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Abstract

We study anomaly clustering, grouping data into coher-

ent clusters of anomaly types. This is different from anomaly

detection that aims to divide anomalies from normal data.

Unlike object-centered image clustering, anomaly cluster-

ing is particularly challenging as anomalous patterns are

subtle and local. We present a simple yet effective cluster-

ing framework using a patch-based pretrained deep embed-

dings and off-the-shelf clustering methods. We define a dis-

tance function between images, each of which is represented

as a bag of embeddings, by the Euclidean distance between

weighted averaged embeddings. The weight defines the im-

portance of instances (i.e., patch embeddings) in the bag,

which may highlight defective regions. We compute weights

in an unsupervised way or in a semi-supervised way when

labeled normal data is available. Extensive experimental

studies show the effectiveness of the proposed clustering

framework along with a novel distance function upon exist-

ing multiple instance or deep clustering frameworks. Over-

all, our framework achieves 0.451 and 0.674 normalized

mutual information scores on MVTec object and texture cat-

egories and further improve with a few labeled normal data

(0.577, 0.669), far exceeding the baselines (0.244, 0.273)

or state-of-the-art deep clustering methods (0.176, 0.277).

1. Introduction
Anomaly detection aims to detect anomalous data when

majority of the data is normal. To deal with the scarcity of
the labeled anomalous data at train time, anomaly detection
problems are often formulated as a one-class classification
problem [53, 59, 52], where one builds a classifier that could
separate anomalous data from normal ones at test time using
only normal data at train time. As a result of anomaly detec-
tion, one would get a binary label of normalcy or anomaly.

However, a binary label has limited expression as there
could be many sources of anomalous behaviors as in Fig-
ure 1a. On the other hand, grouping data into multiple, se-
mantically coherent clusters, as in Figure 1b, would be valu-
able for some reasons. For example, cluster assignments
could be used to generate the query data for active learning,
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Figure 1: Different from existing works on (1a) anomaly de-
tection [3, 4, 36, 51], (1b) we study anomaly clustering that
groups unlabeled data automatically into multiple clusters,
each of which may represent different types of anomaly.

where diversity is important [43, 40, 23, 55], to improve the
performance of anomaly detector. Moreover, it would help
data scientists analyze the root causes of various anomaly
types, hoping to fix their manufacturing pipeline to reduce
anomalous behaviors. This paper deals with the problem of
clustering images with anomalous patterns.

Clustering could be used for our problem. Classic meth-
ods like KMeans [41], spectral clustering [42], or hierarchi-
cal agglomerative clustering [62], focus on grouping data
given representations, while recent deep clustering meth-
ods [65, 6, 28, 60, 44] aim to learn high-level representa-
tions and their grouping jointly. They have shown impres-
sive clustering accuracy on several vision datasets such as
CIFAR-10 [31] or ImageNet [14].

In this paper, we introduce anomaly clustering, a prob-
lem of grouping images into different anomalous patterns.
While there has been a substantial progress in image clus-
tering research [63, 60], anomaly clustering poses unique
challenges. Firstly, unlike typical image clustering datasets,
images for anomaly clustering may not be object-centered.
Rather, images are mostly similar to each other but differs at
local regions. To our knowledge, grouping images by cap-
turing fine-grained details, as opposed to the coarse-grained
object semantics, has not been studied in existing works.
Secondly, it is common that the data is limited in industrial
applications, making state-of-the-art deep clustering meth-
ods, which are usually trained on large datasets, less appli-
cable. We highlight challenges of anomaly clustering via
empirical comparisons to deep clustering in Section 4.2.

We present an anomaly clustering framework to tackle
this important real-world problem. To resolve the limited-
data issue, we employ the pretrained deep representation,
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similar to solutions for anomaly detection [50, 13, 51], fol-
lowed by similarity-based clustering methods. To tackle the
non-object-centric issue, we represent an image as a bag of
patch embeddings, as in Figure 2, instead of a holistic rep-
resentation. This casts the problem naturally into a multiple
instance clustering [70]. The question boils down to defin-
ing a distance function between bags of instances (i.e., patch
embeddings), and we propose a weighted average distance,
which aggregates patch embeddings with weights followed
by the Euclidean distance. The weight indicates which in-
stances to attend to, and could be derived in an unsupervised
way or in a semi-supervised way using extra labeled normal
images. The proposed framework is described in Figure 2.

We conduct comprehensive experiments on two anomaly
detection datasets, MVTec anomaly detection [3] and mag-
netic tile defect [26]. We present a new experimental pro-
tocol for anomaly clustering, whose performance is evalu-
ated using ground-truth defect type annotations. We test the
proposed clustering framework using various distance func-
tions, including variants of Hausdorff distances [27, 17, 70]
and our weighted average distance. We also compare with
state-of-the-art deep clustering methods [28, 60, 44] for
anomaly clustering. While being conceptually and compu-
tationally simple, our results show that the proposed frame-
work solves the anomaly clustering problem significantly
better than existing deep clustering methods. Our weighted
average distance also demonstrates the efficacy over exist-
ing distance functions for multiple instance clustering.

Finally, we summarize our contributions as follows:

1. We introduce an anomaly clustering problem and cast
it as a multiple instance clustering using patch-based
deep embeddings for an image representation.

2. We propose a weighted average distance that computes
the distance by focusing on important instances in un-
supervised or semi-supervised ways.

3. We conduct experiments on industrial anomaly detec-
tion datasets, showing solid improvements over multi-
ple instance and deep clustering baselines.

2. Related Work
Anomaly detection has been extensively studied under var-
ious settings [7], such as supervised with both labeled nor-
mal and anomalous data, semi-supervised with labeled nor-
mal data [53, 59], or unsupervised with unlabeled data [5,
38, 68], to train classifiers. While anomaly detection divides
data into two classes of normalcy and anomaly, our goal is
to group them into many clusters, each of which represents
various anomalous behaviors.

Thanks to deep learning there has been a solid progress
in visual anomaly detection. Self-supervised representation
learning methods [21, 9] have been adopted to build deep
one-class classifiers [22, 25, 2, 57, 56], showing improve-
ment in anomaly detection [4, 67, 36]. In addition, the deep

image representations trained on large-scale object recogni-
tion datasets [15] have shown to be a good feature for vi-
sual anomaly detection [4, 50, 49, 13, 51]. While we follow
the similar intuition as we represent an image as a bag of
patch embeddings with pretrained networks, we propose a
method for grouping images into multiple clusters instead
of building one-class classifier for binary classification.
Image clustering is an active research area, whose main
concern is at image representation. Typical approaches [35,
12] include bag-of-keypoints [12], where one builds a his-
togram of local descriptors (e.g., SIFT [39] or Texton [30]),
and spatial pooling [34], aggregating local descriptors by
averaging, to obtain a holistic representation of an image.
Some applications relevant to our work include texture and
material classification [35, 61, 33] and description [19, 11].
While their goal is to classify images of different texture
or material properties with supervision, our goal is to clus-
ter images with subtle differences due to defects without or
with a minimal supervision. Moreover, we use patch repre-
sentations and cast the problem as multiple instance cluster-
ing by automatically identifying important instances.

On the other hand, deep clustering [65, 6, 28, 60, 44]
jointly learns image representations and group assignments
using deep neural networks. While there has been a huge
progress in clustering natural and object-centered images,
such as those from CIFAR-10 [31] or ImageNet [14], state-
of-the-art deep clustering algorithms do not work well for
anomaly clustering, which requires to capture subtle differ-
ences of various anomaly types, as in Section 4.2.

3. Anomaly Clustering
We introduce the proposed anomaly clustering, where in

Section 3.1 we formulate it as a multiple instance clustering
problem [70]. In Section 3.2, we define a distance measure
under unsupervised setting in Section 3.2.1 and under semi-
supervised setting with a few normal data in Section 3.2.2.

3.1. Framework Overview
Let X = {xi 2RW⇥H⇥3} be a set of images to cluster

into K groups. Following deep clustering literature [6, 60],
for a given deep feature extractor, a straightforward way to
formulate a framework is to extract a holistic deep represen-
tation of an image and apply off-the-shelf clustering meth-
ods on unlabeled images. While plausible, this approach
does not take into account that anomalous behaviors may
happen happening locally (e.g., Figure 3). As a result, it
shows suboptimal clustering performance (see Section 5.1).

To account for the local nature of anomalous patterns in
images, we propose to represent images with a bag of patch
embeddings, similar to recent works on visual anomaly de-
tection [67, 50, 13, 51]. Let Zi ,Z(xi)= {zi

1
, ..., zi

M
},

where zi
m
2RD is a patch embedding from an image using

pretrained deep neural networks. As we have bags of patch
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Figure 2: The proposed anomaly clustering framework uses similarity-based clustering methods, such as spectral clustering or
hierarchical clustering. We compute the distance between images, each of which is represented as a bag of patch embeddings
from a pretrained deep neural network, by the Euclidean distance of weighted averaged embeddings, whose weight represents
the “importance” (e.g., defectiveness) of patch embeddings.

embeddings, each of which is from a single image, while
wanting to assign a cluster membership to each bag, we can
formulate it as a multiple instance clustering (MIC) [70]
problem. In particular, we propose an anomaly clustering
framework that follows steps below:

1. Extract patch embeddings and define embeddings from
an image as a bag.

2. Compute the distance between bags.
3. Apply similarity-based clustering methods.

Figure 2 visualizes the proposed framework. We note that
it is crucial to define a proper distance measure for clus-
tering. In what follows, we discuss distance measures be-
tween bags computed in unsupervised (Section 3.2.1) or
semi-supervised (Section 3.2.2) ways.

3.2. Weighted Average Distance between Bags

For the unsupervised setting, we are given a data {xi}, or
equivalently, bags of instances {Zi}, to cluster without any
label information. We are interested in grouping these data
using off-the-shelf similarity-based clustering methods, and
we need to define the distance between bags d(Zi, Zj).

There are at least two ways to compute the distance be-
tween bags. First, we compute distances between pairs of
instances from two bags then aggregate. On the other hand,
we aggregate instances to have a single representation for
each bag and compute the distance. We take the second ap-
proach as it reduces the distance computation significantly.

We note that not all instances should contribute equal to
the distance between bags. For example, we do not expect a
patch embedding corresponding to the background that are
common across both normal and abnormal data to represent
an anomaly. Instead, we may want instances for anomalous
patterns to contribute more to the distance. To this end, we
propose a distance between weighted average embeddings

of two bags as follows:

dWA(Zi, Zj) =
���
⇣ MX

m=1

↵
i

m
zi
m

⌘
�
⇣ MX

n=1

↵
j

n
zj
n

⌘��� (1)

where ↵2�M is a weight vector specifying which instance
to attend to.

3.2.1 Defining ↵ Without Supervision.

The remaining question is how to define the weight ↵. Intu-
itively speaking, we expect ↵ to attend to discriminative in-
stances, e.g., patch embeddings of defective regions, rather
than those of normal regions. In MIC literature [70, 10],
the maximum Hausdorff distance [27, 17, 18] has been a
popular choice, whose distance metric is written as follows:

dmaxH(Zi, Zj) = max
�
d(Zi, Zj), d(Zj , Zi)

 
, (2)

d(Zi, Zj) = max
m=1,...,M

min
n=1,...,M

�
kzi

m
� zj

n
k
 

(3)

Eq. (3) returns the maximum over instances in Zi of mini-
mum distances to instances in Zj , and is likely the distance
between inhomogeneous instances of two bags, as shown in
Figure 3. Moreover, when ↵

i

m
and ↵

j

n
are determined as be-

low (with a bit abuse of notation), Eq. (1) recovers Eq. (3).

↵
i

m⇤ =1, m⇤ = argmax
m
minn

�
kzi

m
� zj

n
k
 

↵
j

n⇤ =1, n⇤ = argmin
n

�
kzi

m⇤ � zj
n
k
 (4)

One downside of maximum Hausdorff distance is that, as is
clear from Eq. (4), it only focuses on the distance between a
single instance from two bags. [70] has proposed an average
Hausdorff distance to account for such cases by taking an
average instead of maximum of minimum distances, but we
find them less suitable for anomaly clustering problem, as
shown empirically in Section 4.1.

Alternatively, we propose the soft weight as follows:

↵
i

m
/ exp

⇣1
⌧
Ej 6=i

�
min
n

kzi
m
� zj

n
k
 ⌘

(5)

5481
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Figure 3: Visualization of weights (↵) overlaid on images. From the second column, we show instances (e.g., patches) chosen
to compute maximum Hausdorff distances in Equation (4), unsupervised in Equation (5), semi-supervised in Equation (6),
and ground-truth segmentation label-based weights.

where ⌧ controls the smoothness of ↵. For example, when
⌧ ! 0, we tend to focus on a single instance of m with the
maximum average minimum distance, while ⌧ !1 evenly
distributes weights across instances. The inner min operator
finds the most similar instance of other bags, and it allows
instances that commonly occur across images in the dataset,
e.g., patches relevant to non-defective regions, to be down-
weighted when computing ↵. While we choose to aggregate
minimum distances with expectation (Ej 6=i), there are alter-
natives, such as max (maxj 6=i) or min (minj 6=i). However,
max operator would suffer for aligned objects as some nor-
mal instances may not be found from an anomalous images.
min operator would suffer if there are duplicates. More ex-
planations on these insights are in Appendix B. Finally, we
ablate with combinations of operators in Section 5.3.

We show ↵ chosen by maximum Hausdorff distance cri-
teria of Eq. (4) in the second column, and those based on
Eq. (5) in the third column of Figure 3. We observe that
defective areas are highlighted for most cases, with an extra
granularity for soft weights.

3.2.2 Defining ↵ with Labeled Normal Data.

As in Figure 3, the highlighted regions from unsupervised
distance measures are around defective areas. This moti-
vates us to directly derive weight vectors that are designed
to attend the defective areas. Motivated by the recent suc-
cess in semi-supervised defect localization [4, 67, 36, 51],
we propose a semi-supervised anomaly clustering, where a
few normal data are given to help compute weight vectors.
Specifically, we extend Eq. (5) as follows:

↵
i

m
/ exp

⇣1
⌧

min
z2Ztr

kzi
m
� zk

⌘
(6)

where Ztr =
S

x2Xtr
Z(x) is a union of bags of normal data

x2Xtr. Since we put all instances from bags of normal data
we do not need expectation. We visualize weight vectors by

Eq. (6) in the fourth column of Figure 3, followed by the
ground-truth segmentation mask based weights.

3.3. Comparison to BAMIC [70]

BAMIC [70] is a multiple-instance clustering framework
that requires a pairwise distance measure and the similarity-
based clustering methods. An instance in [70] uses variants
of Hausdorff measure to compute distances and k-medoids
for clustering. However, the method following [70] (maxH
and k-medoids) performs poorly on anomaly clustering as
in Table 2. Besides improved clustering accuracy, our pro-
posal has a few other advantages as we discuss below.

Time complexity. Let N be the number of data. The time
complexity of distance measures are written as follows:

Maximum Hausdorff : O(N2
M

2
D)

Weighted Average : O( N
2
M

2
D| {z }

Weights in Eq. (5)

+ N
2
D| {z }

Distance in Eq. (1)

)

While WA appears to be slightly more expensive due to the
second term, it is negligible for large bag sizes (M ). Impor-
tantly, it can be substantially reduced by subsampling the
data when computing weights in Eq. (5):

↵
i

m
/ exp

⇣1
⌧
EZsub\{i}

�
min
n

kzi
m
� zj

n
k
 ⌘

, (7)

resulting in O(N |Zsub|M2
D+N

2
D), which would be ben-

eficial when N � |Zsub|.
Use of labeled normal data. In Section 4.3 we show that
the semi-supervised WA distance measure could drastically
lift the clustering performance using a small amount of la-
beled normal data (see Section A.2 for an ablation study).
This is a unique feature of WA measure and such an exten-
sion has not been discussed in [70]. Notably, the time com-
plexity of semi-supervised WA measure is O(N |Ztr|B2

D+
N

2
D), making our method scalable with large N .
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4. Experiments
We test the anomaly clustering using anomaly detection

benchmarks, including MVTec dataset [3] and magnetic tile
defect (MTD) dataset [26]. MVTec dataset has 10 object
and 5 texture categories. The training set of each cate-
gory includes normal (non-defective) images, whose num-
ber varies from 60 to 391. The test set contains both normal
and anomalous (defective) images and anomalous images
are grouped into 2⇠9 sub-categories by defect types. See
Figure 1b for an example of anomaly sub-categories. Mag-
netic Tile Defect dataset has 952 non-defective and 392 de-
fective images. Defective images are grouped into 5 sub-
categories, such as blowhole, break, crack, fray or uneven.
Protocol. We test unsupervised and semi-supervised clus-
tering. For unsupervised case, no labeled data is provided
for clustering, whereas for semi-supervised case, labeled
normal data in the anomaly detection train set is given to
compute ↵ in Eq. (6). We emphasize that no labeled defec-

tive images are provided until we compute evaluation met-
rics to report. All clustering experiments are under a trans-
ductive setting [20, 8] and no training is involved other than
deep clustering experiments.

Note that we exclude combined sub-categories from
evaluation metric computation as images of combined
category may contain multiple defect types in a single im-
age or their ground-truth labels may not be accurate [3].
Methods. We evaluate combinations of distance measures
and clustering methods. For distance measure, we consider
(uniform) average, variants of Hausdorff (Table 5) [70], and
the proposed weighted average in unsupervised and semi-
supervised ways. For clustering, k-means, GMM, spec-
tral clustering, and hierarchical clustering with various link-
age options are tested (Table 2). BAMIC [70] is a special
case, which combines variants of Hausdorff distance and
k-medoids [45] for clustering. Lastly, we make a compari-
son with state-of-the-art deep clustering methods, including
IIC [28], GATCluster [44], and SCAN [60]. A comprehen-
sive comparison to existing methods is in Section 4.2.
Metric. Normalized Mutual Information (NMI) [54] and
Adjusted Rand Index (ARI) [48] are two popular metrics
for clustering quality analysis when ground-truth cluster as-
signments are given for test set. We also report the F1 score
to account for the label imbalance. The optimal matching
between ground-truth and predicted cluster assignments are
computed efficiently using Hungarian algorithm [32]. The
maximum values of these metrics are 1.0 and higher values
indicate a better clustering quality.
Implementation. We use PyTorch [46] for neural net-
work implementations and vision models [64] and scikit-
learn [47] for clustering methods.

ImageNet pretrained WideResNet-50 (WRN-50) is used
by default to extract patch embeddings, similarly to [51].

Specifically, we use the output of the second residual block
followed by 3⇥3 average pooling. Each patch embedding is
then normalized to have unit L2 norm before fed into clus-
tering method. In addition, we conduct an extensive study
with diverse pretrained networks (e.g., EfficientNet [58] and
Vision Transformer (ViT) [16]) in Appendix A.4.

4.1. Unsupervised Clustering Experiments
In Table 1, we report NMI, ARI, and F1 scores of un-

supervised clustering methods on MVTec object, texture
and MTD datasets. We test with diverse distance mea-
sures, including average (i.e., ↵= 1

M
in Eq. (1)), maximum

Hausdorff in Eq. (2), and the proposed weighted average
in Eq. (5). Finally, hierarchical clustering with Ward link-
age [62] is used for clustering. A study using different clus-
tering methods is in Section 4.2.

We confirm that the distance measure using average em-
beddings performs poorly, whereas that based on discrim-
inative instances chosen by max-min criteria of maximum
Hausdorff distance significantly improves the performance.
The proposed weighted average distance further improves
the clustering NMI score by 0.041 on average. As shown in
Figure 3, generated weights attend to multiple discrimina-
tive instances instead of a single pair of instances, resulting
in improved clustering accuracy.

4.2. Comparison to Other Clustering Methods
In this section, we report the clustering performance with

various clustering methods under unsupervised setting. We
test spectral clustering and hierarchical clustering with sin-
gle, complete, and average linkages. In addition, as the bag
can be represented as a single aggregated embedding for
weighted average distance, we test KMeans and Gaussian
Mixture Model (GMM) with full covariance.

Moreover, we test state-of-the-art deep clustering meth-
ods that learn deep representations and cluster assignments
jointly. It has been studied extensively in recent years [65,
66, 29, 28, 60, 44] and demonstrated a strong performance
over shallow counterparts in clustering object-centered im-
ages. We study a few state-of-the-art methods, including
IIC [28], GATCluster [44], and SCAN [60]. Since we only
have a few images per category, methods like SCAN that
require a self-supervised pretraining may be suboptimal. In
that case, we use the ImageNet pretrained model. Imple-
mentation details are in the Appendix C.1.

The results are in Table 2. We find that hierarchical clus-
tering with Ward linkage is particularly effective, followed
by the complete linkage. Linkages such as single or average
that take into account distances between nearest neighbors
between clusters do not perform well for anomaly cluster-
ing. Spectral clustering appears to be moderately effective.
As mentioned before, the weighted average distance is com-
patible with more scalable, center based clustering methods
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Table 1: NMI, ARI and F1 scores of unsupervised and semi-supervised clustering methods on MVTec (object, texture) and
MTD datasets. Compared to the baseline method (“average”) that uses a holistic representation via average pooling of patch
embeddings, the multiple instance clustering framework with various distance measures, such as maximum Hausdorff or the
proposed weighted average distances, show huge improvement. We also report the performance of weighted average distance
whose weights are computed using labeled normal data (“Semi”). We provide per-category results in Table 7 of Appendix.

Supervision Unsupervised Semi

Distance Average Maximum Hausdorff Weighted Average Weighted Average

Metric NMI ARI F1 NMI ARI F1 NMI ARI F1 NMI ARI F1

MVTec (object) 0.244 0.109 0.399 0.415 0.275 0.526 0.451 0.346 0.553 0.577 0.449 0.628
MVTec (texture) 0.273 0.123 0.402 0.625 0.534 0.708 0.674 0.601 0.707 0.669 0.570 0.698

MTD 0.065 0.024 0.289 0.193 0.112 0.381 0.179 0.120 0.346 0.390 0.314 0.490

Overall 0.251 0.112 0.394 0.532 0.427 0.631 0.573 0.491 0.636 0.623 0.516 0.663

Table 2: Comparison to other clustering methods, includ-
ing KMeans, KMedoids, GMM, spectral, and hierarchi-
cal clustering with various linkages, using maximum Haus-
dorff (maxH) or weighted average (WA) distances, and deep
clustering methods, such as IIC [28], GATCluster [44], or
SCAN [60]. For deep clustering methods, we provide in
the parenthesis the performance of the best training epoch
chosen by test set accuracy. We report NMIs, and complete
results are in the Table 8 of Appendix.

Dataset MVTec (object) MVTec (texture) MTD

Distance maxH WA maxH WA maxH WA

KMeans – 0.429 – 0.642 – 0.204
GMM – 0.395 – 0.578 – 0.204
KMedoids 0.140 0.235 0.274 0.430 0.050 0.076
Spectral 0.419 0.428 0.609 0.606 0.143 0.150
Single 0.108 0.133 0.078 0.108 0.087 0.065
Complete 0.316 0.294 0.360 0.452 0.128 0.116
Average 0.245 0.276 0.223 0.400 0.080 0.094
Ward 0.415 0.451 0.625 0.674 0.193 0.179

IIC 0.086 (0.170) 0.107 (0.188) 0.064 (0.034)
GATCluster 0.119 (0.265) 0.171 (0.298) 0.028 (0.113)
SCAN 0.176 (0.198) 0.277 (0.314) 0.071 (0.087)

such as KMeans or GMM, though they perform a bit worse
than hierarchical Ward clustering. Finally, we note that the
proposed weighted average distance shows higher NMIs for
most cases regardless of clustering methods.

We find that state-of-the-art deep clustering methods do
not work well on anomaly clustering. Even if we report the
best performance chosen via early stopping based on the test
set performance (numbers in the parentheses of Table 2), the
performance is not as good as our method. The suboptimal
performance of deep clustering methods might be due to
a lack of data, but requirement for a large amount of data
could be their own limitation for industrial applications.

4.3. Semi-supervised Clustering Experiments

We test the semi-supervised clustering described in Sec-
tion 3.2.2. In this setting we are given labeled normal data

from train set to compute instance weights of Eq. (6). Sim-
ilarly, we use the hierarchical Ward clustering. The results
are described in Table 1. We observe a significant boost in
performance over unsupervised clustering methods. For ex-
ample, we improve upon the best unsupervised clustering
method by 0.050 in NMI on average.

Where is the improvement from? We hypothesize that
weights derived in a semi-supervised way localize defective
instances better than the unsupervised counterpart and make
distance more meaningful, leading to an improved cluster-
ing accuracy. To answer this question, we visualize semi-
supervised weights in Figure 3. While the proposed un-
supervised weights are already good at localizing defective
areas, we find that it also has a few false positives (e.g., third
row of Figure 3b, fourth row of Figure 3a). Whereas, semi-
supervised weights effectively remove those false positives.
Moreover, we evaluate the pixel-level anomaly localization
AUC, achieving 0.973 AUC with semi-supervised weights,
improving upon 0.912 AUC of unsupervised weights. This
suggests that the lift in clustering accuracy is from better
localization of defective patches. We believe that more ad-
vanced defect localization and segmentation methods [37]
could improve the performance of anomaly clustering.

From this finding, we test using weights derived from the
ground-truth segmentation masks,1 achieving 0.724, 0.685,
and 0.467 NMIs for MVTec object, texture and MTD, re-
spectively, further improving upon unsupervised and semi-
supervised clustering performance.

4.4. Cluster Purity

While we report clustering accuracy with known number
of clusters in Section 4.1 and 4.3, the number of cluster may
not be available in practice. What could be important is the
purity of clusters when data is over-clustered. For example,

1We compute weights by resizing the ground-truth binary segmentation
masks with 1 for anomalous and 0 for normal pixels into the same spatial
dimension of patch embeddings and normalize their values to sum up to 1.
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Figure 4: Purity of clusters on a few MVTec categories. Ward clustering is used for clustering method. Numbers in the bracket
represent the area under the curve divided by the total number of examples (mAUC). Complete results are in Appendix A.5.

Bent wire (1.00) Cable swap (1.00)

Cut inner insulation (0.9) Cut outer insulation (1.00)

Missing cable (1.00)

Poke insulation (1.00)

Missing wire (1.00)

Normal (0.98)

(a) MVTec cable (purity: 0.97, # sub-categories: 8)

Crack (1.00) Glue strip (1.00)

Gray stroke (0.89) Rough (1.00)

Oil (0.67)

Rough (1.00)

Oil (1.00)

Normal (1.00)

(b) MVTec tile (purity: 0.97, # sub-categories: 6)

Figure 5: Visualization of images in each cluster using semi-supervised WA distance and Ward clustering with 16 target
clusters. We annotate the name of the major sub-category and the purity in parenthesis to each cluster. We highlight images
with red if they do not belong to the major sub-category, and with orange when they contain multiple defect types.

the labeling effort could be reduced from the number of data
to the number of clusters if we can achieve a high purity.

Figure 4 shows the cluster purity with different number
of target clusters for Ward clustering on a few MVTec cate-
gories. We see a clear gain in purity with the proposed clus-
tering framework (brown, green, light blue) over the base-
line (pink). Moreover, we report purity metrics in Table 3,
including mAUC, the area under the curve divided by the
total number of examples, and R@P, the reduction in the
number of clusters at a given purity.2 We confirm that the
proposed framework improves the purity. For example, we
improve R@0.95 on object categories from 0.231 to 0.527,
meaning that we can reduce the number of clusters to la-
bel by 53% (compared to exhaustively labeling all images)
while retaining 95% cluster purity.

4.5. Cluster Visualization
In Figure 5, we show images of discovered clusters. We

over-cluster with 16 clusters using semi-supervised WA dis-
tance and hierarchical Ward clustering. We annotate the ma-
jor defect types to each cluster and the purity in parenthesis.

We verify from Figure 5 that clusters are fairly pure and
images with the same or similar type of defects are grouped
together. This is because our proposed distance measure is
able to attend to discriminative defective areas to compute

2R@P = 1� (# clusters required to reach purity P)/(# data).

Dataset and Metric average maxH WA WA (semi)

object

mAUC (") 0.819 0.868 0.860 0.915
R@0.9 (") 0.380 0.533 0.474 0.671

R@0.95 (") 0.231 0.373 0.346 0.527
R@0.99 (") 0.094 0.204 0.192 0.327

texture

mAUC (") 0.807 0.926 0.907 0.940
R@0.9 (") 0.378 0.769 0.760 0.824

R@0.95 (") 0.243 0.702 0.629 0.666
R@0.99 (") 0.083 0.346 0.393 0.366

Table 3: Cluster purity in mAUC, R@0.9, 0.95, 0.99 on
MVTec object and texture categories with various distances.

the distance between images. While some images are clus-
tered incorrectly (highlighted in red), they do not seem too
different to other images in the same cluster. Another inter-
esting observation is that two “rough” clusters in Figure 5b
indeed show somewhat distinctive textures and our method
is able to pick such a fine-grained difference to cluster them
separately. Finally, there are some images that contain more
than one defect type highlighted in orange. For example,
in Figure 5a, the one in “bent wire” cluster not only has
bent wires but also a missing wire. It is promising that our
method at least groups it into one of two correct candidate
clusters. We leave a multi-label anomaly clustering, which
could assign multiple cluster labels to an image with multi-
ple defect types, as a future work.
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5. Ablation study
In this section we conduct in-depth study of the proposed

anomaly clustering framework. Due to space constraint, we
provide extra study, such as an impact of number of labeled
normal data (Section A.2) or diverse feature extractors (Sec-
tion A.4), in the Appendix.

5.1. Patch vs Holistic Representation
We highlight the importance of patch embeddings with

multiple instance clustering over the holistic representation.
For the holistic representation, we use the last hidden layer
of WRN-50 after average pooling, resulting in 2048 dimen-
sional vector, as is commonly used in deep clustering litera-
ture [60]. For fair comparison, we use the same hidden layer
for patch embeddings but without average pooling. For ex-
ample, we obtain 8⇥8 2048 dimensional patch embeddings
for input of size 256⇥256.

In Table 4, we find that holistic representations, though
better than learning-based deep clustering methods in Sec-
tion 4.2, perform worse than our proposed patch-based mul-
tiple instance clustering methods. We observe similar trends
using various ResNet [24, 69] and EfficientNet [58] models,
whose results are in Appendix A.3.

Datasets Holistic Hausdorff WA WA (semi)

Object 0.256 0.281 0.320 0.381
Texture 0.507 0.542 0.568 0.597
MTD 0.205 0.250 0.227 0.280

Table 4: NMI scores of holistic and patch representations.

5.2. Sensitivity Analysis on ⌧

Weights in Eq. (5) and (6) play an important role in
anomaly clustering. Specifically, both formulations involve
the hyperparameter ⌧ that controls the smoothness of the
distribution of ↵, which we ablate in this section. More-
over, we study the variant of weights, called hard weights,
where we select k most discriminative instances (instead of
softly weighing them) in Appendix A.1.

Figure 6 presents the sensitivity analysis of ⌧ . It shows
a trend that intermediate values of ⌧ are preferred and the
performance deteriorates as we increase their values as the
model converges to uniform weights. Texture classes still
shows outstanding performances even with small ⌧ as they
can focus on the smaller regions, which is consistent with
our observation that some texture anomalies are tiny in size.

5.3. Variants of Distance Measure
Variants of Hausdorff distance metrics are proposed to

compute similarities between bags. [10] present variants
by replacing max or min operators of Eq. (2) and (3). For
example, one can replace max operator in Eq. (2) into mean
as suggested in [17]. Exact formulations are in Appendix C.

Figure 6: Sensitivity analysis of ⌧ on MVTec dataset.

Variants Eq. (3) Eq. (2) Object Texture MTD

mean mean – 0.196 0.232 0.071
max min max 0.415 0.625 0.193

Hausdorff max min mean 0.372 0.562 0.160
distance min min – 0.126 0.187 0.130

mean min max 0.220 0.400 0.141
mean min mean 0.235 0.348 0.134

Variants Eq. (5) Object Texture MTD

Unsup. Ej 6=i 0.451 0.674 0.179
weights maxj 6=i 0.252 0.614 0.138

minj 6=i 0.472 0.625 0.052

Table 5: NMIs of anomaly clustering using variants of
Hausdorff distance and unsupervised weights.

We report results using variants of Hausdorff distance
in Table 5 (top). For asymmetric distance measure such as
maxmin or meanmin of Eq. (3), aggregating them by max
for Eq. (2) shows better performance. Replacing the first
max in Eq. (3) into min or mean degrades the performance,
as it deludes the attention to non-discriminative instances,
which is critical for clustering data based on anomaly types.

We study variants of unsupervised weight by replacing
E in Eq. (5) into max or min. The results are in Table 5
(bottom). We find that E works the robustly across datasets.
We provide more qualitative analysis in Appendix B.

6. Conclusion
We introduce anomaly clustering, a challenging problem

that existing approaches like deep clustering do not work
well on. We propose to frame it as a multiple instance clus-
tering problem by taking into account certain characteristics
of industrial defects and present a novel distance function
that focuses on the defective regions when exist. Experi-
mental results show our proposed framework is promising.
Future directions include an extension to multiple instance
deep clustering and active anomaly classification. We be-
lieve that the proposed framework is not only effective for
anomaly clustering, but could also be useful for clustering
images of fine-grained deformable objects.
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