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Abstract

Recent years have seen a surge in research on combin-
ing deep neural networks with other methods, including
decision trees and graphs. There are at least three advan-
tages of incorporating decision trees and graphs: they are
easy to interpret since they are based on sequential deci-
sions, they can make decisions faster, and they provide a
hierarchy of classes. However, one of the well-known draw-
backs of decision trees, as compared to decision graphs, is
that decision trees cannot reuse the decision nodes. Never-
theless, decision graphs were not commonly used in deep
learning due to the lack of efficient gradient-based training
techniques. In this paper, we fill this gap and provide a gen-
eral paradigm based on Markov processes, which allows for
efficient training of the special type of decision graphs, which
we call Self-Organizing Neural Graphs (SONG). We provide
a theoretical study on SONG, complemented by experiments
conducted on Letter, Connect4, MNIST, CIFAR, and TinyIm-
ageNet datasets, showing that our method performs on par
or better than existing decision models.

1. Introduction

Neural networks (NNs) and decision trees (DTs) are two
exceptionally powerful machine learning models with a rich
and successful history in machine learning. However, they
typically come with mutually exclusive benefits and limi-
tations. NNs outperform conventional pipelines by jointly
learning to represent and classify data [15]. However, they
are widely opaque and suffer from a lack of transparency and
explainability [30]. On the other hand, it is easy to explain
predictions of DTs because they depend on a relatively short
sequence of decisions [38]. However, they usually do not
generalize as well as deep neural networks [8]. As a result, a
strong focus is recently put on joining the positive aspects of

both models [2, 8, 13, 23, 24, 34, 36, 38]. There are meth-
ods that combine NNs and soft decision trees with partial
membership in each node [8, 13, 24, 34]. Others use trees to
explain NNs [5, 39] or to obtain their optimal hierarchical
structure [2, 23, 36]. Finally, some models replace the final
softmax layer of a neural network with a hierarchical binary
decision tree [20, 21, 38].

While decision trees can increase the performance and
interpretability of NNs, they usually suffer from exponential
growth with depth [32], repeating nodes [8], and subopti-
mal structure, often selected manually before training [38].
Hence, more and more attention is put on combining NNs
with decision graphs instead of trees [4, 9, 11, 22, 37]. Deci-
sion graphs have a few advantages when compared to deci-
sion trees. They have a flexible structure that allows multiple
paths from the root to each leaf. As a result, nodes are reused,
resulting in simpler and smaller models, which solves the
replication problem [27]. Moreover, decision graphs require
substantially less memory while considerably improving
generalization [33]. Nevertheless, decision graphs are not
commonly used in deep learning due to a lack of efficient
gradient-based training techniques.

In this paper, we introduce Self-Organizing Neural
Graphs (SONGs), a special type of decision graphs that
generalize methods like Soft Decision Tree (SDT) [8] and
Neural-Backed Decision Trees (NBDT) [38], and as a differ-
entiable solution are applicable to any deep learning pipeline.
Moreover, in contrast to the fixed structure of the existing
methods [8, 38], SONGs can strengthen or weaken an edge
between any pair of nodes during training to optimize their
structure. We illustrate this process in Figure 1. In the
beginning, the edges have random weights. However, in
successive steps of training, the structure is corrected with
backpropagation, and it gets sparse and converges to the
binary directed acyclic graphs [28].

Our contributions can be summarized as follows:
• We introduce Self-Organizing Neural Graphs (SONGs),
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Figure 1: Training stages of SONG that uses gradient descent to modify the graph structure and transition probabilities. Based
on an input x, the backbone neural network (NN) extracts a vector representation, which is passed to SONG to obtain a
prediction for each class (y1 and y2). At the beginning of training, a graph has root r, nodes v1 and v2, leaves l1 and l2, and
randomly initialized edges (a). In the successive training iterations, the entropy of edge weights grows (b), finally resulting in
a sparse binary graph, with two strong edges outgoing from each node (c). Notice that SONG contains two alternative sets of
edges between the nodes (dashed blue arrows and solid red arrows, respectively) that are combined based on the input (see
Figure 2 for details).

a new paradigm of end-to-end training based on Markov
processes that simultaneously learn the optimal graph
structure and transition probabilities.

• Our model is fully differentiable and thus suitable for
combined training with other deep learning models.

• We prove empirically and theoretically that SONGs dur-
ing training converge to sparse binary acyclic graphs.

• Our method performs on par or outperforms decision
trees trained in a similar setup and does not require the
graph/tree structure to be predefined before training.

2. Related works

2.1. Decision trees

Numerous Decision Tree (DT) algorithms have been de-
veloped over the years [18, 19, 29, 31] and after the success
of deep learning, much research relates to combining DTs
with neural networks. As a result, Soft Decision Tree (SDT)
was introduced, allowing for the partial membership of a
sample in the nodes that make up the tree structure [34],
also trained in distillation setup [8]. This idea was also used
in [13] that trains a set of classification trees and a back-
bone network in an end-to-end manner. Moreover, it was
recently used in [24] to faithfully visualize the model using
nodes with prototypes [6] instead of classifiers. Trees were
also used to explain the previously trained black box mod-
els [5, 39]. More advanced methods automatically generate
deep networks with a tree structure in a multi-step or an end-
to-end manner [1, 2, 23, 38]. Many previous works were
generalized by the ANT framework [36], which additionally
enriched the tree structure with transformer, a nonlinear func-

tion that maps samples from the previous module to the next
one, and allows for training the tree topology. In contrast to
the these methods, we design a simple and effective model
for training decision graphs together with the parameters of
the base neural network in the end-to-end manner.

2.2. Decision graphs

A decision graph is a well-studied classifier and has been
used to solve many real-world problems [35]. When im-
plemented as Directed Acyclic Graphs (DAG), it leads to
accurate predictions while having lower model complexity,
subtree replication, and training data fragmentation com-
pared to decision trees [33]. However, most of the existing
algorithms for learning DAGs involve training a conventional
tree that is later manipulated into a DAG [7, 12, 25, 26]
and, as such, are difficult to be directly adopted into neu-
ral networks. Hence, alternative approaches were proposed,
like [4], which maintains the structure of the standard convo-
lutional neural networks (CNNs) but uses additional routing
losses at each layer to maximize the class-wise purity (like
in growing decision trees) using data activation according
to the class label distribution. Another method [37] intro-
duces identity skip-connections similar to ResNets [9] that
are executed or skipped depending on the gate response for
an input. A similar gate mechanism was used in [22] to
choose branches specialized for different inputs, whose out-
puts are combined to make the final predictions. Finally, [11]
embeds infinitely many filters into low dimensional mani-
folds parameterized by compact B-splines and maximizes
the mutual information between spline positions and class
labels to specialize for classification tasks optimally. Such
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a mechanism significantly reduces runtime complexity. In
contrast to existing methods, SONG is a directed graph that
can be adapted to any deep architecture and trained in an
efficient gradient-based manner.

3. Self-organizing neural graphs

To adequately describe the Self-Organizing Neural Graph
(SONG), we first define a more abstract structure that we call
Soft Binary Directed Graph (SBDG). SBDG is considered
binary because there are two alternative sets of edges, and
soft because those sets are combined into one target set of
edges depending on the input. Then, based on SBDG, we
define SONG and describe how to use them as a decision
model. Finally, we present method limitations and show
how to overcome them with additional regularizers. The
below definitions correspond to single-label classification
for the clarity of description. However, they could be easily
extended to other tasks, like multi-label classification or
regression.

3.1. Method

3.1.1 Soft binary directed graphs

Soft Binary Directed Graph (SBDG) is a directed graph,
which can be viewed as a probabilistic model. It is defined
as graph G = (V,E0, E1), with V corresponding to a set of
nodes and E0, E1 corresponding to two alternative sets of
edges, where:

• Set V contains two types of nodes:
– internal nodes v0, . . . , vn, with v0 specified as

root r,
– leaves l1, . . . , lc, each exclusively associated with

one class from set {1, . . . , c},
• Set Ed, for d ∈ {0, 1}, contains all possible edges with

weights md
ji corresponding to the probability of moving

from node ui to uj ∈ V , as presented in Figure 2a. In
the following, the aggregated probabilities of moving
from node ui to other nodes will be called a transition
vector and denoted as md

·i.
• If ui is a leaf, then md

ji = δji (Kronecker delta), which
means that it is impossible to move out from the leaves.

• Each internal node ui makes binary decisions d ∈
{0, 1} with probabilities σd

i of using edges from set
Ed.

• σ0
i + σ1

i = 1 and G can be transformed to a standard
directed graph by combining m0

·i and m1
·i using the

following formula for each node ui: σ0
im

0
·i + σ1

im
1
·i.

This process is presented in Figure 2b.
Notice that if all transition vectors are binary, then after
removing the edges with zero probability, SBDG becomes a
binary directed graphs [28].

3.1.2 Self-organizing neural graphs

Self-Organizing Neural Graph (SONG) is a fully differen-
tiable adaptation of SBDG that can be combined with various
deep architectures. SONG is defined as G = (V, E0, E1),
where V , E0, E1 implement V , E0, and E1 of SBDG, and
are obtained for input point x in the following way:

• The probability of decision d = 1 in node ui is obtained
as σ1

i (x) = σ(xwi+bi), where σ is the sigmoid logistic
function, wi is a filter function, and bi is a bias1.

• The probability of decision d = 0 equals σ0
i (x) =

1− σ1
i (x).

• The probability of moving from internal nodes is de-
fined by two matrices Md = [md

ji] ∈ R(n+c)×n, for
d = {0, 1}, with positive values and columns summing
up to 1. In our implementation, we obtain such matrices
by applying softmax to each of their columns.

Notice that {wi}i=1,...,n, {bi}i=1,...,n, M0, and M1 are train-
able parameters of the model.

Finally, we define a directed graph Gx = (V, E) gener-
ated for input x where E corresponds to the combination of
matrices M0 and M1:

Mx = 1σT
x ⊙M1 + 1(1 − σx)

T ⊙M0, (1)

where σx = [σ1
0(x), . . . , σ

1
n(x)]

T , symbol ⊙ denotes the
Hadamard product, and 1 is the all-ones vector of dimension
n.

3.1.3 Decision model

Matrix Mx contains the probability of moving from internal
nodes to all nodes of the graph. However, to apply the theory
of the Markov processes, it needs to be extended by columns
corresponding to the leaves (as presented on the left side of
Figure 3):

Px =

[
Mx

0
I

]
∈ R(n+c)×(n+c), (2)

where 0 ∈ Rn×c is zero matrix and I ∈ Rc×c is an identity
matrix. As a result, we obtain a square stochastic (transition)
matrix used to describe the transitions of a Markov chain.
While Px contains the probability of moving from ui to uj

in one time step, it can be easily used to obtain a similar
probability for N steps by calculating the N -th power of
Px. Finally, the resulting matrix can be multiplied by vector
v = [1, 0, ..., 0]T to obtain the probability of moving from
the root to any node of the graph, including leaves, whose
probability is the output of the model. We present a simple
example illustrating this process on the right side of Figure 3.
More examples are provided in the Supplementary Materials.

1In practice, this probability could also be obtained with any NN that
ends with a sigmoid function.
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Figure 2: SONG contains two alternative transition vectors m0
·i and m1

·i that aggregate the probability of moving from a
particular node vi to all other nodes. In (a), they are represented as dashed blue and solid red arrows, respectively. Each
node obtains input data x and makes a binary decision with probabilities σ0

i and σ1
i of using one transition or another. As

σ0
i + σ1

i = 1, SONG can be transformed to a standard directed graph by combining m0
·i and m1

·i, as presented in (b). During
training, both σ·

i and m·
·i are trained to obtain the optimal decision graph as presented in Figure 1 of the paper.
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Figure 3: Construction of the transition matrix and successive steps of our Markov process. On the left, a graph with its
matrices M0 and M1 is presented, followed by an exemplary decision vector σx and the resulting matrix Px. On the right,
the flow in a graph is depicted for 3 consecutive steps. At first, the probability is entirely placed in the root. However, in
the next steps, the distribution splits between nodes according to the transition probabilities, reaching leaves in step 3. The
probabilities in the leaves after all steps are class probabilities inferred by the model (the number of steps is considered as a
method hyperparameter).

3.1.4 Algorithm complexity

The memory scales quadratically with the number of nodes
n due to the necessity of storing transition matrices M0 and
M1. For a single image x, the computational complexity is
bounded by the Hadamard product used to produce matrix
Mx (and Px consequently), which is O(n2). Considering
also the number of steps N , vector v is N times multiplied
by matrix Px. Thus, the complexity is O(n2+N · (n+ c)2),
where c is the number of leaves.

3.2. Regularizations

Similarly as in Soft Decision Trees (SDT) [8], we observe
that our graphs require additional training regularizers. The

reasons for that are threefold. First, SONG may get stuck
on plateaus in which one or more σd

i (x) is 0 for all input
samples x, and the gradient of the sigmoid logistic function
for this decision is always very close to zero. Second, if
SONG is uncertain of its predictions, it can safely hold the
probabilities in internal nodes instead of moving them to
leaves, which results in a small accumulated probability in
the latter. Third, SONG tends to binarize what is positive
in general, but if this binarization appears too early, the
model can get stuck in a local minimum. Therefore, to
prevent model degeneration, we introduce three types of
regularization.
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(a) Graph corresponding to the initial M0, M1. (b) Graph corresponding to the trained M0, M1.

(c) M0, M1 with initial values. (d) Trained M0, M1.

Figure 4: Visualisation of the graphs with edges corresponding to the transition matrices M0 (blue edges) and M1 (red edges)
of the SONG before and after training on the MNIST dataset with 9 internal nodes. One can observe that SONG models
binarize the connections during gradient training.

3.2.1 Node regularization

The node regularization is a direct adaptation of the approach
proposed by [8]. It is used to avoid getting stuck at poor
solutions by encouraging each internal node to make equal
use of both left and right subtrees. In our approach, this
regularization encourages each internal node to make equal
use of both sets of edges E0 and E1. I.e., to send half of
the training samples to one direction (using M0) and half
of them to the other direction (with M1). For this purpose,
we calculate the cross entropy between the desired average
distribution 0.5, 0.5 for those two sets and the actual average
distribution αi,s, βi,s in node vi at step s

Lnodes = −λ

2

n∑
i=1

log(αi,s) + log(βi,s),

where

αi,s =

∑
x∈B(P

s
xr)i · (σ1

i (x))
γ∑

x∈B(P
s
xr)i

,

βi,s =

∑
x∈B(P

s
xr)i · (σ0

i (x))
γ∑

x∈B(P
s
xr)i

,

B is a batch of samples used in an iteration, γ ∈ [1, 2], and
(P s

xr)i corresponds to ith coordinate of vector (P s
xr). One

can observe that our node regularizer is calculated per node
and step, and it is different from [8], where additional loss is
computed once for each node. Moreover, we penalize model
for making uncertain decisions (σi,s(x) ≈ 0.5) using the
parameter γ.

3.2.2 Leaves regularization

The leaves regularization, enforcing the summary probabili-
ties in leaves to be close to 1, is defined as

Lleaves = − log

(
n+c∑
i=n

(PN
x r)i

)
, (3)

where n is the number of nodes (excluding root indexed with
0), c is the number of leaves (classes), and N is the number
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Method Ex SO EE MNIST C10 C100 TIN

DDN (NiN) ✗ ✓ ✗ - 90.32 68.35 -
DCDJ (NiN) ✗ ✓ ✓ - - 69.00 -
ANT-A* (n/a) ✓ ✓ ✗ 99.36 93.28 - -

ResNet18 ✗ ✗ ✗ 98.91 94.93 75.82 63.05
DNDF ✗ ✗ ✗ 97.20 94.32 67.18 44.56
DT ✓ ✗ ✗ - 93.97 64.45 52.09
NBDT ✓ ✗ ✗ - 94.82 77.09 64.23
NBDT w/o h. ✓ ✓ ✗ - 94.52 74.97 -
RDT ✓ ✓ ✓ - 93.12 - -
SONG (ours) ✓ ✓ ✓ 98.81 95.62 76.26 61.99

Table 1: Comparison of models with deep architecture
in terms of model features and accuracy on MNIST, CI-
FAR10 (C10), CIFAR100 (C100), and TinyImageNet (TIN).
ResNet18 was used to extract the vector representation of
input images for DNDF [13], DT, NBDT (with and with-
out hierarchy) [38], RDT [2], and SONG. For DDN [23],
DCDJ [4], and ANT-A [36], the backbone models are pro-
vided in the brackets. “Ex” indicates if the method retains
properties such as pure leaves, sequential decisions, and
non-ensemble. “SO” indicates if the model is self-organized
(does not require a predefined structure). “EE” indicates if
the structure and weights of model are trained in an end-to-
end continuous manner.

of steps.

3.2.3 Gumbel-softmax

We use Gumbel-softmax [10] instead of softmax to each
column of matrices M0 and M1 to explore the trajectories of
the graph better. In other words, Gumbel-softmax introduces
randomness, which results in a wider exploration of the
graph structure in the optimization process.

4. Theoretical analysis

In the supplementary materials, we provide theoretical
results, showing that the graph structure generated by SONG
is binarized during training, as presented in Figure 4.

5. Experiments

In this section, we analyze the accuracy of the SONGs
trained on Letter [3], Connect4 [3], MNIST [17], CI-
FAR10 [14], CIFAR100 [14], and TinyImageNet [16]
datasets and compare it with the state of the art meth-
ods [2, 4, 13, 23, 36, 38]. We examine how the number
of nodes and steps influence the structure of graphs, the
number of internal nodes used by the model, the number of
back edges, and the distance from the root to leaves. More-
over, we explain how the probability of back and cross edge

Method Letter Connect4 MNIST

SDT w/o distillation [8] 78.00 (511) 78.63 (255) 94.45 (255)
SDT [8] 81.00 (511) 80.60 (255) 96.76 (255)
SONG-S-large (ours) 86.25 (511) 82.82 (255) 95.74 (255)
SONG-S-small (ours) 82.95 (64) 80.27 (8) 94.66 (64)

Table 2: Comparison of SDT [8] and shallow SONG (SONG-
S) on three datasets, where shallow corresponds to direct
flattened inputs (no backbone network used). The accuracy
of each model is reported along with the number of internal
nodes specified in the parentheses. SONG-S-small contains
the minimal number of nodes necessary to match the ac-
curacy of SDT. SONG-S-large uses the same number of
internal nodes as SDT. Please notice that SONG models are
trained without a distillation mechanism, and they always
obtain better results than SDT without distillation.

changes in the successive training steps. Finally, we pro-
vide a detailed comparison with SDT [8] and present sample
graphs obtained for the MNIST dataset. In all experiments,
we use leaves normalization and Gumbel-softmax, and we
treat node regularization as a hyperparameter of the model.
While this section presents only the most important findings
for the sake of clarity, the experimental setup and detailed
results can be found in the Supplementary Materials.

5.1. SONG in deep learning setup

In the first experiment, we apply SONG 2 at the top of the
backbone Convolutional Neural Network (CNN) without the
final linear layer. CNN takes the input image and generates
the representation, which is passed to the SONG. SONG pro-
cesses the representation and returns the predictions for each
class, which are then used with target labels to calculated
Binary Cross-Entropy (BCE) loss. As a backbone network,
we use ResNet18 for all datasets except MNIST, for which
we employ a smaller network (see Supplementary Materials
for details).

As presented in Table 1, our method matches or out-
performs most of the recent state-of-the-art methods. On
CIFAR10, SONG accuracy outperforms all baseline by al-
most 1 percentage point. On MNIST, it is worse than
ANT [36] by around 0.5%, and on CIFAR100 and Tiny-
ImagNet, NBDT [38] achieves better results. However, both
ANT and NBDT are not trained in an end-to-end continuous
manner. Moreover, NBDT requires a hierarchy provided
before training, and without such a hierarchy, it obtains ac-
curacy more than 1% lower than SONG on CIFAR100.

5.2. SONG as shallow model

Although SONG can be successfully used in a deep learn-
ing setup, it can also be treated as a shallow model. In

2We made the code available at: https://github.com/gmum/SONGs
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Figure 5: Examples of the graph structures obtained by train-
ing SONG on the MNIST dataset. The root is the top-most
node in each graph, and double node borders denote the
leaves with numbers of the MNIST classes. For each node
vi, we present two edges corresponding to the highest proba-
bility from two transition vectors m0

·i and m1
·i (represented

as dashed blue and solid red arrows, respectively).

this case, SONG directly processes an input sample and re-
turns the predictions passed with target labels to BCE loss.
This setup is similar to the one presented in experiments
on SDTs [8]. Hence, we compare to SDT on all datasets
considered in [8].

Table 2 shows that SONG obtains better results than SDT
without distillation on all datasets. Moreover, on Letter and
Connect4, SONG outperforms even SDT with distillation.
We also observe that SONG requires fewer nodes than SDT
and obtains on par results on the Connect4 dataset with
30 times fewer nodes. For Letter and MNIST, similarly
good results can be obtained with 30 times fewer nodes.
This finding is in line with [33] which shows that decision
graphs require dramatically less memory while considerably
improving generalization.

5.3. SONG structure

As a fully differentiable model, SONG strengthens or
weakens an edge between any pair of nodes during training
to constantly optimize the graph’s structure (see Figure 4).
Consequently, it can generate any structure that uses all
available nodes, or only some of them. In particular, the
final structure may be a binary tree or contain back edges.
Moreover, the distance from the root to leaves can vary. This
variability is visualized in Figure 5, where we present two
graphs obtained for MNIST using a different number of
internal nodes and steps.

In Figure 6, we provide statistics on multiple SONGs
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Figure 6: Nodes and edges statistics calculated for SONGs
trained on the CIFAR10 dataset. For each combination of
the number of internal nodes and steps, 20 graphs are trained
and used to plot the distributions of four statistics.

generated for the CIFAR10 dataset. We observe a significant
difference in SONG structure depending on the number of
internal nodes and steps. First, we note that the number of
internal nodes used by the model increases with the increas-
ing number of steps N , and it does not depend on the total
number of internal nodes n. As a natural consequence, a
similar trend is observed for the distance from the root to
the leaves. When it comes to back edges, their number is
relatively small, and they appear only for a larger number of
steps. At the same time, the cross edges are more often and
increase with the increased number of internal nodes.

We also analyze the relationship between the number
of nodes and steps and prediction accuracy SONG. As can
be seen in Table 3, the performance on MNIST constantly
increases as the number of nodes and steps grow. This is not
the case of CIFAR-10, where the accuracy remains similar
for all combinations of the parameters. It can be caused by
the smaller dimension of the representation vector in MNIST
(50) than in CIFAR10 (512).

5.4. SONG structure during training

We analyze the relationship between BCE loss and the
probability of back and cross edges in the successive epochs
of the training.

We present the mean over multiple models and all test
samples (as each test sample x has its graph represented
by matrix Px). We observe that the probability of back
edges decreases together with decreasing BCE loss, both for
simple MNIST and more complicated CIFAR100 dataset
(see Figure 7).

Moreover, in Figure 8, we present the mean distances
between transition matrices (Px) obtained for samples of
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steps

nodes 4 6 8 10 20

9 95.66 97.29 97.25 97.95 97.56
16 97.31 97.83 98.23 98.43 98.56
32 96.82 97.74 98.35 98.65 98.62
64 96.29 98.12 98.12 98.47 98.68

(a) MNIST.

steps

nodes 4 6 8 10 20

9 94.48 94.86 94.92 94.94 94.93
16 94.88 94.95 94.86 94.87 94.89
32 94.99 94.95 94.95 94.90 94.98
64 94.90 94.87 94.88 94.94 94.93

(b) CIFAR10.

Table 3: Results of SONG in a deep learning setup. One
can observe that for the MNIST dataset (a), the performance
increases with the increasing number of nodes and steps. In
contrast to CIFAR10 (b), where the performance is relatively
similar for all combinations of the parameters.
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(a) SONG with 256 internal nodes and 10 steps trained for CIFAR100.
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(b) SONG with 64 internal nodes and 10 steps trained for MNIST.

Figure 7: BCE loss as well as the number of back and cross
edges in the successive training epochs of SONG. One can
observe that number of back edges decrease together with
decreasing BCE loss.

(a) 16 internal nodes. (b) 64 internal nodes.

Figure 8: Mean distances between transition matrices Px

for pairs of MNIST input samples represented by a distance
matrix (the larger distance, the brighter color). The rows and
columns correspond to 0-9 digits.

the same and different classes. One can observe, among
others, that the diagonal is visibly darker than the rest of
the matrix, which means that inputs from the same class
have more similar transition matrices. This confirms that we
obtain similar transition matrices for similar inputs.

6. Conclusions

In this work, we introduce Self-Organizing Neural Graphs
(SONGs), a new type of decision graphs applicable in any
deep learning pipeline. They optimize their structure during
training by strengthening or weakening graph edges using
gradient descent. Thanks to the graph structure, SONG can
reuse the decision nodes and obtain state-of-the-art results
with a significantly smaller number of nodes than existing
methods. Moreover, the introduced general paradigm based
on Markov processes allows for efficient training, and SONG
converges to the binary acyclic directed graphs. Hence, we
believe that our work opens a plethora of research pathways
towards more effective applications of decision graphs in a
deep learning setup.
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[34] Alberto Suárez and James F Lutsko. Globally optimal
fuzzy decision trees for classification and regression. IEEE
Transactions on Pattern Analysis and Machine Intelligence,
21(12):1297–1311, 1999.

[35] Hiroki Sudo, Koji Nuida, and Kana Shimizu. An efficient
private evaluation of a decision graph. In International Confer-
ence on Information Security and Cryptology, pages 143–160.

3856



Springer, 2018.
[36] Ryutaro Tanno, Kai Arulkumaran, Daniel Alexander, Antonio

Criminisi, and Aditya Nori. Adaptive neural trees. In Interna-
tional Conference on Machine Learning, pages 6166–6175.
PMLR, 2019.

[37] Andreas Veit and Serge Belongie. Convolutional networks
with adaptive inference graphs. In Proceedings of the Euro-
pean Conference on Computer Vision (ECCV), pages 3–18,
2018.

[38] Alvin Wan, Lisa Dunlap, Daniel Ho, Jihan Yin, Scott Lee,
Henry Jin, Suzanne Petryk, Sarah Adel Bargal, and Joseph E
Gonzalez. Nbdt: neural-backed decision trees. ICLR 2021,
2020.

[39] Quanshi Zhang, Yu Yang, Haotian Ma, and Ying Nian Wu.
Interpreting cnns via decision trees. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 6261–6270, 2019.

3857


