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Abstract

Precision Agriculture and especially the application of
automated weed intervention represents an increasingly es-
sential research area, as sustainability and efficiency con-
siderations are becoming more and more relevant. While
the potentials of Convolutional Neural Networks for detec-
tion, classification and segmentation tasks have success-
fully been demonstrated in other application areas, this rel-
atively new field currently lacks the required quantity and
quality of training data for such a highly data-driven ap-
proach. Therefore, we propose a novel large-scale image
dataset specializing in the fine-grained identification of 74
relevant crop and weed species with a strong emphasis on
data variability. We provide annotations of labeled bound-
ing boxes, semantic masks and stem positions for about
112k instances in more than 8k high-resolution images of
both real-world agricultural sites and specifically cultivated
outdoor plots of rare weed types. Additionally, each sam-
ple is enriched with an extensive set of meta-annotations
regarding environmental conditions and recording param-
eters. We furthermore conduct benchmark experiments for
multiple learning tasks on different variants of the dataset
to demonstrate its versatility and provide examples of use-
ful mapping schemes for tailoring the annotated data to
the requirements of specific applications. In the course of
the evaluation, we furthermore demonstrate how incorpo-
rating multiple species of weeds into the learning process
increases the accuracy of crop detection. Overall, the eval-
uation clearly demonstrates that our dataset represents an
essential step towards overcoming the data gap and promot-
ing further research in the area of Precision Agriculture.

1. Introduction

In times of worldwide population growth, the agricul-
tural industry faces a growing demand for food crops, while
reducing its impact on the environment and human health

Figure 1. Representative annotation example with semantic masks
(top right), bounding boxes (bottom left) and stem positions (bot-
tom right) depicting 4 of the 74 crop and weed species.

is simultaneously gaining priority. One of the tasks offer-
ing the highest potential is the efficient removal of weeds,
which otherwise compete with cultivated crops for re-
sources such as sunlight, water, space and nutrients, thereby
significantly reducing their overall yield [25, 9]. Instead of
the commonly used technique of applying herbicides at a
large scale to the entire cultivated area, Precision Agricul-
ture, especially in the form of automatic localization and
classification of crops and weeds presents the opportunity to
significantly increase both the efficiency and sustainability
of the process by precisely applying herbicides to specific
plants or even removing weeds mechanically without the
use of chemicals. Furthermore, similar methods can be used
for other tasks such as growth tracking, automatic harvest-
ing and even recognizing plant pests or diseases [34, 32].

Both Convolutional Neural Networks (CNNs) [14, 11,
21] and more recently emerging Vision Transformers [3,
37] present highly promising approaches for Precision-
Agriculture tasks such as segmentation, fine-grained classi-
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fication as well as plant and stem detection. However, their
robust application requires an extensive amount of highly
variable annotated training data, which is not yet available
in this research area. Furthermore, little emphasis is placed
on the relevance of combinations of multiple crops and es-
pecially weeds, which in our opinion should be exploited to
increase detection performance in real-world scenarios.

To address this research need, our work proposes the fol-
lowing contributions:

• We provide a novel large-scale dataset for Precision
Agriculture, consisting of highly variable real-world
images and multi-modal annotations for a rich set of
crop and weed categories.1

• We demonstrate its versatility by training and evaluat-
ing multiple learning tasks including object detection,
stem localization and semantic segmentation.

• We introduce our concept of data ablation to efficiently
specialize the dataset to different application require-
ments. Thereby, we prove our hypothesis that crop de-
tection significantly benefits from incorporating weed
classes in addition to the relevant crops.

2. Related work
CNNs have been successfully applied in research do-

mains such as Natural Language Processing [35] and Au-
tonomous Driving [24]. Their structure specialized on pat-
tern recognition enables them to learn rich sets of visual
representations of defined image content. Besides advances
in network architectures and parallel processing, their in-
creasing performance is facilitated by continuous progress
regarding quality and quantity of available datasets. In con-
trast, for a successful integration into systems for crop and
weed manipulation, the scarcity of training and test data
as well as the heterogeneity of input modalities still pose
a challenge regarding the application of Deep Learning.
While there are promising initial approaches demonstrating
the potential of CNNs in Precision Agriculture [23, 11, 14],
especially using transfer learning [4, 12], the amount and
variability of available datasets is still not adequate for their
robust and generalized adaptation.

One of the first larger datasets in this area is the Plant
Seedlings dataset [10], which focuses on classifying and
segmenting 4750 extracted patches of 12 plant species and
an additional set of images captured in the wild. How-
ever, since most samples were recorded under laboratory
conditions, data diversity, especially regarding variations of
background and lighting conditions, is limited. A large-
scale and well-designed dataset is CropDeep [38], which

1Images and annotations of the dataset are available for academic use
at https://github.com/cropandweed/cropandweed-dataset

provides 49k instances for 31 classes of fruits and vegeta-
bles annotated for detection and classification and captured
in a greenhouse environment for the purpose of automating
the picking process. While the data contains a wide range
of background variation, the absence of outdoor crop fields
and the bias towards ripe fruits limits its applicability for
weed intervention systems. Another relevant dataset was
published by [31], containing 6 crop and 8 weed species.
Besides the laboratory setup, additional image data was
recorded at three locations under field conditions resulting
in a total of about 8k annotated instances in 1118 images.
Furthermore, there are small-scale datasets focusing on spe-
cific crop types, such as the DeepWeeds dataset [26], which
provides annotations for 8 types of Australian weeds anno-
tated at image level, or the Carrot-Weed dataset [16]. More-
over, a small number of consumer-level plant categorization
apps has emerged [22, 33], which however mostly focus
on late growth stages. While most contributions rely on
RGB image data, there are a few works presenting multi-
spectral images [7, 1, 19] as well as synthetic-data genera-
tors for crops and weeds [2, 30]. In general, most of these
datasets focus on either annotating bounding boxes or se-
mantic masks, but rarely provide both [8], while stem detec-
tion is only addressed by few contributions such as [21]. In
conclusion, most datasets have strong limitations concern-
ing their application areas, input modalities and annotation
types. To the best of our knowledge, there is currently no
dataset in the research area of Precision Agriculture compa-
rable to our work regarding the number as well as variability
of annotated instances and plant classes for detection, clas-
sification, stem localization and semantic labeling.

3. The CropAndWeed dataset
Our proposed dataset provides a vital step towards over-

coming the data gap in Precision Agriculture. The image
data along with multi-modal annotations is available for
academic research and intended to be enhanced in collab-
oration with the community to gradually increase diversity
by adding samples collected all over the world.

3.1. Design considerations

Over a period of four years, we recorded a rich set of im-
age data focusing on a variety of crops and weeds in early
growth stages. On the one hand, we collected and anno-
tated samples (Application Set) from several hundred com-
mercially used cultivation areas in Austria, which represent
realistic validation and test data for practical applications.
By incorporating data from diverse locations, this set cov-
ers a high variety in soil types as well as typical combina-
tions and distributions of plants. The second part (Experi-
mental Set) depicts a wide selection of species specifically
grown in a controlled outdoor environment to efficiently en-
rich the dataset with samples of underrepresented classes.
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Figure 2. Representative selection of all crop and weed varieties included in the dataset.

Figure 3. Representative illustrations of parameters defined for
each recording session. Categorization is based on the distinctive-
ness of visual features, such as the presence of cracks for Moisture
or the hardness of shadows in case of Lighting.

Contrary to the former set, these crops and weeds were care-
fully selected and planted on standardized plots similar to
conventional cultivation areas but including only a defined
species or combination of plants each. While this approach
requires higher manual effort for irrigation and removal of
unintended vegetation, it facilitates an unambiguous identi-
fication of species even at early growth stages. Furthermore,
as these stages are most relevant for tasks such as automatic
monitoring and weed removal, cultivating plants for the sole
purpose of dataset creation gives us the opportunity to trig-
ger multiple growing periods per season by replacing them
significantly earlier than the time they would usually be har-
vested for commercial purposes.

During data acquisition, special emphasis was placed on
achieving a high degree of variability to include most condi-
tions and scenarios realistically encountered during regular
farming operations. To cover a broad range of lighting and
weather conditions as well as varying soil types, image data
was collected over a period of four years between March
and July. Each capturing session refers to a unique agricul-
tural site or a specific experimental plot at a specific time
and yields an average of only 20 images at intervals of at
least three meters to avoid redundancies.

To cover a range of crop and weed species expected to
be relevant for current and future applications, we selected
a set of 74 plant classes in total, 16 representing species of
crops, while the remaining 58 are typically not cultivated
intentionally and therefore considered as weeds. A repre-
sentative composition of instances for these classes illustrat-
ing the variability of the dataset regarding species and en-
vironmental conditions is presented in Figure 2. The spec-
ification furthermore contains the fallback class Vegetation
for instances which cannot be unambiguously identified in
real-world application settings or multi-species experimen-
tal plots due to their size (< 162 pixels) or appearance, since
their bounding boxes and segmentation masks are relevant
for testing purposes. The full list and description of plant
species is available in the supplementary material.

Apart from plant types and their combinations, we aim
for a high number of variations in daytime, season, light-
ing conditions, soil granularity and moisture, as well as
different combinations of crop and weed species. Further-
more, the dataset is enriched by negative samples contain-
ing no visible vegetation, as well as background clutter in
the form of rocks, straw, fertilizer or trash. To the best of
our knowledge, we surpass any existing datasets in this do-
main in terms of variability and flexibility, rendering the
CropAndWeed dataset a well-suitable benchmark for future
approaches in the area of automated crop and weed manip-
ulation for Precision Agriculture.

3.2. Data acquisition and annotation

Data is collected using a semi-professional SLR with a
full-frame sensor to meet our requirements regarding mo-
bility and image quality. All images are manually captured
in auto-exposure mode with a constant focal length of 50
mm from an approximate top-down perspective at a height
of about 1.1 meters. For each capturing session, we docu-
ment relevant environmental parameters encountered at the
time of recording, as illustrated in Figure 3. They are es-
sential for identifying data gaps during dataset creation and
present the opportunity to evaluate the robustness of CNNs
against specific environmental conditions. Additionally, the
meta-annotation includes time stamps, GPS coordinates as
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well as selected camera parameters. All these inputs are
exploited to specifically select a representative set of im-
ages for fine-grained annotation. Table 1 gives a statistical
overview of both subsets.

Exp App Total

Sessions Recorded 1 363 738 2 101
Annotated 665 264 929

Images Recorded 22 597 21 217 43 814
Annotated 4 990 3 044 8 034

Instances Annotated 66 877 45 076 111 953

Table 1. Overview of recorded and annotated image data at experi-
mental cultivation plots (Exp) and conventional agricultural appli-
cation sites (App).

To increase annotation efficiency, each image is automat-
ically pre-segmented into soil and vegetation pixels. Ini-
tially, this was achieved using a traditional method of color-
based thresholding [27], which was later replaced by our
CNN-based segmentation using preliminary models trained
on the annotated data. Thereby, manual effort is reduced
to assessing and refining these masks while simultaneously
assigning the target classes. Similarly, the resulting mask
is used to automatically generate bounding boxes for each
plant instance, which are manually refined and enhanced
with annotations of each plant’s stem position. To ensure
consistent annotation quality, data batches with significant
ambiguity or high numbers of plants are reviewed by vot-
ing of multiple annotators as an additional validation step.
The resulting annotations, visualized in Figure 1, provide
a thorough foundation for training and evaluating multiple
learning tasks to precisely guide plant-intervention systems,
such as detection, sub-species classification, semantic and
panoptic segmentation as well as anchor-point regression.

4. Methodology
To demonstrate the applicability of our dataset for crop

and weed manipulation, we train and benchmark multiple
learning tasks. For this purpose, we define multiple dataset
variants by mapping the original labels to varying sets of
super-classes specialized to different application scenarios.

4.1. Data ablation

The original label specification containing 74 classes is
intended to cover a wide range of plants expected to be rele-
vant in current and future applications. While some of them
are not yet sufficiently represented for training them sepa-
rately, they can be combined to super-classes. Since identi-
fying effective mappings requires a certain level of expertise
and empirical analysis, this section provides a basis for tai-
loring the dataset to the cultivated crops and expected weeds
at a specific site.

Figure 4. Distribution of crop and weed classes in the Fine24
dataset variant.

The coarsest possible dataset variant (Coarse1) consists
of only two classes differentiating between soil and any kind
of vegetation, therefore providing pure localization of all
available crop and weed species. All other dataset variants
presented below provide an additional classification of plant
instances at varying levels of granularity and are selected to
highlight the resulting flexibility as well as the benefit of in-
corporating varieties of weeds into the training process. The
most fine-grained variant Fine24 maps the original labels
into 8 crop and 16 weed classes based primarily on botani-
cal categorization and, in rare cases, visual similarity. The
distribution of annotated object instances and their sizes for
each class of this base variant is shown in Figures 4 and 5.
In total, crops contribute about 18.7% of all instances and
weeds 51.7%, while the remainder belongs to the Vegetation
class, which holds all Tiny instances of the dataset. The dis-
tribution of crop and weed classes is closely related to their
occurrence frequency in real-world conditions, since a large
part of the data was captured at commercially used cultiva-
tion areas. However, as discussed in Section 3.1, strongly
underrepresented weed classes are additionally grown for
the creation of this dataset, thereby ensuring sufficient rep-
resentation for training and partially mitigating the long-
tailed characteristic of the dataset. In general, weeds tend
to be more frequent but smaller than crops, rendering them
the most challenging target for annotation as well as train-
ing, especially regarding class assignment.
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Figure 5. Normalized size distribution of crop and weed instances in the Fine24 dataset variant clustered by bounding box area in pixels
for an image size of 1920x1088 pixels: Large > 1282 > Medium > 322 > Small > 162 > Tiny.

The presented classes can be condensed into other vari-
ants by mapping all types of weeds into one super-class
(CropsOrWeed9) and furthermore using only a single class
for crops as well (CropOrWeed2). Additionally, we in-
cluded variants containing each crop either as a single class
or in combination with all other samples mapped into one
super-class and denoted these ensembles of multiple mod-
els as Crop1 and Crop2, respectively. The exact mappings
of all annotated labels for each of the resulting 20 dataset
variants are provided in the supplementary material.

4.2. Learning tasks

The defined dataset variants are used to train and com-
pare specialized models for multiple learning tasks and ap-
plication scenarios. For all experiments, the same constant
randomly-generated split between training, validation and
test data of 70:15:15 is applied to ensure independence even
when combining learning tasks. Training is conducted on a
system with two NVIDIA RTX 3090 GPUs. Throughout all
experiments, we use stochastic gradient descent [15] for op-
timization, since we experienced unstable convergence with
Adam when using PyTorch [28]. Standard data augmen-
tation techniques such as random scaling and cropping or
normalization are applied and the model with best valida-
tion performance is selected for evaluation.

Detection For object detection, we experimented with
both RetinaNet [17] and YOLOv5 [13] (release 6.0) archi-
tectures on the Fine24 dataset variant with the most rele-
vant results presented in Table 2. Due to its superior per-
formance, we chose YOLOv5l6 for conducting the bench-
mark experiments for all dataset variants and selected the
input size of 1280x1280 pixels, since increasing the dimen-
sions does not yield a significant performance gain consid-
ering the increase in training time. After tuning the hyper-
parameters, we settled on a linear learning rate of 0.1 and a
batch size of 16. We use the pre-trained models provided by
[13] for initialization and train each variant for 50 epochs.

Segmentation Segmentation experiments are performed
for three coarse-grained variants of the dataset. Since seg-
mentation is intended to be combined with detection in

YOLOv5s YOLOv5m YOLOv5l
1280² 47.4 51.7 54.6
1920² 51.6 52.3 56.4

Table 2. Detection results as AP by model architecture and input
resolution in pixels on the validation set of the Fine24 variant.

real-time for practical applications, we selected an efficient
DLA-34 model inspired by [36]. We train from scratch with
a batch size of 4, a crop size of 672 pixels, a learning rate
of 0.001 and choose the best model after 30 epochs.

Stem Localization We formulated stem localization as a
detection problem, for which we applied a pre-trained SSD-
300 single shot detector [20] with a VGG-16 [29] backbone
for initialization. We used the Coarse1 variant of the dataset
for training, since the results are intended to be combined
with our detection module in real-time and therefore do not
require redundant fine-grained classification. To capture the
context around each stem location, we sample patches of
constant size around the annotated anchor points. After ex-
perimenting with multiple configurations, we settled on a
patch size of 81x81 pixels, as well as an input image size of
300x300 pixels. We trained with a batch size of 80 images
and an initial learning rate of 0.0001, which is reduced by a
factor of 10 before the 15th and 30th epochs. The best model
was selected based on validation results after 50 epochs.

5. Evaluation

To establish a benchmark for the applicability of our
dataset in different scenarios, we conduct experiments on all
dataset variants defined in Section 4.1 for multiple learning
tasks and evaluate their results based on established met-
rics. The test set representing 15% of all images is com-
pletely independent of the training and validation data for
all experiments.

5.1. Detection

Detection models are trained on each dataset variant and
evaluated on the entire test set. As a performance met-
ric, we report the established average precision (AP) as de-
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scribed by [18], which relies on class-specific intersection-
over-union (IoU) measures. As opposed to using a single
threshold for identifying correct matches, as applied for in-
stance by Pascal VOC [6], this more challenging metric cal-
culates an average of the results for 10 IoU thresholds in the
range of 0.5 to 0.95. While instances of the Vegetation class
are not explicitly included for training the models, they are
part of the test set and used to ignore any detections match-
ing them during evaluation. This is based on the idea that
detected plants which cannot be classified by human anno-
tators should count as neither false nor true positives, as
their correctness cannot be ensured. For the same reason,
we only evaluate detections larger than 162 pixels, which is
the minimum size for assigning classes during annotation.
Table 3 shows the overall performance of the models trained
on each dataset variant, as well as their scores after filtering
the test data and detection results by instance size.

S M L Overall
Fine24 33.1 57.4 72.9 55.4
CropsOrWeed9 32.2 71.6 87.0 71.5
Crop2 36.1 67.4 84.8 63.8
Crop1 18.5 47.9 65.1 57.3
CropOrWeed2 33.0 61.1 82.4 60.7
Coarse1 29.7 59.0 84.2 55.2

30.4 60.7 79.4 60.6

Table 3. Detection performance (AP) by instance size of models
trained on each dataset variant, with Crop[2/1] denoting the aver-
age of the respective variants for each of the 8 crop classes. Size
thresholds are analogous to Figure 5.

Not surprisingly, detection performance significantly in-
creases with the size of instances. However, small instances
with sizes between 162 and 322 pixels can already be clas-
sified with promising robustness, while tiny instances be-
low this threshold were previously assigned to the Vegeta-
tion class as described in Section 3.1 and therefore not in-
cluded in the training data. Overall detection performance
is lowest for the most coarse-grained Coarse1 and the most
fine-grained Fine24 variants, followed by the 8 individual
models trained on only one crop species each with their av-
erage denoted as Crop1. Between these edge cases, perfor-
mance increases with the number of incorporated classes.
However, since the identification of cultivated crop types
is usually more relevant for practical applications than the
differentiation between individual types of weeds included
in these overall measures, Table 4 provides more detailed
per-class detection results.

The model trained and evaluated on the Coarse1 vari-
ant of the dataset addresses the most basic task, since its
aim is solely to differentiate any kind of plant annotated
in the dataset from the background. Therefore, it provides
only a single overall AP value and limited applicability in

practice. A slightly more difficult task is presented by Cro-
pOrWeed2 which differentiates between crops and weeds
as two opaque classes. Despite their visual similarity, they
are still separated by the model with high accuracy. How-
ever, practical applications in Precision Agriculture usually
require a more fine-grained identification of specific crop
types. This feature is addressed by the rows labeled Crop1
and Crop2, which represent the performance of multiple
models trained to identify one type of crop each. In the
case of the former variants, training data exclusively con-
tains instances of the relevant class, representing the most
straight-forward approach to the learning task. Therefore,
the models perform rather poorly when they are confronted
with samples of other plants in the test data by producing a
high number of false-positive detections. The Crop2 mod-
els, on the other hand, mitigate this issue by incorporating a
second class consisting of the samples of all remaining plant
instances and thereby in most cases significantly improving
the scores for the respective crop.

However, evaluating the CropsOrWeed9 model clearly
shows that the best results can be achieved by training all
relevant crop classes jointly instead of specializing separate
models to each one, which results in a more fine-grained
differentiation between the individual crops and the single
class holding all weed types. Additionally dissolving the
weed class into separate species, as in the Fine24 dataset
variant, can improve scores even further for more visually
distinct crops as visible for the Bean and Pumpkin class.
Furthermore, this variant increases the discriminating ca-
pacity for weed types, considering that their score now rep-
resents an average AP over 15 weed species as opposed to
the single class in CropsOrWeed9.

In conclusion, the results clearly support our initial hy-
pothesis that the incorporation of other species, especially
weeds, increases the performance of models for identifying
specific types of crops.

5.2. Segmentation

Segmentation experiments are evaluated using mean in-
tersection over union (mIoU) as introduced by [5]. Table 5
shows the results for all selected dataset variants.

Segmentation performance drastically increases with in-
verse proportion to the number of classes. The overall dif-
ferentiation of plant instances from soil areas works simi-
larly well for all models, as visible in the score for the Soil
class. Assigning individual categories of crops and weeds,
however, seems to represent a more challenging task due
to their visual similarity and under-representation of indi-
vidual species compared to soil pixels. This effect is es-
pecially visible for the CropsOrWeed9 variant, where indi-
vidual crop species produce extremely low IoUs, while suf-
ficiently represented classes perform reasonably well with
IoUs of up to 74.1% (Maize), resulting in the averaged
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Maize Sugar beet Bean Pea Sunflower Soy Potato Pumpkin Weed
Fine24 76.5 79.0 82.7 66.9 80.6 53.9 70.8 89.2 45.6
CropsOrWeed9 76.1 81.1 73.6 67.5 81.4 55.0 74.6 88.7 45.7
Crop2 77.6 79.5 75.1 67.3 78.5 54.1 65.4 87.5 -
Crop1 75.0 74.4 68.3 29.4 62.9 52.8 21.2 74.3 -
CropOrWeed2 72.6 48.8

Table 4. Detection performance (AP) of models trained on each dataset variant, including results for each crop class, as well as the average
of weed classes, where applicable. Note that the lines for Crop[2/1] consolidate the scores of all respective crop-specific variants, which
only yield results for one specific class each.

Crop Weed Soil Overall
CropsOrWeed9 19.9 47.6 99.5 55.7
CropOrWeed2 70.0 27.1 99.5 65.5
Coarse1 76.0 99.4 87.7

Table 5. Segmentation performance on test sets as per-class IoU
and overall mIoU with the Crop score averaged across all 8 crop
species for CropOrWeed9.

value of 19.9% in total. The best results are achieved by
the Coarse1 variant, which solely differentiates any kind
of plant from the background soil. Apart from providing a
promising first benchmark for semantic segmentation, the
resulting models can directly be used for pre-segmenting
plant instances prior to the annotation stage, as described
in Section 3.2. Furthermore, they are combined with the
results of detection models to delineate the exact shape of
detected instances.

5.3. Stem Localization

For practical applications, the stem-localization mod-
ule is intended to be combined with object-detection re-
sults by generating a fixed number of hypothesis for each
frame which are then pruned to select one for each de-
tected bounding box based on their scores. Therefore, the
evaluation was conducted on the test set of Coarse1 with
the ground-truth bounding boxes simulating perfect detec-
tion results to evaluate pure stem-localization performance.
Since the entire dataset contains an average of 13.9 in-
stances per image, the number of stem hypothesis was set to
100 to ensure sufficient results even for images containing
high numbers of plants.

Using this setup, the model correctly assigns stem points
to an average of 73.1% of samples across all test images.
The mean euclidean distances between the assigned loca-
tions and corresponding annotations across all frames is
29.1 pixels or 25.5% normalized to the respective bounding-
box sizes. Considering the variety of stem appearances, the
detection rate seems quite promising using this extremely
efficient model. Nevertheless, the approach would benefit
from incorporating multiple scales to improve localization
accuracy across the inherently broad range of plant sizes.

5.4. Discussion

Training and evaluating detection models on all dataset
variants specified in Section 4.1 clearly showed that best re-
sults for identifying individual crop types are achieved by
training them jointly and in combination with a single or
multiple classes of weeds, as opposed to creating models
specialized to a single crop. The worst performance re-
sults from omitting weeds altogether in the training process.
Therefore, our dataset is well suitable for specializing mod-
els to the requirements of specific applications in the re-
search area of Precision Agriculture by creating specialized
dataset variants including all relevant crops and weeds ex-
pected to be encountered at the respective site.

Furthermore, the multi-modal annotations facilitate ef-
ficient combinations of multiple learning tasks as well as
dataset variants. Detection can be enriched by incorporat-
ing the results of segmentation and stem localization to pro-
vide even more thorough scene understanding. We demon-
strate this approach by applying our binary-segmentation
and stem-localization models to the output of the Fine24
detection experiments, as presented in Figure 6.

Combining detection with these modalities provides a
more accurate pixel-wise segmentation of each detected
plant instance with the corresponding label extracted from
the detection result. Moreover, stem localization is per-
formed inside the detected bounding boxes, resulting in a
rich set of information about each frame which is applica-
ble for multiple tasks in the field of Precision Agriculture.

6. Conclusion

We introduced a novel large-scale multi-modal dataset
for crop and weed manipulation in the context of Preci-
sion Agriculture consisting of more than 8k high-quality
images and about 112k annotated plant instances. In addi-
tion to bounding boxes, segmentation masks and stem posi-
tions, annotations include a fine-grained classification into
16 crop and 58 weed species, as well as extensive meta-
annotations of relevant environmental and recording param-
eters. Special emphasis was placed on high data variability
and the representation of rare types of weeds, which were
specifically cultivated for the purpose of dataset creation.
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Figure 6. Representative selection of combined qualitative results on the test set for detection, segmentation and stem localization. Top rows
show detection results of the Fine24 model (green: correct detection (TP), orange: correct localization, but incorrect class, red: incorrect
detection (FP), blue: undetected ground-truth object (FN). The detections are used as inputs for stem localization (yellow) and the Coarse1
segmentation model. Results of the latter are demonstrated in the bottom rows, with colors corresponding to the detected classes.

We demonstrated the resulting flexibility and versatility
by training and benchmarking CNNs for the tasks of object
detection, stem localization and segmentation on multiple
variants of the dataset and performing a thorough evaluation
regarding different crop species as well as instance sizes.
Based on the results we were able to showcase how our
approach can be tailored to specific application scenarios
and prove our hypothesis that incorporating multiple weed
species into the training dataset improves detection perfor-
mance for the relevant crops. Furthermore, we showcased
the potential of flexibly combining multiple learning tasks
trained on variants of the dataset.

While the results presented in this work are highly
promising, we plan to further enrich the dataset in coopera-
tion with the research community to increase data variabil-
ity with samples from locations all over the world and ad-
ditional plant classes. Furthermore, we intend to add multi-

object tracking to increase robustness by re-identifying indi-
vidual plant instances over time. This implies the incorpora-
tion of different input modalities such as continuous image
sequences captured by UAVs and other mobile platforms to
increase recording efficiency and further facilitate the appli-
cability for a wide range of applications.
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