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Figure 1: CutMix (left) randomly mixes samples, yielding label misallocation, while our ScoreMix (right) creates a coherent artificial
training pair (xm, ym) by pasting a region of high semantic content from the cut image, xc, at a non-discriminative region of the paste
image, xp, and obtains the new label via a convex combination of the cut and paste labels.

Abstract

Progress in digital pathology is hindered by high-
resolution images and the prohibitive cost of exhaustive lo-
calized annotations. The commonly used paradigm to cat-
egorize pathology images is patch-based processing, which
often incorporates multiple instance learning (MIL) to ag-
gregate local patch-level representations yielding image-
level prediction. Nonetheless, diagnostically relevant re-
gions may only take a small fraction of the whole tissue,
and current MIL-based approaches often process images
uniformly, discarding the inter-patches interactions. To al-
leviate these issues, we propose ScoreNet, a new efficient
transformer that exploits a differentiable recommendation
stage to extract discriminative image regions and dedicate
computational resources accordingly. The proposed trans-
former leverages the local and global attention of a few dy-
namically recommended high-resolution regions at an ef-
ficient computational cost. We further introduce a novel
mixing data-augmentation, namely ScoreMix, by leverag-
ing the image’s semantic distribution to guide the data mix-

ing and produce coherent sample-label pairs. ScoreMix is
embarrassingly simple and mitigates the pitfalls of previous
augmentations, which assume a uniform semantic distribu-
tion and risk mislabeling the samples. Thorough experi-
ments and ablation studies on three breast cancer histology
datasets of Haematoxylin & Eosin (H&E) have validated
the superiority of our approach over prior arts, includ-
ing transformer-based models on tumour regions-of-interest
(TRoIs) classification. ScoreNet equipped with proposed
ScoreMix augmentation demonstrates better generaliza-
tion capabilities and achieves new state-of-the-art (SOTA)
results with only 50% of the data compared to other mixing
augmentation variants. Finally, ScoreNet yields high effi-
cacy and outperforms SOTA efficient transformers, namely
TransPath [37] and SwinTransformer [20], with throughput
around 3× and 4× higher than the aforementioned archi-
tectures, respectively. Our code is publicly available1.

1https://github.com/stegmuel/ScoreNet
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1. Introduction
Due to the increasing availability of digital slide scan-

ners enabling pathologists to capture high-resolution whole
slide images (WSI), computational pathology is becoming
a ripe ground for deep learning and recently witnessed a lot
of advances. Nonetheless, the diagnosis from H&E stained
WSIs remains challenging. The difficulty of the task is a
consequence of two inherent properties of histopathology
image datasets: i) the huge size for images and ii) the cost of
exhaustive localized annotations, making the usage of most
deep learning models computationally infeasible. Patch-
based processing approaches [31, 23, 13] have become a
de facto practice for high dimensional pathology images
that aggregate individual patch representation/classification
predictions by, e.g., a convolutional neural network (CNN)
for image-level prediction. Nonetheless, patch-based meth-
ods increase the requirement of patch-level labeling and
further regions of interest (RoI) detection as diagnostic-
related tissue sections might only take a small fraction
of the whole tissue, leading to considerable uninformative
patches. Prior CNN methods [14, 18] have adopted mul-
tiple instance learning (MIL) [22] to address the above is-
sues, which incorporates an attention-based aggregation op-
erator to identify tissue sub-regions of high diagnostic value
automatically. Nonetheless, these MIL methods embed all
the patches independently and discard the inter-patches cor-
relation or only incorporate it at a later stage.

Recently, self-supervised learning (SSL) methods [18,
17, 32, 7] aimed to construct semantically meaningful vi-
sual representations via pretext tasks for histopathological
images. Despite their notable success using CNN back-
bones in improving classification performances, CNN’s re-
ceptive field often restricts the learning of global context
features. In another line of research, to compensate for
the lack of diverse and large datasets, mixing augmenta-
tion techniques [36, 39, 40] have been developed to fur-
ther enhance the performance of these models. While there
have been substantial performance gains on natural image
datasets, we argue that such data augmentations may not be
helpful for histopathological images, as they risk creating
locally ambiguous images or mislabelled samples. Further-
more, contrary to CNNs, vision transformer (ViT) models
[10, 35] can capture long-range visual dependencies due to
their flexible receptive fields via self-attention mechanisms.
More recently, self-supervised ViTs method [37, 19] com-
bined the advantages of ViT and SSL to efficiently learn
visual representations from less curated pre-training data.
Despite their usefulness, there is relatively little research on
the impact of data augmentation design, efficiency and ro-
bustness of ViT for histopathological image classification.
For example, can we train an efficient transformer by se-
lecting only informative regions of high diagnostic value
(RoIs) from high-resolution images? What data augmen-

tation strategies can improve the transformer’s representa-
tion learning for TRoIs classification? This paper addresses
these questions by uncovering insights about key aspects of
data augmentation and exploits the self-attention maps to
identify the most relevant regions for the end task and train
an efficient transformer.

Contributions. Our contributions are as follows:

1. We propose ScoreNet, a new efficient transformer-
based architecture for histopathological image clas-
sification. It combines a fine-grained local atten-
tion mechanism with a coarse-grained global atten-
tion module to extract cell- and tissue-level features.
Benefiting from a differentiable recommendation mod-
ule, the proposed architecture only processes the most
discriminative regions of the high-resolution image,
making it significantly more efficient than competitive
transformer architectures without compromising accu-
racy;

2. A novel mixing data-augmentation, namely ScoreMix
for histopathological images is presented. ScoreMix
works in synergy with our architecture, as they build
upon the same observation: the different regions of the
images are not equally relevant for a given task. Using
the learned self-attention w.r.t. the [CLS] token, we
determine the distribution of the semantic regions in
images during training to ensure sampling of informed
cutting and pasting locations (see Fig. 1);

3. We empirically show consistent improvements of
ScoreNet over SOTA methods for TRoIs classi-
fication on the BRACS dataset, and similarly for
ScoreNet’s generalization capability on the CAME-
LYON16 and BACH datasets. The interpretability of
ScoreNet behaviour is also investigated. Finally, we
demonstrate ScoreNet throughput improvements over
existing efficient transformers, making it an ideal can-
didate for applications on WSIs. Our code and mod-
els will be publicly available upon acceptance.

2. Related work

TRoIs Classification. Conventionally, deep convolutional
neural networks [31, 30, 23, 13, 38] process pathology
images in a patch-wise manner using a MIL formula-
tion [22] and aggregate patch-level features extracted by
CNNs. Nonetheless, current MIL methods discard the
inter-patches interaction or only integrate it at the very
end of the pipeline. Similarly, the computational resources
dedicated to a specific region are independent of its perti-
nence for the task. Current methods rely on attention-based
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Figure 2: An overview of the proposed ScoreNet. The recommendation stage provides tissue-level features, and differentiably selects
the most discriminative high-resolution patches. The aggregation stage independently extracts cell-level features and embeds the patches
via a local fine-grained attention mechanism and endows them with contextual information with the global coarse-grained attention
mechanism.

MIL techniques [14, 18, 15, 5, 28] to account for the non-
uniform relevance of patches. On the contrary, the integra-
tion of contextual cues remains almost untouched, as all the
aforementioned methods rely on a pipeline where the patch
embedding and patch contextualization tasks are discon-
nected w.r.t. the gradient flow. For example, [15] processes
representative patches extracted by an external tool [16].
Thus, their patch extraction is fixed and not data-driven as
ours. Alternatively, [33] resort to using a multiple field-
of-views/resolutions strategy to endow local patches with
contextual information. In another line of research, graph
neural network (GNN)-based methods [41, 27] have been
proposed to capture global contextual information. These
approaches build a graph model that operates on the cell-
level structure or combines the cell-level and tissue-level
context. However, graph generation can be cumbersome
and computationally intensive, prohibiting its use in real-
time applications. Recently, SSL methods [18, 17, 32] have
demonstrated their capabilities to improve classification for
histopathological images. Most of these methods harness
pretext tasks, e.g., contrastive pre-training, to learn seman-
tically meaningful features. Nonetheless, the CNN back-
bone used in these approaches inevitably abandons learn-
ing of global context features. The transformer-based archi-
tectures [37, 19] can be an alternative solution for process-
ing images as a de-structured patch sequence and capturing
their global dependencies. More recently, hybrid-based vi-
sion transformer models [6, 29, 37] have been used in digital
pathology, either based on MIL framework [29] or SSL pre-
training [37] on unlabeled histopathological images. Never-
theless, these methods process the whole image uniformly
and do not allow dynamic extraction of the region of inter-
est.

Mixing Data-Augmentation Methods. Recently, mixing
data augmentations strategies [36, 39, 39] have been pro-

posed to enhance the generalization capabilities of deep net-
work classifiers. These improvements are further exacer-
bated when the augmentations model the interactions be-
tween the classes [39]. These methods create a new aug-
mented sample by cutting an image region from one im-
age and pasting it on another image, while a convex com-
bination of their labels gives the ground-truth label of the
new sample. Despite the strong performances of the exist-
ing methods, none of them is genuinely satisfying as they
either create samples that exhibit atypical local features as
in MixUp [40] or produce potentially mislabeled samples
as in CutMix [39]. CutMix approach has been improved
by [5] via re-weighting the mixing factor w.r.t. the sum
of the attention map values in the randomly sampled im-
age region, which is still at risk of producing mislabelled
samples. In addition, recent CutMix based augmentation
methods [36, 34] bear additional disadvantages. For exam-
ple, Attentive CutMix [36] requires an auxiliary pre-trained
model to select the most salient patches from the cut image
and disregards the location of the informative regions in the
paste image. SaliencyMix [34] assumes that discriminative
parts in an image are highly correlated with the saliency
map, which is typically not the case for histopathological
images.

3. Methods

Model Overview. An overview of the proposed train-
ing pipeline for H&E stained histology TRoIs’ represen-
tation learning is illustrated in Fig. 2. Histopathological
image classification requires capturing cellular and tissue-
level microenvironments and learning their respective in-
teractions. Motivated by the above, we propose an ef-
ficient transformer, ScoreNet that captures the cell-level
structure and tissue-level context at the most appropriate
resolutions. Provided sufficient contextual information, we
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postulate and empirically verify that a tissue’s identifica-
tion can be achieved by only attending to its sub-region in
a high-resolution image. As a consequence, ScoreNet en-
compasses two stages. The former (differentiable recom-
mendation) provides contextual information and selects the
most informative high-resolution regions. The latter (aggre-
gation and prediction) processes the recommended regions
and the global information to identify the tissue and model
their interactions simultaneously.

More precisely, the recommendation stage is imple-
mented by a ViT and takes as input a downscaled image
to produce a semantic distribution over the high-resolution
patches. Then, the most discriminative high-resolution
patches for the end task are differentiably extracted.
These selected patches (tokens) are then fed to a second
ViT implementing the local fine-grained attention module,
which identifies the tissues represented in each patch. Sub-
sequently, the embedded patches attend to one another
via a transformer encoder (global coarse grained atten-
tion). This step concurrently refines the tissues’ representa-
tions and model their interactions. As a final step, the con-
catenation of the [CLS] tokens from the recommendation’s
stage and that of the global coarse-grained attention’s en-
coder produces the image’s representation. Not only does
ScoreNet’s workflow allows for a significantly increased
throughput compared to SOTA methods (see Table 4), it fur-
ther enables the independent pre-training and validation of
its constituent parts.

3.1. ScoreNet

Semantic Regions Recommendation. Current MIL-based
approaches [14, 18] based on patch-level features aggrega-
tion often process histopathological images uniformly and
discard the inter-patches interactions. To alleviate these is-
sues, we exploit a differentiable recommendation stage to
extract discriminative image regions relevant to the clas-
sification. More specifically, we leverage the self-attention
map of a ViT as a distribution of the semantic content.
Towards that end, the high-resolution image is first down-
scaled by a factor s and subsequently fed to the recommen-
dation’s stage ViT. The resulting self-attention map cap-
tures the contribution of each patch to the overall represen-
tation. Let’s assume a ViT, that processes a low-resolution
image xl ∈ RC×h×w of spatial resolution h × w and en-
compassing N patches of dimension Pl × Pl. The attended
patches (tokens) of the (L − 1) layer are conveniently rep-
resented as a matrix Z ∈ R(N+1)×d, where d is the embed-
ding dimension of the model, and the extra index is due to
the [CLS] token. Up to the last MLP and for a single atten-
tion head, the representation of the complete image is given
by:

y[CLS] = softmax(aT1 )︸ ︷︷ ︸
1×(N+1)

ZWval︸ ︷︷ ︸
(N+1)×d

(1)

where Wval ∈ Rd×d is the value matrix, and aT1 is the first
row of the self-attention matrix A:

A = ZWqry (ZWkey)
T (2)

where Wqry and Wkey are the query and key matrices, re-
spectively. The first row of the self-attention matrix cap-
tures the contribution of each token to the overall represen-
tation (Eq. 1). This is in line with the discriminative ca-
pacity of the [CLS] token that patches having the highest
contribution are the ones situated in the highest semantic
regions of the images. The distribution of the semantic con-
tent over the patches is therefore defined as:

Ppatch = Softmax(ãT1 ) ∈ RN (3)

where ã1 stands for a1 without the first entry, namely the
one corresponding to the [CLS] token. Since ViTs typ-
ically encompasses multiple heads, we propose to add an
extra learnable parameter, which weights the relative con-
tributions of each head to the end task; after aggregation of
the multiples self-attention maps, the formulation is identi-
cal to that of Eq. 3.

Concurrently with acquiring the above defined semantic
distribution, the high-resolution image, xh ∈ RC×H×W , is
tiled in a regular grid of large patches (Ph × Ph), stored in
a tensor P ∈ RN×C×Ph×Ph . At inference time, a conve-
nient way to select the K most semantically relevant high-
resolution regions is to encode the top-K indices as one-hot
vectors: Y ∈ RN×K , and to extract the corresponding K
patches, X ∈ RK×C×Ph×Ph via:

X = YT P (4)

At training time, since the above formulation is not differ-
entiable, we propose to adopt the differentiable approach
of [8]. Following the perturbed optimizers scheme, the top-
K operation is bootstrapped by applying a Gaussian noise,
σN ∈ RN×K , to the semantic distribution. The noisy indi-
cators, Yσ , are subsequently computed as:

Yσ = EN

[
argmax

Y∈C

〈
Y, P̃+ σN

〉]
(5)

where σ is the standard deviation of the noise, P̃ ∈ RN×K

is obtained by broadcasting Ppatch to match the dimension of
Y, and C is a restriction of the domain ensuring the equiva-
lence between solving Eq. 5 and the top-K operation [8].
The extraction of the high-resolution regions follows the
procedure described in Eq. 4. Similarly, the Jacobian of
the indicators w.r.t. the semantic distribution, Ppatch can be
computed as:

JP̃Yσ = EN

[
argmax

Y∈C

〈
Y, P̃+ σN

〉
NT /σ

]
(6)
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Figure 3: The bounding box selection scheme for ScoreMix.
The score distribution for each bounding box (Pbbox) is obtained
by convolving the patch distribution map Ppatch with a kernel of 1s
of the bounding box dimensions (hbbox, wbbox). The bbox is then
sampled from Pbbox, which we often refer to as Pcut or Ppaste.

Computational Complexity. Vision transformers heavily

rely on the attention mechanism to learn a high-level repre-
sentation from low-level regions. The underlying assump-
tion is that the different sub-regions of the image are not
equally important for the overall representation. Despite
this key observation, the computation cost dedicated to a
sub-region is independent of its contribution to the high-
level representation, which is inefficient. Our ScoreNet at-
tention mechanism overcomes this drawback by learning to
attribute more resources to regions of high interest. For a
high-resolution input image xh ∈ RC×H×W , the asymptot-

ical time and memory cost isO
((

H
s·Pl
· W
s·Pl

)2
)

, when the

recommendation stage uses inputs downscaled by a factor s
and processes them with a patch size of Pl. The derivation
of this cost, including that of the recommendation stage,
which is independent of the input size, can be found in the
Supplementary Material.

3.2. ScoreMix

We propose a new mixing data augmentation for
histopathological images by learning the distribution of
the semantic image regions using the learned self-attention
for [CLS] token of the ViT without requiring architectural
changes or additional loss. More formally, let xc, xp ∈
RC×H×W be the cut and paste images respectively and let
yc and yp be their corresponding labels. We aim to mix
the cut and paste samples to generate a new training ex-
ample (xm, ym). To do so, we first compute the seman-
tic distributions using the current parameters of the model
and the input samples; namely, we compute Pcut(xc, θ) and
Ppaste(xp, θ). Given these distributions and a randomly de-
fined bounding box size, we sample the cutting and pasting
locations from the cut and paste distributions, respectively:

Mc ∼
1

Zc
· Pcut(xc, θ, λ)

Mp ∼
1

Zp
· (1− Ppaste(xp, θ, λ))

(7)

where Zc and Zp are normalization constants, and 1− λ ∼
U([0, 1]) defines the strength of the mixing, i.e. the size of
the bounding box. The locations of the cutting and past-
ing regions are encoded as binary masks, i.e., Mc,Mp ∈
{0, 1}H×W , where a value of 1 encodes for a patch in
the cutting/pasting region. Under the above formalism, the
mixing operation can be defined as:

xm = (1−Mp)⊙ xp

Mp ⊗ xm ←Mc ⊗ xc

ym = λyp + (1− λ)yc

(8)

where 1 is a mask of ones, ⊙ denotes the element-wise
multiplication, and ⊗ indicates an indexing w.r.t. a mask.
Computing the Semantic Distributions. Computing the

semantic distributions of the paste and cut images is an es-
sential part of the pipeline as it allows for a data-driven se-
lection of the cutting/pasting sites, thereby avoiding the pit-
falls of random selection. When the size of the bounding
box matches that of a single patch, the distribution can be
directly deduced from the self-attention map, as described
in Sec. 3. As a consequence, and when the bounding box’s
size matches that of a single patch, the semantic distribution
can be directly obtained from Ppatch (see Eq. 3). In prac-
tice, we would typically use bounding boxes encompassing
more than a single patch. In that case, the distribution of
the semantic content at the bounding box resolution can be
obtained by a local aggregation of the above distribution:

Pbbox(i) =
1

Zbbox

∑
j∈N (i)

Ppatch(j) (9)

where Zbbox is a normalization constant and N (i) returns
the indices of the patches situated in the bounding box
whose top left corner is the patch i. In practice, this can
be efficiently implemented by first unflattening the patch
distribution Ppatch, and convolving it with a kernel of ones
and of the same dimension as the desired bounding box (see
Fig. 3).

4. Experiments

Datasets. The primary dataset used in our experiments is
the BReAst Carcinoma Sub-typing (BRACS) [27]. BRACS
consists of 4391 RoIs acquired from 325 H&E stained
breast carcinoma WSI (at 0.25 µm/pixel) with varying di-
mensions and appearances. Each RoI is annotated with one
of the seven classes: Normal, Benign, Usual Ductal Hy-
perplasia (UDH), Atypical Ductal Hyperplasia (ADH), Flat
Epithelial Atypia (FEA), Ductal Carcinoma In Situ (DCIS),
and Invasive. Our experiments follow the same data split-
ting scheme as [27] for training, validation, and test set at
the WSI level to avoid test leakage. In addition, we use pub-
licly available BreAst Cancer Histology (BACH) dataset [1]
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to show ScoreNet generalization capabilities. It contains
400 training and 100 test images from four different breast
cancer types: Normal, Benign, In Situ, and Invasive. All
images have a fixed size of 1536 × 2048 pixels and a pixel
scale of 0.42 × 0.42 µm. To assess the interpretability of
ScoreNet, we further evaluate our model on the CAME-
LYON16 dataset [3] for binary tumour classification. We
extract a class-balanced dataset of 1920× 1920 pixels from
high-resolution WSIs.

Experimental Setup. We base ScoreNet’ ViTs, namely
the one used by the recommendation stage and by the local
fine-grained attention mechanism on a modified ViT-tiny ar-
chitecture (see Supplementary Material) and follow the
self-supervised pre-training scheme of [4] for both of the
aforementioned ViTs. Noteworthy that an end-to-end pre-
training of ScoreNet is also feasible. After pre-training, the
ScoreNet is optimized using the SGD optimizer (momen-
tum=0.9) with a learning rate chosen with the linear scal-
ing rule [11] (lr = 10−2 · batchsize/256 = 3.125 · 10−4)
annealed with a cosine schedule until 10−6. ScoreNet is
finetuned for 15 epochs with a batch-size of 8. We empir-
ically determine the top K = 20 regions, and a downscal-
ing factor s = 8 by a hyperparameter sweep (cf. ablation
experiment in the Supplementary Material). All experi-
ments are implemented in PyTorch 1.9 [25] using a single
GeForce RTX3070 GPU.

4.1. TRoIs Classification Results and Discussion

In Table 1, we compare the TRoIs classification perfor-
mance of ScoreNet on the BRACS dataset against the state-
of-the-arts, including MIL-based [23, 29, 21], GNN-based,
e.g., [27], and self-supervised transformer-based [37] ap-
proaches. The first MIL-based baseline [23] aggregates in-
dependent patch representations from the penultimate layer
of a ResNet-50 [12] pre-trained on ImageNet [9]. The
patch model is further finetuned on 128 × 128 patches at
different magnification, e.g., 10×, 20× or 40×. The lat-
ter operate either on multi- or single-scale images to ben-
efit from varying levels of context and resolution. Simi-
larly, we report the performances of the recent MIL-based
methods, TransMIL [29], and CLAM [21] using the orig-
inal implementations and setup. Both methods are tested
with different magnifications (see Table 1). Additionally,
the single-head (-SB) and multi-head (-MB) variants of
CLAM are used with the small (-S) and big (-B) versions
of the models (see CLAM’s implementation). We further
use various GNN-based baselines, particularly HACT-Net
[27], the current SOTA approach for TRoIs classification
on the BRACS. Finally, we report the performance of the re-
cent self-supervised transformer approach, TransPath [37],
which is a hybrid transformer/convolution-based architec-
ture. ScoreNet reaches a new state-of-the-art weighted
F1-score of 64.4% on the BRACS TRoIs classification

task outperforming the second-best method, HACT-Net,
by a margin of 2.9% (Table 1). The results are reported
for two variants of ScoreNet, namely ScoreNet/4/1 and
ScoreNet/4/3, which use the four last [CLS] tokens of
the scorer and the last or the three last [CLS] tokens
from the coarse attention mechanism (aggregation stage).
ScoreNet/4/3 variant puts more emphasis on the features
available at (40×), whereas ScoreNet/4/1 is more biased
towards the global representation available at (5×) (with
a downscaling factor s = 8). One can observe that both
model variants significantly outperform the existing base-
line in terms of weighted F1-scores and for almost every
class, but DCIS. A potential explanation for this behaviour,
could be that the relevant features for the classification of
DCIS tissues are mostly texture-based, which favors CNN-
based architectures that are more sensitive to texture than
transformer-based models [24]. As it happens, the base-
lines outperforming ScoreNet for this class, all rely on a
CNN features extractor. More interestingly, the architec-
tural differences directly translate to differences in the clas-
sification results. ScoreNet/4/3 is more suitable for classes
where the discriminative features are at the cell level
than ScoreNet/4/1, which is more suited when the tissue
organization is the discriminative criterion. Nonetheless,
both of these architectures indeed benefit from the informa-
tion available at each scale. This observation is well sup-
ported by the classification results obtained when a linear
layer is trained independently on the scorer’s [CLS] tokens
(Lin. scorer’s [CLS] in Table 1) or using only the [CLS]
tokens from the aggregation stage (Lin. encoder’s [CLS]
in Table 1). Despite the difference in results between the
two model variants, it is clear that they both perform worse
when separated, which indicates that the representations of
both stages are complementary. In brief, ScoreNet allows
for an easily tuning to meet prior inductive biases on the
ideal scale for a given task.

ScoreMix & Data-Regime Sensitivity. We also show that
ScoreNet equipped with the proposed ScoreMix augmen-
tation achieves superior TRoIs classification performances
compared to CutMix [39] and SaliencyMix [34] augmenta-
tions for different data regimes, e.g., low-regime with only
10% of the data. Our proposed ScoreMix outperforms
SOTA methods with only 50% of the data and is on-par
or better than most baselines with only 20% of the data (Ta-
ble 2). We argue that these improvements are primarily due
to the generation of more coherent sample-label pairs un-
der the guidance of the learned semantic distribution. This
alleviates randomly cutting and pasting non-discriminative
patches, as is the case with CutMix. Our results further
support that image saliency used in the SaliencyMix is not
correlated with discriminative regions.

Generalization Capabilities. To gauge the generaliza-
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Table 1: Comparison with the prior art for TRoIs classification using weighted and class-wise F1-scores averaged over three indepen-
dent runs on the BRACS dataset. The best results are in bold. ScoreNet/x/y refers to an instance of ScoreNet using the recommendation
module’s last x [CLS] tokens and the last y tokens from the global coarse-grained attention.

Method Normal Benign UDH ADH FEA DCIS Invasive Weighted F1

M
IL

s

Agg-Penultimate (10×) [30] 48.7 ± 1.7 44.3 ± 1.9 45.0 ± 5.0 24.0 ± 2.8 47.0 ± 4.3 53.3 ± 2.6 86.7 ± 2.6 50.8 ± 2.6
Agg-Penultimate (20×) [30] 42.0 ± 2.2 42.3 ± 3.1 39.3 ± 2.0 22.7 ± 2.5 47.7 ± 1.2 50.3 ± 3.1 77.0 ± 1.4 46.8 ± 2.2
Agg-Penultimate (40×) [30] 32.3 ± 4.6 39.0 ± 0.8 23.7 ± 1.7 18.0 ± 0.8 37.7 ± 2.9 47.3 ± 2.0 70.7 ± 0.5 39.4 ± 1.9
Agg-Penultimate (10× + 20×) [30] 48.3 ± 2.0 45.7 ± 0.5 41.7 ± 5.0 32.3 ± 0.9 46.3 ± 1.4 59.3 ± 2.0 85.7 ± 1.9 52.3 ± 1.9
Agg-Penultimate (10× + 20× + 40×) [30] 50.3 ± 0.9 44.3 ± 1.2 41.3 ± 2.5 31.7 ± 3.3 51.7 ± 3.1 57.3 ± 0.9 86.0 ± 1.4 52.8 ± 1.9
CLAM-SB/S (10×) [21] 39.6 ± 4.6 45.5 ± 4.9 34.7 ± 2.0 30.4 ± 6.7 68.8 ± 1.9 64.3 ± 0.8 84.2 ± 2.6 53.9 ± 1.9
CLAM-SB/S (20×) [21] 50.2 ± 3.2 45.5 ± 1.8 32.2 ± 1.6 25.5 ± 4.2 69.6 ± 1.0 60.8 ± 2.7 84.2 ± 1.6 54.0 ± 0.7
CLAM-SB/S (40×) [21] 47.0 ± 5.2 38.8 ± 1.8 30.0 ± 7.7 29.4 ± 2.9 65.9 ± 1.2 52.2 ± 1.3 76.7 ± 1.6 49.9 ± 0.8
CLAM-SB/B (10×) [21] 46.4 ± 6.0 42.4 ± 2.8 33.1 ± 1.0 29.3 ± 2.1 67.4 ± 1.4 63.0 ± 4.5 84.4 ± 2.1 53.7 ± 1.9
CLAM-SB/B (20×) [21] 56.2 ± 1.2 42.3 ± 4.4 27.4 ± 2.4 30.1 ± 4.0 68.5 ± 2.1 60.9 ± 2.1 84.6 ± 1.2 54.3 ± 1.5
CLAM-SB/B (40×) [21] 42.8 ± 1.1 43.3 ± 2.8 33.8 ± 0.7 29.6 ± 3.6 64.1 ± 2.6 52.0 ± 3.8 78.8 ± 2.2 50.5 ± 0.9
CLAM-MB/S (10×) [21] 42.5 ± 3.3 43.4 ± 3.6 31.4 ± 3.2 32.1 ± 4.8 67.5 ± 2.2 59.7 ± 2.4 83.8 ± 2.0 52.9 ± 1.7
CLAM-MB/S (20×) [21] 56.6 ± 0.8 47.4 ± 0.9 33.5 ± 5.2 17.0 ± 1.5 70.3 ± 1.1 56.9 ± 1.6 84.9 ± 1.2 53.8 ± 0.6
CLAM-MB/S (40×) [21] 50.2 ± 7.7 39.3 ± 2.9 38.6 ± 2.4 26.5 ± 8.9 69.4 ± 2.6 54.1 ± 3.3 82.9 ± 2.5 52.9 ± 0.8
CLAM-MB/B (10×) [21] 39.7 ± 1.6 41.0 ± 2.6 34.5 ± 1.0 29.8 ± 4.7 66.8 ± 1.5 63.4 ± 1.0 83.5 ± 0.4 52.7 ± 0.9
CLAM-MB/B (20×) [21] 59.4 ± 2.0 47.7 ± 1.2 31.7 ± 0.7 20.1 ± 3.4 68.3 ± 0.4 59.9 ± 1.7 86.8 ± 0.6 54.8 ± 1.0
CLAM-MB/B (40×) [21] 47.3 ± 3.2 39.5 ± 1.5 38.8 ± 4.5 30.2 ± 6.3 68.2 ± 1.9 59.2 ± 2.9 82.1 ± 2.7 53.5 ± 1.3

G
N

N
s

CGC-Net [41] 30.8 ± 5.3 31.6 ± 4.7 17.3 ± 3.4 24.5 ± 5.2 59.0 ± 3.6 49.4 ± 3.4 75.3 ± 3.2 43.6 ± 0.5
Patch-GNN (10×) [2] 52.5 ± 3.3 47.6 ± 2.2 23.7 ± 4.6 30.7 ± 1.8 60.7 ± 5.3 58.8 ± 1.1 81.6 ± 2.2 52.1 ± 0.6
Patch-GNN (20×) [2] 43.9 ± 4.2 43.4 ± 3.2 19.5 ± 2.3 25.7 ± 2.9 55.6 ± 2.1 52.9 ± 1.8 79.2 ± 1.1 47.1 ± 0.7
Patch-GNN (40×) [2] 41.7 ± 3.1 32.9 ± 1.0 25.1 ± 3.7 25.6 ± 2.0 49.5 ± 3.5 48.6 ± 4.2 71.6 ± 5.1 43.2 ± 0.6
TG-GNN [26] 58.8 ± 6.8 40.9 ± 3.0 46.8 ± 1.9 40.0 ± 3.6 63.7 ± 10.5 53.8 ± 3.9 81.1 ± 3.3 55.9 ± 1.0
CG-GNN [26] 63.6 ± 4.9 47.7 ± 2.9 39.4 ± 4.7 28.5 ± 4.3 72.1 ± 1.3 54.6 ± 2.2 82.2 ± 4.0 56.6 ± 1.3
CONCAT-GNN 61.0 ± 4.5 43.1 ± 2.3 42.0 ± 4.7 26.1 ± 3.7 71.3 ± 2.1 60.8 ± 3.7 85.4 ± 2.7 57.0 ± 2.3
HACT-Net [26] 61.6 ± 2.1 47.5 ± 2.9 43.6 ± 1.9 40.4 ± 2.5 74.2 ± 1.4 66.4 ± 2.6 88.4 ± 0.2 61.5 ± 0.9

Ta
ns

fo
rm

er
s

TransPath [37] 58.5 ± 2.5 43.1 ± 1.8 34.9 ± 5.2 38.3 ± 6.0 66.9 ± 0.8 61.4 ± 1.2 85.0 ±1.4 56.7 ± 2.0
TransMIL (10×) [29] 38.7 ± 5.4 44.0 ± 2.9 30.5 ± 4.1 31.0 ± 11.8 68.1 ± 2.6 61.8 ± 1.9 87.3 ± 2.6 53.2 ± 1.1
TransMIL (20×) [29] 51.0 ± 0.1 44.5 ± 2.9 31.6 ± 2.1 31.4 ± 10.3 71.3 ± 4.8 63.0 ± 2.8 89.9 ± 1.6 56.2 ± 1.6
TransMIL (40×) [29] 47.6 ± 9.8 42.9 ± 3.6 41.5 ± 5.3 38.4 ± 5.9 72.7 ± 2.6 62.7 ± 2.9 87.1 ± 3.9 57.5 ± 0.7

Lin. encoder’s [CLS] 52.7 ± 9.4 35.6 ± 3.4 34.5 ± 6.7 25.1 ± 3.6 53.5 ± 9.8 38.7 ± 2.8 63.3 ± 7.6 43.8 ± 3.4
Lin. scorer’s [CLS] 57.5 ± 4.2 48.8 ± 5.5 42.7 ± 3.5 42.7 ± 7.4 74.3 ± 5.2 60.5 ± 2.4 90.6 ± 0.2 60.9 ± 3.1

ScoreNet/4/1 64.6 ± 2.2 52.6 ± 2.8 48.4 ± 2.2 47.4 ± 2.4 77.9 ± 0.7 59.3 ± 1.1 90.6 ± 1.5 64.1 ± 0.7
ScoreNet/4/3 64.3 ± 1.5 54.0 ± 2.2 45.3 ± 3.4 46.7 ± 1.0 78.1 ± 2.8 62.9 ± 2.0 91.0 ± 1.4 64.4 ± 0.9

Table 2: Comparison with SOTA Mixup-based augmenta-
tion methods [39, 34] and the standard random augmentation
strategy using various fractions of the BRACS dataset and identi-
cal distribution for the bounding boxes’ sizes.

Dataset Random Aug. CutMix [39] SaliencyMix [34] ScoreMix

BRACS 10% 52.9 ± 2.4 53.7 ± 2.9 53.5 ± 2.7 55.9 ± 1.9
BRACS 20% 57.6 ± 1.8 58.0 ± 1.4 57.8 ± 1.0 58.7 ± 0.8
BRACS 50% 60.4 ± 1.8 61.2 ± 2.5 59.8 ± 2.4 62.3 ± 0.6
BRACS 100% 62.7 ± 1.6 63.1 ± 1.1 62.8 ± 1.2 64.0 ± 0.7

tion capabilities of ScoreNet compared to other current
SOTA methods, e.g., HACT-Net [26], we leverage two
external evaluation datasets, namely CAMELYON16 and
BACH. After training on the BRACS dataset, the weights
of ScoreNet are frozen. To evaluate the quality of the
learned features, we either train a linear classifier on top
of the frozen features or apply a k-nearest-neighbor clas-
sifier (k = 1) without any finetuning. We perform strat-
ified 5-fold cross-validation. For HACT-Net, we use the
available pre-trained weights and follow the implementa-
tion of [27]. As HACT-Net sometimes fails to generate em-
beddings and to have a fair comparison, we only evaluate
the samples for which HACT-Net could successfully pro-

duce embeddings (around 95% of the BACH and 80% of
the CAMELYON16 datasets). Experimental results in Ta-
ble 3 demonstrate the superiority of ScoreNet in learning
generalizable features. It further demonstrates the robust-
ness of ScoreNet to changes in magnification. Indeed, the
model is pre-trained on BRACS (40×), while BACH’s im-
ages were acquired at a magnification of 20×. Furthermore,
the CAMELYON16 dataset contains WSIs collected from
lymph nodes in the vicinity of the breast, while BRACS
contains WSIs collected by mastectomy or biopsy (i.e., di-
rectly in the breast). The excellent knowledge transfer be-
tween the two datasets highlights the transferability of fea-
tures learned by ScoreNet in various use cases.

Interpretability? To probe the internal behavior of
ScoreNet, we finetune the model on CAMELYON16 im-
ages using image-level labels only. At test time, we scru-
tinize the learned semantic distributions of the tumour-
positive images. The semantic distributions depicted in
Fig. 4 seems to indicate that ScoreNet learns to identify
the tumour area and interpret cancer-related morpholog-
ical information, while never having been taught to do
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Table 3: Generalization capabilities of ScoreNet compared to
HACT-Net trained on BRACS and evaluated on the BACH’s anno-
tated images and 1000 images from CAMELYON16, respectively.
The weighted F1-scores over a stratified 5-fold cross-validation
fold is reported.

BRACS→ BACH BRACS→ CAMELYON16

Linear k-NN Linear k-NN

TransPath [37] 61.8 ± 4.8 72.0 ± 2.9 58.1 ± 4.8 69.9 ± 2.5
TransMIL [29] 46.5 ± 10.2 74.0 ± 4.8 59.8 ± 3.0 60.8 ± 5.3
CLAM-SB/S [21] 53.3 ± 13.0 69.8 ± 4.5 56.7 ± 1.9 68.0 ± 3.5
CLAM-SB/B [21] 57.5 ± 3.6 75.3 ± 3.1 55.5 ± 4.1 68.0 ± 1.5
HACT-Net [26] 40.2 ± 2.8 32.8 ± 5.8 60.0 ± 4.6 61.0 ± 4.2

ScoreNet 73.4 ± 3.5 76.9 ± 6.1 81.1 ± 3.5 77.0 ± 4.6

Figure 4: ScoreNet Interpretability. Visualization of the seman-
tic distribution, overlaid with the tumour ground-truth mask on a
few samples of the CAMELYON16 dataset. The semantic distri-
butions are obtained from the recommendation stage, i.e., at low-
resolution. ScoreNet is pre-trained on BRACS and finetuned on
CAMELYON16.

so. Quantitatively, we observe that, on average, 74.6% of
the 20 patches selected from positive images are tumour-
positive. Furthermore, we report an average image-wise
AuC of 73.6% when interpreting the probability of the rec-
ommendation stage to sample a patch as the probability of
it being tumour-positive.

Ablation on Efficacy of ScoreNet. The critical aspect
of ScoreNet is its improved efficiency compared to other
transformer-based architectures. This improvement is due
to the choice of a hierarchical architecture and the exploita-
tion of redundancy in histology images. At inference time,
we expect a gain in throughput compared to the vanilla
ViT of the order of the squared downscaling factor, s, (see
Supplementary Material), typically s2 = 64, which is
well reflected in practice, as shown in Table 4. Due to the
self-supervised pre-training, ScoreNet does not require any
stain normalization or pre-processing, unlike its competi-
tor HACT-Net. Similarly, ScoreNet yields higher through-
put than other SOTA efficient transformers architectures,

Table 4: Inference throughput comparison of ScoreNet,
HACT-Net, and SOTA transformer-based architectures. All
models were tested with the same image size and a single GeForce
RTX 3070 GPU.

Image size Throughput (im./s) Pre-processing

HACT-Net [26] 1536× 2048 4.95e-4 ± 1.40e-3 ✓
Vanilla ViT [10] 1536× 2048 3.8 ± 0.1 -
SwinTransformer [20] 1536× 2048 76.8 ± 0.4 ✗
TransPath [37] 1536× 2048 97.6 ± 3.1 ✗

ScoreNet 1536× 2048 335.0 ± 7.9 ✗

namely TransPath [37], and SwinTransformer [20], with
throughput around 3× and 4× higher than these methods.
The latter observation is interesting considering the linear
asymptotic time and memory cost of the SwinTransformer,
which is probably a consequence of the fact that Swin-
Transformers process a lot of uninformative high-resolution
patches in the first layer(s).

Ablation on Shape Cues and Robustness. We investi-
gate ScoreNet’s ability to learn shape-related features. To
do so, we study shape cues extracted by the recommenda-
tion model via the concatenated [CLS] tokens (see Fig. 2).
Consequently, we implement shape removal by applying a
random permutation of the downscaled image’s tokens at
test time. With this setup, a weighted F1-score of 59.8 ±
0.8% is reached, representing a significant drop in perfor-
mance compared to 64.4 ± 0.9% without permutation. It
demonstrates that i) the recommendation stage’s concate-
nated [CLS] tokens contribute positively to the overall rep-
resentation and ii) the latter is not permutation invari-
ant and thus shape-dependent. In a second experiment,
we show the whole recommendation stage is also shape-
dependent. To that end, we repeat the same experiment, but
the patches are extracted from the permuted images, reach-
ing a weighted F1-score of 59.5± 0.6%. We further observe
that for a given image, the overlap of the selected patches
with and without permutation is, on average, only 15.7%,
which indicates that the semantic distribution learned by
ScoreNet is shape-dependent.

5. Conclusion and Future Work

We have introduced ScoreNet, an efficient transformer-
based architecture that dynamically recommends discrimi-
native regions from large histopathological images, yield-
ing rich generalizable representations at an efficient com-
putational cost. In addition, we propose ScoreMix, a new
attention-guided mixing augmentation that produces coher-
ent sample-label pairs. We achieve new SOTA results on the
BRACS dataset for TRoIs classification and demonstrate
ScoreNet’s superior throughput improvements compared to
previous SOTA efficient transformer-based architectures.
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