected by ASPP and TCN. (c)
Large-motion (0.07) due to camera, baseline fails to detect and ASPP mod-
ule shows better overlap than TCN.

MultiSports for example contains multiple actions, e.g. in
aerobics, where the actor starts and ends at the same posi-
tion. This would result in a high IoU between the initial
and last boxes and thus an erroneous small motion label. To
solve this problem, we use an average of IoUs computed at
different frame offsets. While our motion labelling scheme
is not perfect, visual examples show that it correlates well
with motion speed. Lastly, Fig. 5 shows examples where
the baseline fails to detect action tubes but TAAD is de-
tects them. We will provide more qualitative examples in
the Sup. Mat. to illustrate this point.

5. Conclusion
In this work, we analyse and identify three coarse mo-

tion categories in action detection datasets. We observe that
existing action detection methods struggle in the presence
of large motions, e.g. motion due to fast actor movement or
large camera motion, To remedy this, We introduce Track
Aware Action Detector (TAAD), a method that utilizes ac-
tor tracks to solve this problem. TAAD aggregates informa-
tion across actor tracks, rather than using a tube made from
proposal boxes. We evaluate the proposed method on two
datasets, MultiSports and UCF24. MultiSports is the ideal
benchmark for this task, thanks to its large number of in-
stances with fast-paced actions. TAAD not only bridges the
performance gap between motion categories, but also sets
a new state-of-the-art for MultiSports by beating last year’s
challenge winner by a large margin.
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[19] Okan Köpüklü, Xiangyu Wei, and Gerhard Rigoll. You
Only Watch Once: A Unified CNN Architecture for Real-
Time Spatiotemporal Action Localization. arXiv preprint
arXiv:1911.06644, 2019.

[20] Yixuan Li, Lei Chen, Runyu He, Zhenzhi Wang, Gangshan
Wu, and Limin Wang. MultiSports: A Multi-Person Video
Dataset of Spatio-Temporally Localized Sports Actions. In
International Conference on Computer Vision (ICCV), pages
13536–13545, 2021.

[21] Yixuan Li, Zixu Wang, Limin Wang, and Gangshan Wu. Ac-
tions as moving points. In European Conference on Com-
puter Vision (ECCV), 2020.

[22] Yanghao Li, Chao-Yuan Wu, Haoqi Fan, Karttikeya Man-
galam, Bo Xiong, Jitendra Malik, and Christoph Feichten-
hofer. Mvitv2: Improved multiscale vision transformers for
classification and detection. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition
(CVPR), pages 4804–4814, June 2022.

[23] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays,
Pietro Perona, Deva Ramanan, Piotr Dollár, and C Lawrence
Zitnick. Microsoft COCO: Common Objects in Context. In
European Conference on Computer Vision (ECCV), pages
740–755. Springer, 2014.

[24] Zhuang Liu, Hanzi Mao, Chao-Yuan Wu, Christoph Feicht-
enhofer, Trevor Darrell, and Saining Xie. A ConvNet for the
2020s. Computer Vision and Pattern Recognition (CVPR),
2022.

[25] Ze Liu, Jia Ning, Yue Cao, Yixuan Wei, Zheng Zhang,
Stephen Lin, and Han Hu. Video swin transformer. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 3202–3211, 2022.

[26] Ilya Loshchilov and Frank Hutter. SGDR: stochastic gradient
descent with warm restarts. In 5th International Conference
on Learning Representations, ICLR 2017, Toulon, France,
April 24-26, 2017, Conference Track Proceedings. OpenRe-
view.net, 2017.

[27] Zhiqing Ning, Qiaokang Xie, Wengang Zhou, Liangwei
Wang, and Houqiang Li. Person-Context Cross Attention
for Spatio-Temporal Action Detection. Technical report,
Huawei Noah’s Ark Lab, and University of Science and
Technology of China, 2021.

[28] Junting Pan, Siyu Chen, Mike Zheng Shou, Yu Liu, Jing
Shao, and Hongsheng Li. Actor-Context-Actor Relation Net-
work for Spatio-Temporal Action Localization. In Com-
puter Vision and Pattern Recognition (CVPR), pages 464–
474, 2021.

6017



[29] Xiaojiang Peng and Cordelia Schmid. Multi-region two-
stream R-CNN for action detection. In European Conference
on Computer Vision (ECCV), pages 744–759, 2016.

[30] Joseph Redmon, Santosh Divvala, Ross Girshick, and Ali
Farhadi. You Only Look Once: Unified, Real-Time Ob-
ject Detection . In Computer Vision and Pattern Recognition
(CVPR), pages 779–788, 2016.

[31] Suman Saha, Gurkirt Singh, and Fabio Cuzzolin. AMTnet:
Action-Micro-Tube regression by end-to-end trainable deep
architecture. In International Conference on Computer Vi-
sion (ICCV), 2017.

[32] Suman Saha, Gurkirt Singh, Michael Sapienza, Philip HS
Torr, and Fabio Cuzzolin. Deep learning for detecting mul-
tiple space-time action tubes in videos. In British Machine
Vision Conference (BMVC), 2016.

[33] Gurkirt Singh, Stephen Akrigg, Manuele Di Maio, Valentina
Fontana, Reza Javanmard Alitappeh, Suman Saha, Kossar
Jeddisaravi, Farzad Yousefi, Jacob Culley, Tom Nicholson,
et al. Road: The road event awareness dataset for au-
tonomous driving. Transactions on Pattern Analysis and Ma-
chine Intelligence (TPAMI), 1(01):1–1, feb 5555.

[34] Gurkirt SingH and Fabio Cuzzolin. Recurrent convolutions
for causal 3d cnns. In Proceedings of the IEEE/CVF Inter-
national Conference on Computer Vision Workshops, pages
0–0, 2019.

[35] Gurkirt Singh, Suman Saha, and Fabio Cuzzolin. Predicting
action tubes. In Proceedings of the European Conference on
Computer Vision (ECCV) Workshops, pages 0–0, 2018.

[36] Gurkirt Singh, Suman Saha, and Fabio Cuzzolin. TraMNet-
Transition Matrix Network for Efficient Action Tube Propos-
als. In Asian Conference on Computer Vision (ACCV), pages
420–437. Springer, 2018.

[37] Gurkirt Singh, Suman Saha, Michael Sapienza, Philip HS
Torr, and Fabio Cuzzolin. Online Real-time Multiple Spa-
tiotemporal Action Localisation and Prediction. In Interna-
tional Conference on Computer Vision (ICCV), pages 3637–
3646, 2017.

[38] Lin Song, Shiwei Zhang, Gang Yu, and Hongbin Sun. TAC-
Net: Transition-aware context network for spatio-temporal
action detection. In Computer Vision and Pattern Recogni-
tion (CVPR), pages 11987–11995, 2019.

[39] Khurram Soomro, Haroon Idrees, and Mubarak Shah. Pre-
dicting the where and what of actors and actions through
online action localization. In Computer Vision and Pattern
Recognition (CVPR), pages 2648–2657, 2016.

[40] Khurram Soomro, Amir Roshan Zamir, and Mubarak Shah.
UCF101: A Dataset of 101 Human Actions Classes From
Videos in The Wild, 2012.

[41] Jiajun Tang, Jin Xia, Xinzhi Mu, Bo Pang, and Cewu Lu.
Asynchronous interaction aggregation for action detection.
In European Conference on Computer Vision (ECCV), pages
71–87. Springer, 2020.

[42] ultralytics. Yolov5: Real-time object detector. https://
ultralytics.com/yolov5, 2020.

[43] Jan C Van Gemert, Mihir Jain, Ella Gati, Cees GM Snoek,
et al. APT: Action localization proposals from dense tra-
jectories. In British Machine Vision Conference (BMVC),
volume 2, page 4, 2015.

[44] Xiaolong Wang, Ross Girshick, Abhinav Gupta, and Kaim-

ing He. Non-local Neural Networks. In Computer Vision and
Pattern Recognition (CVPR), pages 7794–7803, 2018.

[45] Philippe Weinzaepfel, Zaid Harchaoui, and Cordelia
Schmid. Learning to track for spatio-temporal action lo-
calization. In International Conference on Computer Vision
(ICCV), pages 3164–3172, 2015.

[46] Philippe Weinzaepfel and Grégory Rogez. Mimetics: To-
wards understanding human actions out of context. Interna-
tional Journal of Computer Vision, 129(5):1675–1690, 2021.

[47] Chao-Yuan Wu, Christoph Feichtenhofer, Haoqi Fan, Kaim-
ing He, Philipp Krahenbuhl, and Ross Girshick. Long-Term
Feature Banks for Detailed Video Understanding . In Com-
puter Vision and Pattern Recognition (CVPR), pages 284–
293, 2019.

[48] Yuxin Wu, Alexander Kirillov, Francisco Massa, Wan-Yen
Lo, and Ross Girshick. Detectron2. https://github.
com/facebookresearch/detectron2, 2019.

[49] Xitong Yang, Xiaodong Yang, Ming-Yu Liu, Fanyi Xiao,
Larry S Davis, and Jan Kautz. STEP: Spatio-Temporal Pro-
gressive Learning for Video Action Detection. In Com-
puter Vision and Pattern Recognition (CVPR), pages 264–
272, 2019.

[50] Fisher Yu, Dequan Wang, Evan Shelhamer, and Trevor
Darrell. Deep layer aggregation. In Proceedings of the
IEEE conference on computer vision and pattern recogni-
tion, pages 2403–2412, 2018.

[51] Yubo Zhang, Pavel Tokmakov, Martial Hebert, and Cordelia
Schmid. A structured model for action detection. In Com-
puter Vision and Pattern Recognition (CVPR), pages 9975–
9984, 2019.

[52] Jiaojiao Zhao and Cees GM Snoek. Dance with Flow: Two-
in-One Stream Action Detection . In Computer Vision and
Pattern Recognition (CVPR), pages 9935–9944, 2019.

[53] Jiaojiao Zhao, Yanyi Zhang, Xinyu Li, Hao Chen, Bing
Shuai, Mingze Xu, Chunhui Liu, Kaustav Kundu, Yuanjun
Xiong, Davide Modolo, Ivan Marsic, Cees G. M. Snoek,
and Joseph Tighe. Tuber: Tubelet transformer for video ac-
tion detection. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR), pages
13598–13607, June 2022.

[54] Kaiyang Zhou and Tao Xiang. Torchreid: A library for deep
learning person re-identification in pytorch. arXiv preprint
arXiv:1910.10093, 2019.

[55] Kaiyang Zhou, Yongxin Yang, Andrea Cavallaro, and Tao
Xiang. Learning Generalisable Omni-Scale Representations
for Person Re-Identification. Transactions on Pattern Anal-
ysis and Machine Intelligence (TPAMI), 2021.

6018


