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Abstract

A highly accurate but overconfident model is ill-suited
for deployment in critical applications such as healthcare
and autonomous driving. The classification outcome should
reflect a high uncertainty on ambiguous in-distribution
samples that lie close to the decision boundary. The model
should also refrain from making overconfident decisions on
samples that lie far outside its training distribution, far-out-
of-distribution (far-OOD), or on unseen samples from novel
classes that lie near its training distribution (near-OOD).
This paper proposes an application of counterfactual expla-
nations in fixing an over-confident classifier. Specifically,
we propose to fine-tune a given pre-trained classifier using
augmentations from a counterfactual explainer (ACE) to fix
its uncertainty characteristics while retaining its predictive
performance. We perform extensive experiments with de-
tecting far-OOD, near-OOD, and ambiguous samples. Our
empirical results show that the revised model have improved
uncertainty measures, and its performance is competitive to
the state-of-the-art methods.

1. Introduction
Deep neural networks (DNN) are increasingly being

used in decision-making pipelines for real-world high-
stake applications such as medical diagnostics [6] and au-
tonomous driving [7]. For optimal decision making, the
DNN should produce accurate predictions as well as quan-
tify uncertainty over its predictions [8, 37]. While substan-
tial efforts are made to engineer highly accurate architec-
tures [23], many existing state-of-the-art DNNs do not cap-
ture the uncertainty correctly [9].

We consider two types of uncertainty: epistemic uncer-
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tainty, caused due to limited data and knowledge of the
model, and aleatoric uncertainty, caused by inherent noise
or ambiguity in the data [29]. We evaluate these uncertain-
ties with respect to three test distributions (see Fig 1):

• Ambiguous in-Distribution (AiD): These are the
samples within the training distribution that have an
inherent ambiguity in their class labels. Such ambigu-
ity represents high aleatoric uncertainty arising from
class overlap or noise [59], e.g. an image of a ‘5’ that
is similar to a ‘6’.

• Near-OOD: Near-OOD represents a label shift where
label space is different between ID and OOD data. It
has high epistemic uncertainty arising from the classi-
fier’s limited information on unseen data. We use sam-
ples from unseen classes of the training distribution as
near-OOD.

• Far-OOD: Far-OOD represents data distribution that
is significantly different from the training distribution.
It has high epistemic uncertainty arising from mis-
match between different data distributions.

Much of the earlier work focuses on threshold-based de-
tectors that use information from a pre-trained DNN to iden-
tify OOD samples [15, 19, 24, 67, 21]. Such methods focus
on far-OOD detection and often do not address the over-
confidence problem in DNN. In another line of research,
variants of Bayesian models [51, 9] and ensemble learn-
ing [22, 32] were explored to provide reliable uncertainty
estimates. Recently, there is a shift towards designing gen-
eralizable DNN that provide robust uncertainty estimates
in a single forward pass [64, 4, 47]. Such methods usu-
ally propose changes to the DNN architecture [61], training
procedure [70] or loss functions [49] to encourage separa-
tion between ID and OOD data. Popular methods include,
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Figure 1. Comparison of the uncertainty estimates from the baseline, before (dotted line) and after (solid line) fine-tuning with augmentation by counterfac-
tual explanation (ACE). The plots visualize the distribution of predicted entropy (columns A-C) from the classifier and density score from the discriminator
(column D). The y-axis of this density plot is the probability density function whose value is meaningful only for relative comparisons between groups,
summarized in the legend. A) visualizes the impact of fine-tuning on the in-distribution (iD) samples. A large overlap suggests minimum changes to
classification outcome for iD samples. Next columns visualize change in the distribution for ambiguous iD (AiD) (B) and near-OOD samples (C). The
peak of the distribution for AiD and near-OOD samples shifted right, thus assigning higher uncertainty and reducing overlap with iD samples. D) compares
the density score from discriminator for iD (blue solid) and far-OOD (orange solid) samples. The overlap between the distributions is minimum, resulting
in a high AUC-ROC for binary classification over uncertain samples and iD samples. Our method improved the uncertainty estimates across the spectrum.

training deterministic DNN with a distance-aware feature
space [65, 41] and regularizing DNN training with a gener-
ative model that simulates OOD data [35]. However, these
methods require a DNN model to be trained from scratch
and are not compatible with an existing pre-trained DNN.
Also, they may use auxiliary data to learn to distinguish
OOD inputs [42].

Most of the DNN-based classification models are trained
to improve accuracy on a test set. Accuracy only captures
the proportion of samples that are on the correct side of the
decision boundary. However, it ignores the relative distance
of a sample from the decision boundary [30]. Ideally, sam-
ples closer to the boundary should have high uncertainty.
The actual predicted value from the classifier should reflect
this uncertainty via a low confidence score [25]. Conven-
tionally, DNNs are trained on hard-label datasets to min-
imize a negative log-likelihood (NLL) loss. Such mod-
els tend to over-saturate on NLL and end-up learning very
sharp decision boundaries [16, 48]. The resulting classifiers
extrapolate over-confidently on ambiguous, near boundary
samples, and the problem amplifies as we move to OOD
regions [8].

In this paper, we propose to mitigate the overconfidence
problem of a pre-trained DNN by fine-tuning it with aug-
mentations derived from a counterfactual explainer (ACE).
We derived counterfactuals using a progressive counterfac-
tual explainer (PCE) that create a series of perturbations
of an input image, such that the classification decision is
changed to a different class [57, 33]. PCE is trained to

generate on-manifold samples in the regions between the
classes. These samples along with soft labels that mimics
their distance from the decision boundary, are used to fine-
tuned the classifier. We hypothesis that fine-tuning on such
data would broaden the classifier’s decision boundary. Our
empirical results show the fine-tuned classifier exhibits bet-
ter uncertainty quantification over ambiguous-iD and OOD
samples. Our contributions are as follows: (1) We present
a novel strategy to fine-tune an existing pre-trained DNN
using ACE, to improve its uncertainty estimates. (2) We
proposed a refined architecture to generate counterfactual
explanations that takes into account continuous condition
and multiple target classes. (3) We used the discrimina-
tor of our GAN-based counterfactual explainer as a selec-
tion function to reject far-OOD samples. (4) The fine-tuned
classifier with rejection head, successfully captures uncer-
tainty over ambiguous-iD and OOD samples, and also ex-
hibits better robustness to popular adversarial attacks.

2. Method
In this paper, we consider a pre-trained DNN classifier,

fθ, with good prediction accuracy but sub-optimal uncer-
tainty estimates. We assume fθ is a differentiable function
and we have access to its gradient with respect to the in-
put, ∇xfθ(x), and to its final prediction outcome fθ(x).
We also assume access to either the training data for fθ, or
an equivalent dataset with competitive prediction accuracy.
We further assume that the training dataset for fθ has hard
labels {0, 1} for all the classes.
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Figure 2. (a) Given a pre-trained classifier fθ , we learn a c-GAN based progressive counterfactual explainer (PCE) G(x, c), while keeping fθ fixed. (b)
The trained PCE creates counterfactually augmented data. (c) A combination of original training data and augmented data is used to fine-tune the classifier,
fθ+∆. (d) The discriminator from PCE serves as a selection function to detect and reject OOD data.

Our goal is to improve the pre-trained classifier fθ such
that the revised model provides better uncertainty estimates,
while retaining its original predictive accuracy. To enable
this, we follow a two step approach. First, we fine-tune
fθ on counterfactually augmented data. The fine-tuning
helps in widening the classification boundary of fθ, result-
ing in improved uncertainty estimates on ambiguous and
near-OOD samples. Second, we use a density estimator to
identify and reject far-OOD samples.

We adapted previously proposed PCE [57] to generate
counterfactually augmented data. We improved the exist-
ing implementations of PCE, by adopting a StyleGANv2-
based backbone for the conditional-GAN in PCE. This al-
lows using continuous vector fθ(x) as condition for con-
ditional generation. Further, we used the discriminator of
cGAN as a selection function to abstain revised fθ+∆ from
making prediction on far-OOD samples (see Fig. 2).

Notation: The classification function is defined as fθ :
Rd → RK , where θ represents model parameters. The
training dataset for fθ is defined as D = {X ,Y}, where x ∈
X represents an input space and y ∈ Y = {1, 2, · · · ,K} is
a label set over K classes. The classifier produces point es-
timates to approximate the posterior probability P(y|x,D).

2.1. Progressive Counterfactual Explainer (PCE)

We designed the PCE network to take a query image
(x ∈ Rd) and a desired classification outcome (c ∈ RK) as
input, and create a perturbation of a query image (x̂) such
that fθ(x̂) ≈ c. Our formulation, x̂ = G(x, c) allows us to
use c to traverse through the decision boundary of fθ from
the original class to a counterfactual class. Following pre-
vious work [33, 57, 58], we design the PCE to satisfy the
following three properties:

1. Data consistency: The perturbed image, x̂ should be
realistic and should resemble samples in X .

2. Classifier consistency: The perturbed image, x̂
should produce the desired output from the classifier
fθ i.e. fθ(G(x, c)) ≈ c.

3. Self consistency: Using the original classification de-
cision fθ(x) as condition, the PCE should produce a
perturbation that is very similar to the query image,
i.e. G(G(x, c), fθ(x)) = x and G(x, fθ(x)) = x.

Data Consistency: We formulate the PCE as a cGAN that
learns the underlying data distribution of the input space X
without an explicit likelihood assumption. The GAN model
comprised of two networks – the generator G(·) and the
discriminator D(·). The G(·) learns to generate fake data,
while the D(·) is trained to distinguish between the real and
fake samples. We jointly train G,D to optimize the follow-
ing logistic adversarial loss [12],

Ladv(D,G) = Ex[logD(x) + log(1−D(G(x, c)))] (1)

The earlier implementations of PCE [57], have a hard
constraint of representing the condition c as discrete vari-
ables. fθ(x) is a continuous variable in range [0, 1]. We
adapted StyleGANv2 [1] as the backbone of the cGAN.
This formulation allow us to use c ∈ RK as condition.

We formulate the generator as G(x, c) = g(e(x), c),
a composite of two functions, an image encoder e(·) and
a conditional decoder g(·) [1]. The encoder function e :
X → W+, learns a mapping from the input space X to an
extended latent space W+. The detailed architecture is pro-
vided in Fig. 3. Further, we also extended the discriminator
network D(·) to have auxiliary information from the classi-
fier fθ. Specifically, we concatenate the penultimate activa-
tions from the fθ(x) with the penultimate activations from
the D(x), to obtain a revised representation before the final
fully-connected layer of the discriminator. The detailed ar-
chitecture is summarized in supplementary material (SM).
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Figure 3. PCE: The encoder-decoder architecture to create counterfactual
augmentation for a given query image. ACE: Given a query image, the
trained PCE generates a series of perturbations that gradually traverse the
decision boundary of fθ from the original class to a counter-factual class,
while still remaining plausible and realistic-looking.

We also borrow the concept of path-length reg-
ularization Lreg(G) from StyleGANv2 to enforce
smoother latent space interpolations for the generator.
Lreg(G) = Ew∼e(x),x∼X (||JT

wx||2 − a)2, where x denotes
random images from the training data, Jw is the Jacobian
matrix, and a is a constant that is set dynamically during
optimization.

Classifier consistency: By default, GAN training is
independent of the classifier fθ. We add a classifier-
consistency loss to regularize the generator and ensure that
the actual classification outcome for the generated image
x̂, is similar to the condition c used for generation. We
enforce classification-consistency by a KullbackLeibler
(KL) divergence loss as follow[57, 58],

Lf (G) = DKL(fθ(x̂)||c) (2)

Self consistency: We define the following reconstruction
loss to regularize and constraint the Generator to preserve
maximum information between the original image x and its
reconstruction x̄,

L(x, x̄) = ||x− x̄||1 + ||e(x)− e(x̄)||1 (3)

Here, first term is an L1 distance loss between the in-
put and the reconstructed image, and the second term is a
style reconstruction L1 loss adapted from StyleGANv2 [1].
We minimize this loss to satisfy the identify constraint on
self reconstruction using x̄self = G(x, fθ(x)). We further
insure that the PCE learns a reversible perturbation by re-
covering the original image from a given perturbed image
x̂ as x̄cyclic = G(x̂, fθ(x)), where x̂ = G(x, c) with some
condition c. Our final reconstruction loss is defined as,

Lrec(G) = L(x, x̄self) + L(x, x̄cyclic) (4)

Objective function: Finally, we trained our model in an end-
to-end fashion to learn parameters for the two networks,
while keeping the classifier fθ fixed. Our overall objective
function is

min
G

max
D

λadv (Ladv(D,G) + Lreg(G))

+λfLf (G) + λrecLrec(G),
(5)

where, λ’s are the hyper-parameters to balance each of
the loss terms.

2.2. Augmentation by Counterfactual Explanation

Given a query image x, the trained PCE generates a se-
ries of perturbations of x that gradually traverse the deci-
sion boundary of fθ from the original class to a counter-
factual class, while still remaining plausible and realistic-
looking. We modify c to represent different steps in this
traversal. We start from a high data-likelihood region for
original class k (c[k] ∈ [0.8, 1.0]), walk towards the de-
cision hyper-plane (c[k] ∈ [0.5, 0.8)), and eventually cross
the decision boundary (c[k] ∈ [0.2, 0.5)) to end the traversal
in a high data-likelihood region for the counterfactual class
kc (c[k] ∈ [0.0, 0.2)). Accordingly, we set c[kc] = 1−c[k].

Ideally, the predicted confidence from NN should be in-
dicative of the distance from the decision boundary. Sam-
ples that lies close to the decision boundary should have
low confidence, and confidence should increase as we move
away from the decision boundary. We used c as a pseudo
indicator of confidence to generate synthetic augmentation.
Our augmentations are essentially showing how the query
image x should be modified to have low/high confidence.

To generate counterfactual augmentations, we randomly
sample a subset of real training data as Xr⊂X . Next, for
each x ∈ Xr we generate multiple augmentations (x̂ =
G(x, c)) by randomly sampling c[k] ∈ [0, 1]. We used c
as soft label for the generate sample while fine-tuning the
fθ. The Xc represents our pool of generated augmentation
images. Finally, we create a new dataset by randomly sam-
pling images from X and Xc. We fine-tune the fθ on this
new dataset, for only a few epochs, to obtain a revised clas-
sifier given as fθ+∆. In our experiments, we show that the
revised decision function fθ̂ provides improved confidence
estimates for AiD and near OOD samples and demonstrate
robustness to adversarial attacks, as compared to given clas-
sifier fθ.

2.3. Discriminator as a Selection Function

A selection function g : X → {0, 1} is an addition
head on top of a classifier that decides when the classifier
should abstain from making a prediction. We propose to
use the discriminator network D(x) as a selection function
for fθ. Upon the convergence of the PCE training, the gen-
erated samples resemble the in-distribution training data.
Far-OOD samples are previously unseen samples which are
very different from the training input space. Hence, D(·)
can help in detecting such samples. Our final improved clas-
sification function is represented as follow,
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(f,D)(x) =

{
fθ+∆(x), if D(x) ≥ h

Abstain, otherwise
(6)

where, fθ+∆ is the fine-tuned classifier and D(·) is a dis-
criminator network from the PCE which serves as a selec-
tion function that permits f to make prediction if D(x) ex-
ceeds a threshold h and abstain otherwise.

3. Related Work
Uncertainty estimation in pre-trained DNN models:

Much of the prior work focused on deriving uncertainty
measurements from a pre-trained DNN output [19, 15, 38,
42], feature representations [40, 36] or gradients [24]. Such
methods use a threshold-based scoring function to identify
OOD samples. The scoring function is derived from soft-
max confidence scores [19], scaled logit [15, 40], energy-
based scores [42, 67] or gradient-based scores [24]. These
methods help in identifying OOD samples but did not ad-
dress the over-confidence problem of DNN, that made iden-
tifying OOD non-trivial in the first place [18, 53]. We pro-
pose to mitigate the over-confidence issue by fine-tuning the
pre-trained classifier using ACE. Further, we used a hard
threshold on the density score provided by the discrimina-
tor of the GAN-generator, to identify OOD samples.

DNN designs for improved uncertainty estimation:
The Bayesian neural networks are the gold standard for
reliable uncertainty quantification [51]. Multiple approxi-
mate Bayesian approaches have been proposed to achieve
tractable inference and to reduce computational complex-
ity [14, 2, 28, 9]. Popular non-Bayesian methods include
deep ensembles [32] and their variant [22, 10]. However,
most of these methods are computationally expensive and
requires multiple passes during inference. An alternative
approach is to modify DNN training [62, 70, 66], loss func-
tion [49], architecture [61, 41, 11] or end-layers [65, 21] to
support improved uncertainty estimates in a single forward-
pass. Further, methods such as DUQ [65] and DDU [47]
proposed modifications to enable the separation between
aleatoric and epistemic uncertainty. Unlike these methods,
our approach improves the uncertainty estimates of any ex-
isting pre-trained classifier, without changing its architec-
ture or training procedure. We used the discriminative head
of the fine-tuned classifier to capture aleatoric uncertainty
and the density estimation from the GAN-generator to cap-
ture epistemic uncertainty.

Uncertainty estimation using GAN: A popular tech-
nique to fix an over-confident classifier is to regularize the
model with an auxiliary OOD data which is either realis-
tic [20, 45, 54, 4, 39] or is generated using GAN [55, 35,
44, 69, 56]. Such regularization helps the classifier to as-
sign lower confidence to anomalous samples, which usu-
ally lies in the low-density regions. Defining the scope of

OOD a-priori is generally hard and can potentially cause a
selection bias in the learning. Alternative approaches re-
sort to estimating in-distribution density [60]. Our work
fixed the scope of GAN-generation to counterfactual gen-
eration. Rather than merging the classifier and the GAN
training, we train the GAN in a post-hoc manner to ex-
plain the decision of an existing classifier. This strategy de-
fines OOD in the context of pre-trained classifier’s decision
boundary. Previously, training with CAD have shown to im-
proved generalization performance on OOD samples [27].
However, this work is limited to Natural Language Pro-
cessing, and requires human intervention while curating
CAD [26]. In contrast, we train a GAN-based counterfac-
tual explainer [58, 33] to derive CAD.

4. Experiment
We consider four classification problems, in increasing

level of difficulty:

1. AFHQ [5]: We consider binary classification over well
separated classes, cat vs dog.

2. Dirty MNIST [47]: We consider multi-class classifica-
tion over hand-written digits 0-6. The dataset is a com-
bination of original MNIST [34] and simulated sam-
ples from a variational decoder. The samples are gen-
erated by combining latent representation of different
digits, to simulate ambiguous samples, with multiple
plausible labels [47].

3. CelebA [43]: We consider a multi-label classification
setting over ‘young’ and ‘smiling’ attributes. Without
age labels, identifying ’young’ faces is a challenging
task.

4. Skin lesion (HAM10K) [63]: We consider a binary
classification to separate Melanocytic nevus (nv) from
Melanoma (mel) and Benign Keratosis (bkl) lesions.
Skin lesion classification is a challenging task as dif-
ferent lesions may exhibit similar features [50].

Architecture details: We consider state-of-the-art
DenseNet [23] architecture for the baseline. The pre-
trained DenseNet model followed the training procedures
as described in [23]. In order to keep the architecture
and training procedure of PCE simple, we consider the de-
fault training parameters from [1] for training the Style-
GANv2. This encourages reproducibility as we didn’t do
hyper-parameter tuning for each dataset and classification
model. For training StyelGANv2, we use a randomly
sampled subset (∼ 50%) of the baseline model’s training
data. For multi-class classification, we consider all pairs
of classes while creating counterfactual augmentations. For
fine-tuning the baseline, we create a new dataset with 30%
counterfactually generated samples and 70% real samples
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Query Image Augmentation by Counterfactual Explanation (ACE)

Condition:
Counterfactual Image

Figure 4. An example of counterfactually generated data by the progressive counterfactual explainer (PCE). More examples are provided in the Supple-
mentary Material.

from the original training set. All the results are reported on
the test set of the baseline. In all our experiments, we used
λadv = 10, λrec = 100, λf = 10, and h = 0.5.

Comparison methods: Our baseline is a standard DNN
classifier fθ trained with cross-entropy loss. For base-
line and its post-hoc variant with temperature-scaling (TS),
we used threshold over predictive entropy (PE) to identify
OOD. PE is defined as −∑

[fθ(x)]k log[fθ(x)]k. Next, we
compared against following five methods: mixup: base-
line model with mixup training using α = 0.2 [70]; de-
terministic uncertainty quantification (DUQ) [65]: base-
line model with radial basis function as end-layer; DDU:
that use the closest kernel distance to quantify uncertain-
ties; MC Dropout (with 20 dropout samples) [9]; and five
independent runs of baseline as 5-Ensemble [32]. The en-
semble approaches are an upper bound for UQ.

4.1. Identifying AiD samples

We do not have access to ground truth labels marking the
samples that are AiD. Hence, we used the PE estimates from
an MC Dropout classifier to obtain pseudo-ground truth for
AiD classification. Specifically, we sort the test set using
PE and consider the top 5 to 10% samples as AiD. In Fig. 1,
we qualitatively compare the PE distribution from the given
baseline and its fine-tuned version (baseline + ACE). Fine-
tuning resulted in minor changes to the PE distribution of
the iD samples (Fig. 1.A). We observe a significant separa-
tion in the PE distribution of AiD samples and the rest of
the test set (Fig. 1.B), even on the baseline. This suggests
that the PE correctly captures the aleatoric uncertainty.

Table 1 compares our model to several baselines. We
report the test set accuracy, the AUC-ROC for the binary
task of identifying AiD samples and the true negative rate
(TNR) at 95% true positive rate (TPR) (TNR@TPR95),
which simulates an application requirement that the recall
of in-distribution data should be 95% [21]. For all metrics
higher value is better. Our model outperformed other de-
terministic models in identifying AiD samples with a high
AUC-ROC and TNR@TPR95 across all datasets.

4.2. Detecting OOD samples

We consider two tasks to evaluate the model’s OOD de-
tection performance. First, a standard OOD task where
OOD samples are derived from a separate dataset. Second,

a difficult near-OOD detection task where OOD samples
belongs to novel classes from the same dataset, which are
not seen during training. We consider the following OOD
datasets:

1. AFHQ [5]: We consider “wild” class from AFHQ to
define near-OOD samples. For the far-OOD detection
task, we use the CelebA dataset, and also cat/dog im-
ages from CIFAR10 [31].

2. Dirty MNIST [47]: We consider digits 7-9 as near-
OOD samples. For far-OOD detection, we use
SVHN [52] and fashion MNIST [68] datasets.

3. CelebA [43]: We consider images of kids in age-
group: 0-11 from the UTKFace [71] dataset to define
the near-OOD samples. For far-OOD detection task,
we use the AFHQ and CIFAR10 datasets.

4. Skin lesion (HAM10K) [63]: We consider samples
from lesion types: Actinic Keratoses and Intraepithe-
lial Carcinoma (akiec), Basal Cell Carcinoma (bcc),
Dermatofibroma (df) and Vascular skin lesions (vasc)
as near-OOD. For far-OOD, we consider CelebA and
an additional simulated dataset with different skin tex-
tures/tones.

In Fig. 1, we observe much overlap between the PE
distribution of the near-OOD samples and in-distribution
samples in Fig. 1.C. Further, in Fig. 1.D, we see that our
model successfully disentangles OOD samples from the
in-distribution samples by using density estimates from
the discriminator of the PCE. In Table 2, we report the
AUC-ROC and TNR@TPR95 scores on detecting the two
types of OOD samples. We first use the discriminator
from the PCE to detect far-OOD samples. The discrim-
inator achieved near-perfect AUC-ROC for detecting far-
OOD samples. We used the PE estimates from the fine-
tuned model (baseline + ACE) to detect near-OOD samples.
Overall our model outperformed other methods on both
near and far-OOD detection tasks with high TNR@TPR95.

4.3. Robustness to Adversarial Attacks

We compared the baseline model before and after fine-
tuning (baseline + ACE) in their robustness to three adver-
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Table 1. Performance of different methods on identifying ambiguous in-distribution (AiD) samples. For all metrics, higher is better. The best results
from the methods that require a single forward pass at inference time are highlighted.

Train Method/ Test-Set Identifying AiD
Dataset Model Accuracy AUC-ROC TNR@TPR95

Baseline 99.44±0.02 0.87±0.04 48.93±10
Baseline+TS [17] 99.45±0.00 0.85±0.07 48.77±9.8

Baseline+TS+ODIN [38] 99.45±0.00 0.85±0.06 35.72±1.26
Baseline+energy [42] 99.44±0.02 0.87±0.06 49.00±1.64

Mixup [70] 99.02±0.10 0.80±0.05 35.66±6.7
AFHQ DUQ [65] 94.00±1.05 0.67±0.01 26.15±4.5

DDU [47] 97.66±1.10 0.74±0.02 19.65±4.5
Baseline+ACE 99.52±0.21 0.91±0.02 50.75±3.9

MC Dropout [9] 98.83±1.12 0.87±0.04 51.56±1.2
5-Ensemble [32] 99.79±0.01 0.98±0.01 51.93±2.7

Baseline 95.68±0.02 0.96±0.00 28.5±2.3
Baseline+TS [17] 95.74±0.02 0.94±0.01 27.90±1.3

Baseline+TS+ODIN [38] 95.74±0.02 0.79±0.03 13.25±4.88
Baseline+energy [42] 95.68±0.02 0.80±0.03 17.60±0.55

Mixup [70] 94.66±0.16 0.94±0.02 25.78±2.1
Dirty DUQ [65] 89.34±0.44 0.67±0.01 23.89±1.2

MNIST DDU [47] 93.52±1.12 0.65±0.12 20.78±4.0
Baseline+ACE 95.36±0.45 0.86±0.01 34.12±2.6

MC Dropout [9] 89.50±1.90 0.75±0.07 36.10±1.8
5-Ensemble [32] 95.90±0.12 0.98±0.02 34.87±3.4

Baseline 89.36±0.96 0.73±0.01 17.18±1.6
Baseline+TS [17] 89.33±0.01 0.72±0.02 17.21±1.5

Baseline+TS+ODIN [38] 89.33±0.01 0.57±0.01 6.34±0.38
Baseline+energy [42] 89.36±0.96 0.57±0.28 4.87±0.32

Mixup [70] 89.04±0.47 0.74±0.02 15.09±1.9
CelebA DUQ [65] 71.75±0.01 0.65±0.01 14.20±1.0

DDU [47] 70.15±0.02 0.67±0.06 11.39±0.4
Baseline+ACE 86.8±0.79 0.74±0.06 22.36± 2.3

MC Dropout [9] 89.86±0.33 0.73±0.03 19.78±0.7
5-Ensemble [32] 90.76±0.00 0.84±0.11 17.79±0.6

Baseline 85.88±0.75 0.82±0.06 20.52±3.7
Baseline+TS [17] 86.27±0.40 0.84±0.03 23.34±2.8

Baseline+TS+ODIN [38] 86.27±0.40 0.78±0.01 15.87±4.33
Baseline+energy [42] 85.88±0.75 0.77±0.12 18.40±0.51

Mixup [70] 85.81±0.61 0.84±0.04 31.29±7.0
Skin-Lesion DUQ [65] 75.47±5.36 0.81±0.02 30.12±4.4
(HAM10K) DDU [47] 75.84±2.34 0.79±0.03 26.12±6.6

Baseline+ACE 81.21±1.12 0.84±0.05 71.60±3.8

MC Dropout [9] 84.90±1.17 0.85±0.06 43.78±1.9
5-Ensemble [32] 87.89±0.13 0.86±0.02 40.49±5.1

sarial attacks: Fast Gradient Sign Method (FGSM) [13],
Carlini-Wagner (CW) [3], and DeepFool [46].

Figure 5. Plots comparing baseline model before and after fine-tuning
(ACE) for different magnitudes of adversarial attack. The figure shows
three different attacks – FGSM [13], CW [3], DeepFool [46], on three dif-
ferent datasets – HAM10K, AFHQ, MNIST. The x-axis denotes maximum
perturbation (ϵ) for FGSM, and iterations in multiples of 10 for CW and
DeepFool. Attack magnitude of 0 indicates no attack. For CW we used
κ = 0 and 5. (All results are reported on the test-set of the classifier).

For each attack setting, we transformed the test set into
an adversarial set. In Fig. 5, we report the AUC-ROC over

the adversarial set as we gradually increase the magnitude
of the attack. For FGSM, we use the maximum pertur-
bation (ϵ) to specify the attack’s magnitude. For CW, we
gradually increase the number of iterations to an achieve a
higher magnitude attack. We set box-constraint parameter
as c = 1, learning rate α = 0.01 and confidence κ = 0, 5.
For DeepFool (η = 0.02), we show results on the best at-
tack. Our improved model (baseline + ACE) consistently
out-performed the baseline model in test AUC-ROC, thus
showing an improved robustness to all three attacks.

5. Conclusion

We propose a novel application of counterfactual ex-
planations in improving the uncertainty quantification of a
pre-trained DNN. We improved upon the existing work on
counterfactual explanations, by proposing a StyleGANv2-
based backbone. Fine-tuning on augmented data, with
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Table 2. OOD detection performance for different baselines. Near-OOD represents label shift, with samples from the unseen classes of the same dataset.
Far-OOD samples are from a separate dataset. The numbers are averaged over five runs.

Train Method Near-OOD (Wild) Far-OOD (CIFAR10) Far-OOD (CelebA)
Dataset AUC-ROC TNR@TPR95 AUC-ROC TNR@TPR95 AUC-ROC TNR@TPR95

Baseline 0.88±0.04 47.40±5.2 0.95±0.04 73.59±9.4 0.95±0.03 70.69±8.9
Baseline+TS [17] 0.88±0.03 45.53±9.8 0.95±0.04 71.77±8.9 0.95±0.03 65.89±8.3

Baseline+TS+ODIN [38] 0.87±0.05 45.02±1.51 0.95±0.05 69.42±2.38 0.95±0.03 67.18±2.16
Baseline+energy [42] 0.88±0.03 47.77±1.10 0.94±0.05 72.68±2.69 0.96±0.04 74.75±2.89

Mixup [70] 0.86±0.06 53.83±6.8 0.82±0.11 57.01±8.6 0.88±0.13 70.51±9.8
AFHQ DUQ [65] 0.78±0.05 20.98±2.0 0.67±0.59 16.23±1.5 0.66±0.55 15.34±2.6

DDU [47] 0.83±0.02 23.19±2.6 0.90±0.02 32.98±10 0.75±0.02 10.32±5.6
Baseline+ACE 0.89±0.03 51.39±4.4 0.98±0.02 88.71±5.7 0.97±0.03 88.87±9.8

MC-Dropout [9] 0.84±0.09 30.78±2.9 0.94±0.02 73.59±2.1 0.95±0.02 71.23±1.9
5-Ensemble [32] 0.99±0.01 65.73±1.2 0.97±0.02 89.91±0.9 0.99±0.01 92.12±0.7

Near-OOD (Digits 7-9) Far-OOD (SVHN) Far-OOD (fMNIST)
AUC-ROC TNR@TPR95 AUC-ROC TNR@TPR95 AUC-ROC TNR@TPR95

Baseline 0.86±0.04 28.23±2.9 0.75±0.15 51.98±0.9 0.87±0.02 58.12±1.5
Baseline+TS [17] 0.86±0.01 30.12±2.1 0.73±0.07 48.12±1.5 0.89±0.01 61.71±2.8

Baseline+TS+ODIN [38] 0.83±0.04 34.13±12.07 0.77±0.13 21.59±19.62 0.89±0.02 46.43±4.31
Baseline+energy [42] 0.87±0.04 40.30±1.05 0.86±0.12 43.92±2.30 0.91±0.02 62.10±5.17

Dirty Mixup [70] 0.86±0.02 35.46±1.0 0.95±0.03 65.12±3.1 0.94±0.05 66.00±0.8
MNIST DUQ [65] 0.78±0.01 15.26±3.9 0.73±0.03 45.23±1.9 0.75±0.03 50.29±3.1

DDU [47] 0.67±0.07 10.23±0.9 0.68±0.04 39.31±2.2 0.85±0.02 53.76±3.7
Baseline+ACE 0.94±0.02 37.23±1.9 0.98±0.02 67.88±3.1 0.97±0.02 70.71±1.1

MC-Dropout [9] 0.97±0.02 40.89±1.5 0.95±0.01 62.12±5.7 0.93±0.02 65.01±0.7
5-Ensemble [32] 0.98±0.02 42.17±1.0 0.82±0.03 55.12±2.1 0.94±0.01 64.19±4.2

Near-OOD (Kids) Far-OOD (AFHQ) Far-OOD (CIFAR10)
AUC-ROC TNR@TPR95 AUC-ROC TNR@TPR95 AUC-ROC TNR@TPR95

Baseline 0.84±0.02 1.25±0.1 0.86±0.03 88.57±0.9 0.79±0.02 29.01±5.1
Baseline+TS [17] 0.82±0.04 1.24±0.1 0.87±0.06 88.75±0.9 0.78±0.04 29.01±5.1

Baseline+TS+ODIN [38] 0.65±0.01 8.75±2.21 0.55±0.01 23.03±0.16 0.54±0.01 5.00±0.07
Baseline+energy [42] 0.76±0.51 9.40±0.01 0.94±0.08 32.08±1.70 0.85±0.76 17.10±0.72

Mixup [70] 0.82±0.08 22.18±2.7 0.95±0.02 82.96±2.5 0.79±0.13 30.54±1.3
CelebA DUQ [65] 0.80±0.03 14.68±3.1 0.72±0.07 26.62±7.7 0.86±0.04 28.70±4.1

DDU [47] 0.73±0.15 7.9±0.4 0.74±0.13 8.18±0.4 0.81±0.15 25.45±1.4
Baseline+ACE 0.87±0.03 34.37±2.5 0.96±0.01 96.35±2.5 0.92±0.05 63.51±1.5

MC-Dropout [9] 0.70±0.10 25.62±1.7 0.86±0.1 91.72±7.5 0.74±0.12 64.79±1.8
5-Ensemble [32] 0.93±0.03 10.35±0.2 0.99±0.0 98.31±1.2 0.92±0.10 61.88±1.2

Near-OOD (other lesions) Far-OOD (CelebA) Far-OOD (Skin-texture)
AUC-ROC TNR@TPR95 AUC-ROC TNR@TPR95 AUC-ROC TNR@TPR95

Baseline 0.67±0.04 8.70±2.5 0.66±0.06 10.00±3.6 0.65±0.10 5.91±2.8
Baseline+TS [17] 0.67±0.05 8.69±2.0 0.63±0.06 9.24±4.3 0.68±0.07 5.70±3.2

Baseline+TS+ODIN [38] 0.68±0.01 9.43±0.33 0.67±0.07 11.32±4.66 0.68±0.07 6.60±0.29
Baseline+energy [42] 0.70±0.04 10.85±0.08 0.70±0.14 7.90±0.29 0.65±0.20 2.83±1.33

Skin Mixup [70] 0.67±0.01 8.52±2.8 0.64±0.08 10.21±4.0 0.72±0.05 5.26±3.1
Lesion DUQ [65] 0.67±0.04 3.12±1.8 0.89±0.09 11.89±2.5 0.64±0.03 4.8±1.5

DDU [47] 0.65±0.03 3.45±1.9 0.75±0.04 15.45±2.9 0.71±0.05 4.19±1.3
Baseline+ACE 0.72±0.04 10.99±2.8 0.97±0.02 66.77±1.4 0.96±0.03 95.83±5.0

MC-Dropout [9] 0.67±0.05 9.45±3.9 0.80±0.07 30.00±3.2 0.56±0.03 10.87±2.3
5-Ensemble [32] 0.88±0.01 11.23±1.7 0.91±0.03 27.89±5.9 0.76±0.02 17.89±3.5

soft labels helps in improving the decision boundary and
the fine-tuned model, combined with the discriminator of
the PCE can successfully capture uncertainty over ambigu-
ous samples, unseen near-OOD samples with label shift

and far-OOD samples from independent datasets. We out-
performed state-of-the-art methods for uncertainty quantifi-
cation on four datasets, and our improved model also ex-
hibits robustness to adversarial attacks.
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