
Contrastive Knowledge-Augmented Meta-Learning for Few-Shot Classification

Rakshith Subramanyam
Arizona State University, AZ, USA

rsubra17@asu.edu

Mark Heimann, T.S. Jayram, Rushil Anirudh, Jayaraman J. Thiagarajan
Lawrence Livermore National Laboratory, CA, USA

{heimann2, thathachar1, anirudh1, jjayaram}@llnl.gov

Abstract

Model agnostic meta-learning algorithms aim to infer
priors from several observed tasks that can then be used
to adapt to a new task with few examples. Given the in-
herent diversity of tasks arising in existing benchmarks, re-
cent methods have resorted to task-specific adaptation of
the prior. Our goal is to improve generalization of meta
learners when the task distribution contains challenging
distribution shifts and semantic disparities. To this end,
we introduce CAML (Contrastive Knowledge-Augmented
Meta Learning), a knowledge-enhanced few-shot learning
approach that evolves a knowledge graph to encode histori-
cal experience, and employs a contrastive distillation strat-
egy to leverage the encoded knowledge for task-aware mod-
ulation of the base learner. In addition to the standard few-
shot task adaptation, we also consider the more challenging
multi-domain task adaptation and few-shot dataset gener-
alization settings in our evaluation with standard bench-
marks. Our empirical study shows that CAML (i) en-
ables simple task encoding schemes; (ii) eliminates the need
for knowledge extraction at inference time; and most im-
portantly, (iii) effectively aggregates historical experience
thus leading to improved performance in both multi-domain
adaptation and dataset generalization.

1. Introduction
Learning to solve new tasks using only few-shot exam-

ples is a long-standing challenge. Meta-learning forms an
important class of few-shot learning algorithms that lever-
ages transferable priors from previously observed tasks to
learn new tasks quickly. For example, model-agnostic meta-
learning (MAML) approaches [2, 21, 6, 4, 3] attempt to
learn a single meta model (or base learner) on a set of ob-
served tasks, which is assumed to be only a few gradient
descent steps away from good task-specific models. Their

success hinges on the assumption that the observed tasks
are realizations from a common task distribution p(T). De-
spite its mathematical tractability, the premise of using a
single base learner can be insufficient when p(T) is hetero-
geneous, i.e., the degree of similarity between tasks can be
vastly different [18]. This motivates the need for a meta-
model to selectively utilize knowledge from its previous ex-
perience that is the most relevant for the target task. In this
context, task-aware modulation (e.g., MuMo-MAML [18])
is a popular principle to improve MAML on heterogeneous
tasks. Conceptually, these approaches use latent task encod-
ings, which characterize realizations from a heterogeneous
task distribution, to modulate the base learner and thus im-
prove the adaptation performance on diverse tasks.

In a quest to further improve the performance, recent
methods, such as HSML [19] and ARML [20], learn an
external knowledge structure for encapsulating information
across training episodes and leverage the knowledge to se-
lectively utilize prior experience during adaptation. Though
these methods are known to be effective in few-shot adapta-
tion, their generalization under large distribution shifts [11]
and semantic disparities [15] can be improved.

In this paper, we introduce Contrastive Knowledge-
Augmented Meta Learning (CAML)1, a task-aware mod-
ulation approach, with the goal of improving the general-
ization of meta-learners. At its core, CAML belongs to
the class of MuMo-MAML-style approaches [18]. Though
CAML is similar to state-of-the-art ARML [20] in repre-
senting few-shot tasks as prototype graphs and using knowl-
edge graphs to encode historical experience, the task encod-
ing scheme, optimization process and the inferencing pro-
cedure are entirely different.
Summary of contributions: (i) We propose a contrastive
distillation strategy to infuse prior knowledge directly into
the image embedding module, which leads to richer task
representations and eliminates the need to perform knowl-

1CAML codebase: https://github.com/Rakshith-2905/CAML

12479

Dataset
Setting

Few-Shot Task
Adaptation

Multi-Domain Few-Shot Task
Adaptation

Few-Shot Dataset
Generalization

TEST

TRAIN
(Episodes)

Figure 1. Few-shot classification tasks. Here, we formally define the different problem settings considered in this study. As we move
from few-shot adaptation to few-shot dataset generalization, the problem becomes increasingly challenging and requires sophisticated task-
aware modulation strategies to improve the performance of MAML.

edge extraction during inferencing; (ii) Building upon the
improved image embeddings, we adopt a computationally
cheap task encoding (average pooling) in lieu of sophisti-
cated architectures (RNN autoencoders in [19, 20]); (iii)
We develop an exponential moving average-based update
strategy for the knowledge structure, which leads to im-
proved generalization of the meta learner; (iv) Using stan-
dard benchmarks (Meta-Dataset, DomainNet), we perform
rigorous empirical evaluation of CAML. In particular, we
consider the settings of multi-domain task adaptation (we
are the first to use this setting) and dataset generalization.
Findings: (i) CAML is a computationally simpler alter-
native to existing structure-aware meta learners – it uses
simple task encoding, is not sensitive to the choice of the
image embedding architecture, and does not require knowl-
edge extraction at test-time; (ii) Under larger degrees of het-
erogeneity (multi-domain), we find that CAML consistently
improves upon ARML (2.4% for 1−shot and and 2.6% for
5−shot settings); (iii) Even in the challenging dataset gen-
eralization setting, CAML provides improvements (across
8 benchmarks from the meta dataset) of 2.1% and 3.3% in
1−shot and 5−shot cases.

2. Problem Setup
In this section, we describe the problem settings con-

sidered in this study for studying the behavior of different
task-aware meta learning approaches. Figure 1 provides
an overview of the formulations considered. Broadly, in
few-shot classification, training tasks drawn from the dis-
tribution ptr(T) are used to learn how to adapt quickly to
any of the tasks, and evaluated on previously unseen test
tasks from pte(T). Common to all these formulations is that
within each of the datasets, the classes seen during training
are completely disjoint from those seen during testing.
A. Few-shot Task Adaptation. In this setup, let Dtr =

{(xi, yi)}|D
tr|

i=1 denote the training set comprising samples
xi and their labels yi, where yi ∈ Ctr. In other words,

all samples used for training belong to one of the classes
from Ctr. The goal is to learn an adaptable model using
Dtr to support learning new classes with only few exam-
ples. For evaluation, we construct a series of few-shot tasks
and measure the model’s ability to adapt to detect novel
classes from Cte (i.e., Ctr ∩ Cte = ∅). More specifically,
each k−shot N−way test episode is represented as the tu-
ple T = (ST ,QT), where the support set contains k ex-
amples from each of the N classes (selected from Cte), i.e.,
ST := {(x1, y1), · · · , (xkN , ykN)}, yi ∈ {1, · · · , N}, and
the query set QT := {(x∗1, y∗1), · · · } contains different test
examples from the same set of N classes.

B. Multi-Domain Few-shot Task Adaptation. In many
practical applications, the training examples xi ∈ Dtr can
encompass a variety of distribution shifts. Hence, we con-
sider a new scenario where we represent the training set as
a composition of datasets from M different domains, i.e.,
Dtr = Dtr

1 ∪ Dtr
2 · · · ∪ Dtr

M , wherein all samples (regard-
less of the domain) belong to a common set of classes Ctr.
The goal here is to learn to adapt to the tasks drawn from
any of the M domains. For evaluation, both the support and
query sets for a test episode T are drawn from any domain
m ∈ {1, . . . ,M}, i.e., (x, y) ∈ Dte

m and the N classes are
picked from a disjoint set Cte similar to the previous case.

C. Few-shot Dataset Generalization. In this challenging
setting, the training set is defined as a union of M different
datasets Dtr = Dtr

1 ∪Dtr
2 · · · ∪Dtr

M , and more importantly,
it is assumed that each dataset contains examples from dif-
ferent sets of classes {Ctr

m}Mm=1. As a result, the goal here is
to learn to adapt to completely different semantic concepts
corresponding to each of the M datasets. For evaluation, we
construct test episodes using novel unseen classes from an
entirely different dataset Dte

M+1. Denoting the set of classes
in the novel dataset as Cte

M+1, we will study how effectively
one can leverage the prior to generalize to unseen datasets.

2480

3. Background: Task-Aware Meta Learning
While the few-shot learning literature encompasses a

wide variety of approaches, meta-learning is a popular
choice [14, 9]. Existing few-shot meta-learning approaches
can be broadly categorized into: 1) metric-based meta-
learning frameworks [13, 5, 17] that learn a metric or dis-
tance function to compare different exemplars; 2) model-
based approaches where meta-learning models learn to ad-
just the model parameters to adapt to new tasks [8, 12];
and 3) gradient-based model agnostic meta-learning mod-
els. In particular, our work builds upon model agnostic
meta-learning (MAML) [2], which is formulated below.

Given a set of episodes, {T tr
1 , · · · , T tr

R } comprised of
support and query sets (T tr

i = (ST tr
i
,QT tr

i
)), from the

training set Dtr, MAML considers the meta-learner as the
initialization of a task network f , i.e., θ0, and optimizes for
a well-generalized initialization θ∗0 . Formally,

θ∗0 = argmin
θ̄

R∑
i=1

L(fθi ;QT tr
i
) (1)

= argmin
θ̄

R∑
i=1

L(fθ̄−α∇θL(θ;ST tr
i

)|θ=θ̄
;QT tr

i
), (2)

where the task-specific initialization θi is obtained us-
ing a gradient step from the meta-initialization θ0. Note,
the notation θ̄ refers to the variables used during the
optimization of this bi-level objective function. Here,
L(fθ;ST tr

i
) is implemented as the cross entropy loss∑

(x,y)∈ST tr
i

logP (y|x, fθ).

Task-Aware Modulation. When the tasks used for meta-
learning are sampled from a heterogeneous task distribu-
tion, inferring a common parameter initialization θ0 for all
tasks can be fundamentally restrictive. Hence, task-aware
modulation [18] is a more effective formulation that aims
at building a meta-learner which can generalize on hetero-
geneous task distributions through a set of latent parame-
ters representing task-specific characteristics. For example,
MuMo-MAML [18] first uses a task encoder to encode the
training episode for a given task into a task embedding vec-
tor vi. The task embedding is then used to obtain modula-
tion vectors that are applied to the global initial parameters
θ0 thereby producing task-aware initialization θ0i. Extend-
ing the MAML formulation in (2), the task-aware modula-
tion can be carried out using the support set in the training
episode ST tr

i
and the updated initialization θ0i is used to

perform the meta-optimization.
While task-specific initialization can lead to improved

generalization on heterogeneous tasks, its effectiveness re-
lies on the ability of the task embeddings to encapsulate all
relationships between the large number of observed tasks.
Since it is challenging to learn such expressive embeddings,

meta
knowledge

MODULATION NETWORK

TASK NETWORK

Embedding
Function (CNN)

prototype
graph

Modulation

sg

moving
average

embedding

task-specific
initialization

contrastive
distillation

average
pooling

Compute Class
Prototypes

few-shot
task

Figure 2. Approach Overview. An illustration of the proposed
approach for task-aware meta learning. CAML involves four key
steps: (i) construct a prototype graph for each training task; (ii)
extract knowledge-infused task representation via contrastive dis-
tillation; (iii) modulate the base learner based on the task encod-
ing; (iv) update the meta knowledge graph using an exponential
moving average strategy. The symbol sg denotes the stop gradient
operation, i.e., the node features of M are not directly updated.

more recent approaches have resorted to storage and re-
trieval of task-relevant information from historical expe-
rience, in order to better balance generalization and cus-
tomization (task-aware modulation) [19, 20]. For example,
hierarchically structured meta learning (HSML) and auto-
mated relational meta-learning (ARML) [20] use an exter-
nal meta knowledge structure to assist the task encoding
process. By adopting these knowledge-enhanced represen-
tations coupled with a sophisticated task encoder, these ap-
proaches often outperform MAML and MuMo-MAML in
the standard, few-shot task adaptation setting.

4. Proposed Approach
Our goal is to improve the generalization of meta learn-

ers under challenging distribution shifts and large semantic
disparities. To this end, we develop CAML (see Figure 2),
a task-aware modulation approach that uses a meta knowl-
edge graph M to encapsulate historical experience.
Overview: CAML is comprised of four key steps: (i) Pro-
totype graph generation: The first step is to represent each
few-shot task as a prototype graph, so that one can incorpo-
rate information from the meta knowledge graph and sub-
sequently define a task encoding strategy. The nodes of the
prototype graph correspond to class-level centroids com-
puted using features from an image embedding module; (ii)
Knowledge-enhanced task encoding: In this step, our goal

2481

is to enhance the node features of the prototype graph with
relevant information from the knowledge graph. To this
end, we propose a novel contrastive training strategy that
directly refines the image embedding module by distilling
from the knowledge graph. Finally, we define a task encod-
ing based on simple average pooling of prototype node fea-
tures without any learnable parameters; (iii) Task-specific
modulation: Next, we will use the inferred task representa-
tions to compute a modulation function that can be applied
to the base learner and obtain a task-specific initialization;
(iv) Meta knowledge graph update: The final step is to up-
date the knowledge graph in each training epoch based on
the current batch of tasks, which is implemented using an
exponential moving average mechanism.

4.1. Algorithm

Step 1: Prototype Graph Generation. Convention-
ally, feature extractors are used to embed data in low-
dimensional latent spaces, where the different classes are
easily separable. In task-aware modulation, our goal is
to obtain such representations for different few-shot tasks,
such that two tasks that are similar in the latent space can
use the same task network initialization for effective adap-
tation. Each k−shot N−way training episode T tr

i is com-
prised of support and query sets (ST tr

i
QT tr

i
), wherein there

are k samples in each of the N classes randomly selected
from Ctr. CAML begins by constructing a prototype-based
graph [20] with the image embeddings.

Formally, given the support set ST tr
i

:= {(xj , yj),∀j ∈
[1, · · · , kN]} for a training episode, we compute embed-
dings for each image xj in the task using an embedding
function. While a variety of design choices can be adopted
for this, we implement the embedding function using a
ResNet-18 architecture. Using the sample-level embed-
dings, we then compute the prototype vector for each class
n ∈ [1, · · · , N] by taking the average of the embeddings:

vni =
1

k

∑
(xj ,yj)∈ST tr

i
yj=n

B(xj), (3)

where B denotes the feature extractor that projects an im-
age xj into Rd. Given the sensitivity of few-shot learning
methods to the limited number of examples, operating on
the prototype representations reduces the effect of atypical
samples. The prototype graph representation is used to both
optimize the knowledge-aware task encoding and to update
the meta knowledge graph. We also define a simple task
encoding function based on the prototype node features:

zi = Ψ(ST tr
i
) =

1

N

∑
n

vni (4)

Node embeddings with high class separability and in-
fused prior knowledge enables the use of this simple fea-

ture aggregation strategy in contrast to ARML [20] and
HSML [19], which require sophisticated aggregation strate-
gies (e.g., RNN autoencoders).

Step 2: Knowledge-Enhanced Task Encoding. The
desideratum of an ideal embedding function in task-aware
modulation is to produce expressive task representations
that capture the complexity of a given task. Similar to exist-
ing structured meta-learning approaches, we adopt a meta
knowledge graph structure to encode the historical experi-
ence and propose a novel contrastive distillation strategy to
produce knowledge-enhanced task encodings. Note that ex-
isting approaches update the knowledge structure directly
using gradients from the meta update step, which limits its
ability to trade-off generalization and customization. In-
stead, we do not allow gradients to directly alter the knowl-
edge graph (stop gradient or the symbol sg in Figure 2).

Formally, let us denote the knowledge graph as M
with randomly initialized node features HM = {hj}, j =
1, · · · ,M and edges EM. Using the prototype graph, Gi =
(Vi, Ei), we perform a contrastive distillation from M to
the embedding function B. The edges in both Gi and M are
parameterized as a function of the absolute difference of
the corresponding node features. For example, for any two
nodes with features a and b, Edge(a,b) = σ(UT |a − b|),
where U ∈ Rd×1 is the weight matrix common to all node
pairs and σ is the sigmoid function.

In order to extract information for an episode Ti from M,
we construct a super-graph comprising nodes from both Gi

and M. The cross-edges are computed as the softmax of
the set of negative Euclidean distances between the pairs.
For a pair vni ∈ Vi and hj ∈ M,

Edge(vni ,hj) =
exp(−∥(vni − hj)/γ∥22/2)∑
n̄,j̄ exp(−∥(vn̄i − hj̄)/γ∥2/2)

. (5)

In order to effectively balance between knowledge-
enhanced representations and the native representations
from the embedding function, we propose a con-
trastive learning strategy inspired by several existing self-
supervised learning approaches such as SimCLR and In-
foNCE [1, 10]. Here, we consider the positive pair to be the
task encodings from the original prototype representations
and the knowledge-enhanced prototype representations ob-
tained via neural message passing on the super-graph. The
negatives are node pairs from Gi, which indicate the level
of class separability. This objective LCKD(Ti) can be ex-
pressed as:

−E
[
log

exp(sim(zi, ẑi))

exp(sim(zi, ẑi)) +
∑

exp(sim(vmi , vni))

]
.

(6)
Here, ẑi = Ψ[NMP (Gi,M)] indicates the knowledge-
enhanced task representations obtained by first performing
neural message passing (NMP) on the super-graph and then

2482

Algorithm 1: Training of CAML

Input: ptr(T) Distribution over training tasks,
hyper-parameters α, λ ;

Learnable Parameters: Embedding network B,
task network f(θ0), modulation parameters Γ,
meta knowledge graph M, NMP network;

Initialization: Randomly initialize parameters θ0,
B, M, and NMP network ;

while not done do
Sample a batch of tasks T tr

i ∼ ptr(T);
//meta-train //
for each T tr

i do
Sample ST tr

i
andQT tr

i
from T tr

i ;
Randomly initialize learnable edges of M ;
Compute prototype vectors Vi as in (3) ;
Build prototype graph Gi;
Construct task representation zi from (4);
Compute LCKD(Ti) using (6) ;
Perform task-aware modulation using (7) ;
Update θ∗0 = θ0 − α∇θL(θ;ST tr

i
) ;

end
//meta-update//
Minimize the objective in (8) and update θ0, B,
Γ, edge weights of M, and NMP network;

for each T tr
i do

Obtain Ĥi
M using the strategy in Step 4;

end
Update M using ĤM averaged over T tr

i ;
end

subsequently averaging the updated prototype node repre-
sentations v̂ni . Note that, when performing NMP to obtain
knowledge- enhanced task representations, we do not al-
low the node features in the meta knowledge graph hj to
be changed, and only the prototype representations are up-
dated. Furthermore, the similarity function sim is imple-
mented using the cosine similarity. In effect, this attempts to
modify the embedding function such that the task encoding
is consistent with M while also maximizing the inter-class
separability, thus producing rich task representations.

Step 3: Task-Specific Modulation. The next step is to uti-
lize the task encodings for inferring a task-specific meta ini-
tialization. To this end, the task representation zi is used to
implement the following modulation function on the global
task network initialization θ0:

θ0i = Γ(θ0) = σ(Wgzi + bg) ◦ θ0, (7)

where Wg,bg are learnable parameters. Using a gradient-
through-gradient optimization, one can then refine the task-
specific initialization θ0i. We incorporate our distillation

objective from Step 2 into the meta-update loss function:

min
θ̄,Ω

R∑
i=1

L(fΓ(θ̄)−α∇θL(θ;ST tr
i

)|θ=Γ(θ̄)
;QT tr

i
)+λLCKD(Ti).

(8)
Here, Ω corresponds to the parameters of feature extractor
B, NMP network and modulation function Γ. The hyper-
parameter λ controls the influence of the contrastive distil-
lation term in the overall objective.

Step 4: Meta Knowledge Graph Update. The final step
is to update M with information from the current batch of
tasks. By not allowing gradients from the meta update step
to alter node features HM, we are able to better control
the historical experience encoded in M. More specifically,
using the dataset T tr

i for each i in parallel, we update the
node features hj ∈ HM using neural message passing on
the super-graph to obtain ĥij . In contrast to the distilla-
tion loss computation, during this NMP, we do not allow
the prototype node features to be changed and update only
the node features of M. Note that, for both the prototype
and the knowledge graphs, we use the edges inferred after
the meta update in Step 3. Let ĥj denote the average of
ĥij ,∀i. Finally, we employ an exponential moving average
update of the node features of the meta knowledge graph via
hj = αĥj + (1 − α)hj , where the hyper-parameter α con-
trols the amount of history retained from previous episodes.

5. Results and Findings
Datasets. We consider two large-scale benchmark
datasets to evaluate our proposed task-aware modula-
tion approach under the three settings in Figure 1: (i)
Meta-Dataset: This is a widely adopted benchmark [16]
for few-shot image classification and is comprised of
multiple image-classification datasets. From this bench-
mark, we utilize eight datasets for our experiments -
(a) CUB-200-2011 (Bird) dataset with 200 classes; (b)
describable textures dataset (Texture) with 43 classes;
(c) FGVC aircraft (Aircraft) dataset with 100 classes;
(d) FGVCx-fungi (Fungi) dataset with 1500 classes; (e)
VGG flowers (Flower) dataset containing 102 classes; (f)
German traffic signs dataset (Traffic) with 43 classes; (g)
Omniglot dataset with 50 classes; (h) Quickdraw dataset
with 345 classes; (i) mini-Imagenet with 100 classes. We
sampled 5-way few-shot tasks from these datasets for 1−
and 5−shot training settings respectively. In each of these
datasets, we also constructed disjoint subsets of classes
Ctr and Cte for training and testing. For evaluation, we
constructed k-shot N -way tasks from the unseen classes
Cte. Note, for all experiments, the images were resized to
84× 84× 3; (ii) DomainNet: This popular benchmark [11]
for domain adaptation contains images from six different
domains (clip-art, info-graph, painting, quick-draw, real,

2483

Table 1. Few-shot task adaptation. Performance comparison of the proposed approach against state-of-the-art meta-learning methods. In
order to demonstrate that CAML performs competitively in few-shot adaptation, we used 4 different datasets from Meta-Dataset.

Method Bird Texture Aircraft Fungi Average

Number of Shots = 1

Meta-SGD [7] 55.58 ± 1.43 32.38 ± 1.32 52.99 ± 1.36 41.74 ± 1.34 45.67

MAML [2] 53.94 ± 1.45 31.66 ± 1.31 51.37 ± 1.38 42.12 ± 1.36 44.77

MT-Net [6] 58.72 ± 1.43 32.80 ± 1.35 47.72 ± 1.46 43.11 ± 1.42 45.59

B-MAML [21] 54.89 ± 1.48 32.53 ± 1.33 53.63 ± 1.37 42.50 ± 1.33 45.88

HSML [19] 55.99 ± 1.41 32.51 ± 1.35 51.26 ± 1.35 42.86 ± 1.42 45.66

MuMo-MAML [18] 56.82 ± 1.49 33.81 ± 1.36 53.14 ± 1.39 42.22 ± 1.40 46.50

ARML [20] 59.43 ± 1.46 33.30 ± 1.30 56.20 ± 1.34 45.85 ± 1.46 48.70

Proposed 59.71 ± 1.46 35.47 ± 1.38 57.55 ± 1.37 44.97 ± 1.44 49.425

Number of Shots = 5

Meta-SGD [7] 67.87 ± 0.74 45.49 ± 0.68 66.84 ± 0.70 52.51 ± 0.81 58.18

MAML [2] 68.52 ± 0.79 44.56 ± 0.68 66.18 ± 0.71 51.85 ± 0.85 57.77

MT-Net [6] 69.22 ± 0.75 46.57 ± 0.70 63.03 ± 0.69 53.49 ± 0.83 58.08

B-MAML [21] 69.01 ± 0.74 46.06 ± 0.69 65.74 ± 0.67 52.43 ± 0.84 58.31

HSML [19] 72.07 ± 0.71 44.71 ± 0.66 64.73 ± 0.69 53.38 ± 0.79 58.65

MuMo-MAML [18] 70.49 ± 0.76 45.89 ± 0.69 67.31 ± 0.68 53.96 ± 0.82 59.41

ARML [20] 71.97 ± 0.70 47.18 ± 0.78 73.63 ± 0.64 55.23 ± 0.81 62.00

Proposed 73.09 ± 0.73 48.62 ± 0.69 72.88 ± 0.64 56.11 ± 0.81 62.675

Table 2. Multi-Domain task adaptation. Performance comparison of ARML and CAML when the meta-learners were trained using tasks
from multiple domains. CAML produces consistently improved generalization in all settings.

Method ClipArt InfoGraph Painting QuickDraw Average

Number of Shots = 1

ARML [20] 47.46 ± 1.48 30.61 ± 1.26 40.26 ± 1.41 65.71 ± 1.33 46.01

Proposed 50.60 ± 1.42 34.13 ± 1.35 43.13 ± 1.44 65.75 ± 1.35 48.40

Number of Shots = 5

ARML [20] 66.58 ± 0.73 46.19 ± 0.76 56.86 ± 0.72 83.14 ± 0.55 63.19

Proposed 68.47 ± 0.71 50.35 ± 0.75 60.94 ± 0.70 83.47 ± 0.57 65.80

and sketch) belonging to 345 classes. To ensure availability
of sufficient data for creating tasks, we ignored classes with
less then 50 images and used random splits of 136 and 39
classes for training and evaluation.
Experimental details: For all our experiments we utilized
a meta knowledge graph with 4 nodes with 128D features.
We leverage a single layer Graph Convolutional Network
(GCN) with tanh activation for NMP. The base learner uses
a 4 layer CNN with 3 × 3 filters and a single liner classi-
fication layer. The 1-shot algorithms were trained for 50K
iterations and the 5-shot experiments we trained for 40K it-
erations, both using a meta batch size 4. We utilized the
Adam optimizer for the meta update step and for the inner
loop, we performed 5 gradient steps using SGD.

5.1. Findings

CAML performs competitively in standard few-shot
adaptation. In our first experiment, we evaluated the
ability of CAML to adapt to novel tasks sampled from

unseen classes (within the same datasets), and compared
against different gradient-based meta learning approaches
on the Meta-Dataset benchmark. From the results in Ta-
ble 1, we clearly notice that approaches that leverage task-
aware modulation, e.g., MuMo-MAML, HSML, ARML,
CAML etc., consistently outperform vanilla meta-learning
approaches such as MAML and Meta-SGD. Among ex-
isting task-aware modulation strategies, ARML has been
known to produce state-of-the-art results on this bench-
mark2. We find that CAML performs competitively to
ARML and HSML in both 1− and 5− shot training set-
tings, while not requiring knowledge extraction at inference
time. This can be attributed to the ability of CAML to cap-
ture complex task relations and to effectively distill relevant
historical information into the embedding function.

2We used the official implementation from the authors
(https://github.com/huaxiuyao/ARML) to generate all results for ARML.
Even with the prescribed settings, our metrics in Table 1 were lower than
those reported in their paper. A few others have also raised this issue on
Github, but the authors had not responded at the time of submission.

2484

Table 3. Dataset Generalization. The evaluation is carried out using a leave-one-out protocol on the meta-dataset. We find that
CAML achieves significantly improved performance over ARML.

Method Bird Texture Aircraft Fungi Flower Traffic Omniglot Quickdraw Imagenet Average

Number of Shots = 1

ARML [20] 38.34 ± 1.35 27.13 ± 1.33 27.45 ± 1.23 32.85 ± 1.38 54.79 ± 1.35 39.36 ± 1.33 70.98 ± 1.24 48.02 ± 1.36 32.67 ± 1.32 41.25

Proposed 40.56 ± 1.42 28.75 ± 1.33 28.41 ± 1.24 33.73 ± 1.37 57.89 ± 1.43 44.22 ± 1.39 71.93 ± 1.19 49.62 ± 1.31 34.95 ± 1.34 43.34

Number of Shots = 5

ARML [20] 55.48 ± 0.80 36.49 ± 0.64 36.39 ± 0.63 44.15 ± 0.73 71.80 ± 0.68 52.69 ± 0.66 89.61 ± 0.44 66.61 ± 0.75 44.63 ± 0.72 55.31

Proposed 58.48 ± 0.72 39.78 ± 0.65 39.45 ± 0.65 45.26 ± 0.75 73.12 ± 0.69 62.18 ± 0.69 91.06 ± 0.42 68.32 ± 0.74 50.39 ± 0.73 58.67

(a) Choice of hyper-parameters (b) Impact of different design choices

Data Generalization: 1-Shot Training

Figure 3. Ablations. We used dataset generalization experiments with 1−shot training to study the impact of different design choices on
the performance of CAML: (a) Sensitivity of α, λ; (b) We explored two architectures for the image encoder (shallow CNN, ResNet18),
two task encoding strategies (Average pooling, RNN autoencoder) and the effect of using the inferred knowledge graph at test time.

CAML can handle task heterogeneity in multi-domain
adaptation. To further study the performance of CAML on
heterogeneous task distributions, in this experiment, we
considered DomainNet, a multi-domain benchmark. While
both the training and testing tasks were drawn from the
same collection of domains (ClipArt, InfoGraph, Painting,
QuickDraw), we ensured that the set of classes Ctr and
Cte were disjoint. In this setting, the increased complex-
ity of the task distribution makes the modulation process
more sensitive, when compared to the previous experiment.
For simplicity, we compare CAML with the best perform-
ing task-aware modulation baseline, i.e., ARML (our exper-
iments showed CAML was better than MuMo-MAML and
HSML as well). As shown in Table 2, CAML achieves per-
formance gaps of 2.4% and 2.6% on average, in 1−shot and
5−shot settings respectively.
CAML produces robust task encodings for dataset gen-
eralization. Finally, the dataset generalization experiment
investigates the ability of CAML to generalize to unseen
datasets. The lack of apparent semantic similarity between
the classes across different datasets makes this significantly
harder. However, improved performance in this problem
will be of the most practical value. In this experiment, we
evaluated the generalization using a leave-one-out protocol,
where we train the meta learner using 8 datasets in Meta-
Dataset and evaluate on the ninth dataset. From Table 3, we
find that CAML achieves significant performance gains in
all training settings – average gains of 2.1% and 3.3% over
ARML with the same experimental setup. The observed
performance improvements emphasize the efficacy of our

meta knowledge construction process, and the robustness
of the task representations even for unseen datasets.

5.2. Ablations

We now discuss the impact of different design choices.
(i) Choice of α and λ: Figure 3(a) illustrates the sensitivity
of different choices for α and λ. While α controls the degree
to which the history is retained, λ controls the penalty for
the distillation cost. These two parameters are used to trade-
off generalization (to new tasks) and customization (to ob-
served tasks) of the learner. We find that, when α is very
low, i.e., knowledge graphs evolves slowly, using a higher
λ hurts the performance. On the other hand, for a reason-
ably higher α = 0.2, the choice of λ becomes less sensitive.
In all our experiments, we used α = 0.2, λ = 0.05;
(ii) Choice of feature extractor: We studied the impact of
the choice of architecture for image embedding. In particu-
lar, we experimented with (a) ResNet-18; and (b) a shallow
CNN (similar to [18]), for the case of dataset generalization.
As showed in Figure 3(b), we find that the performance
gap between the two models is only ∼ 0.8% on average.
This behavior emphasizes the flexibility of implementing
CAML, wherein our contrastive distillation strategy is ef-
fective with even a shallow CNN model;
(iii) Choice of task encoding: We argued earlier that,
through the use of inherently effective image embeddings,
CAML can work with a naı̈ve task encoding. To val-
idate this claim, we re-implemented CAML using RNN
autoencoder-based task encodings and compared it against
the average pooling strategy. Similar to the previous ab-

2485

ARML

CAML

ARML

CAMLTSNE TSNE

(a) Analysis of ARML task representations (b) Analysis of CAML task representations (c) Training behavior

Figure 4. Analysis. (a)-(b) Graph Signal Analysis of the task encodings from ARML and CAML for a dataset generalization experiment.
For each method, we show the 2-D TSNE embeddings of task encodings for 1000 test tasks and the graph Fourier spectrum of the
accuracy score function defined at the nodes of a k-nearest neighbor graphs constructed from the task encodings (k=5); (c) Convergence
characteristics of CAML and ARML for a dataset generalization experiment in the 1−shot training setting.

lation, we used a dataset generalization experiment in the
1−shot setting (see Figure 3(b)). We find that the RNN
autoencoder did not lead to any significant changes in per-
formance (on average the difference was only 0.02%);
(iv) Influence of using meta knowledge during adaptation:
Though we used a simple protocol for adaptation, we also
experimented a variant, where we performed knowledge in-
fusion (using NMP) at test-time. As showed in Figure 3(b),
we found that this did not provide any additional gains (on
average 0.25% lower performance), thus implying that the
relevant prior information has been effectively distilled into
the embedding function;
(v) Choice of γ in Eq. (5): This parameter was identi-
fied using a standard hyper-parameter search. Since the
edge weights are learnable (i.e., prototype node features v
are updated), we find that the choice of γ is not sensitive.
We searched for γ in the range [1,12] and we noticed only
marginal variations (< 0.5% on average) across choices.

6. Analysis
In order to justify the improved behavior of CAML over

ARML, we analyzed the expressivity of their correspond-
ing task encodings using tools from graph signal process-
ing. More specifically, we first computed the set of task
representations ZCAML and ZARML respectively, for a set of
1000 unseen tasks from a dataset generalization experiment
(Traffic was the unseen dataset). We also obtained the ac-
curacies for all 1000 tasks on the query sets, which are de-
noted as fCAML and fARML. Our hypothesis is that if the task
representations are robust, two tasks with similar encodings
should lead to similar accuracy scores.

To test this hypothesis, we constructed k-nearest neigh-
bor graphs for both CAML and ARML embeddings to ob-
tain the graph adjacency matrices GCAML and GARML. Next,
we computed the graph Fourier basis using the pygsp pack-
age (link). Finally, we performed the graph Fourier trans-
form of the signal defined as a vector of accuracy scores.
The expectation is that, when the task encodings are ro-

bust, the resulting graph Fourier spectrum should concen-
trate most of the signal’s energy at low-frequencies. Fig-
ure 4(a)-(b) plots the Fourier spectra obtained for CAML
and ARML, when the number of neighbors k was set to 5.
Even with such a small neighborhood size, the spectra for
ARML contains non-trivial energy at even high frequencies,
thus indicating that the task encodings are not consistent
with the expected classification performance. In contrast,
for CAML, we notice that most of the signal energy is con-
centrated at low frequencies, thereby demonstrating its im-
proved generalization. This improved behavior is also ap-
parent from the convergence plots in Figure 4(c). The plot
shows the accuracy metric measured using the query set of
each of the training tasks observed during every iteration.

7. Conclusions

In this work, we presented CAML, a knowledge-
enhanced meta-learning approach for few-shot classifica-
tion. CAML employs a knowledge extraction process that
distills prior task information from the learnable knowledge
structure to the embedding function using a contrastive ob-
jective. This eliminates the need for using the knowledge
structure during adaptation and is able to aptly modulate the
meta-initialization solely using task encodings obtained via
simple average pooling of the prototype embeddings. Us-
ing empirical studies on different adaptation settings, we
find that CAML consistently outperforms existing base-
lines. This work motivates the further study of constructing
knowledge priors for few-shot adaptation under challenging
distribution shifts and semantic discrepancies.

Acknowledgements

This work was performed under the auspices of the U.S.
Department of Energy by Lawrence Livermore National
Laboratory under Contract DE-AC52-07NA27344. Sup-
ported by the LDRD Program under project 21-ERD-012.

2486

References
[1] Ting Chen, Simon Kornblith, Mohammad Norouzi, and Ge-

offrey Hinton. A simple framework for contrastive learning
of visual representations. In International conference on ma-
chine learning, pages 1597–1607. PMLR, 2020.

[2] Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-
agnostic meta-learning for fast adaptation of deep networks.
In ICML, pages 1126–1135. PMLR, 2017.

[3] Chelsea Finn and Sergey Levine. Meta-learning and
universality: Deep representations and gradient descent
can approximate any learning algorithm. arXiv preprint
arXiv:1710.11622, 2017.

[4] Chelsea Finn, Kelvin Xu, and Sergey Levine. Probabilistic
model-agnostic meta-learning. Advances in neural informa-
tion processing systems, 31, 2018.

[5] Gregory Koch, Richard Zemel, Ruslan Salakhutdinov, et al.
Siamese neural networks for one-shot image recognition. In
ICML deep learning workshop, volume 2. Lille, 2015.

[6] Yoonho Lee and Seungjin Choi. Gradient-based meta-
learning with learned layerwise metric and subspace. In In-
ternational Conference on Machine Learning, pages 2927–
2936. PMLR, 2018.

[7] Zhenguo Li, Fengwei Zhou, Fei Chen, and Hang Li. Meta-
sgd: Learning to learn quickly for few-shot learning. arXiv
preprint arXiv:1707.09835, 2017.

[8] Tsendsuren Munkhdalai and Hong Yu. Meta networks. In
ICML, pages 2554–2563. PMLR, 2017.

[9] Anusha Nagabandi, Ignasi Clavera, Simin Liu, Ronald S
Fearing, Pieter Abbeel, Sergey Levine, and Chelsea Finn.
Learning to adapt in dynamic, real-world environments
through meta-reinforcement learning. arXiv preprint
arXiv:1803.11347, 2018.

[10] Aaron van den Oord, Yazhe Li, and Oriol Vinyals. Repre-
sentation learning with contrastive predictive coding. arXiv
preprint arXiv:1807.03748, 2018.

[11] Xingchao Peng, Qinxun Bai, Xide Xia, Zijun Huang, Kate
Saenko, and Bo Wang. Moment matching for multi-source
domain adaptation. In Proceedings of the IEEE/CVF inter-
national conference on computer vision, pages 1406–1415,
2019.

[12] Adam Santoro, Sergey Bartunov, Matthew Botvinick, Daan
Wierstra, and Timothy Lillicrap. Meta-learning with
memory-augmented neural networks. In International con-
ference on machine learning, pages 1842–1850. PMLR,
2016.

[13] Jake Snell, Kevin Swersky, and Richard S Zemel. Prototyp-
ical networks for few-shot learning. In NeurIPS, 2017.

[14] Sebastian Thrun and Lorien Pratt. Learning to learn.
Springer Science & Business Media, 2012.

[15] Eleni Triantafillou, Hugo Larochelle, Richard Zemel, and
Vincent Dumoulin. Learning a universal template for few-
shot dataset generalization. In International Conference on
Machine Learning, pages 10424–10433. PMLR, 2021.

[16] Eleni Triantafillou, Tyler Zhu, Vincent Dumoulin, Pascal
Lamblin, Utku Evci, Kelvin Xu, Ross Goroshin, Carles
Gelada, Kevin Swersky, Pierre-Antoine Manzagol, et al.

Meta-dataset: A dataset of datasets for learning to learn from
few examples. In ICLR, 2020.

[17] Oriol Vinyals, Charles Blundell, Timothy Lillicrap, Daan
Wierstra, et al. Matching networks for one shot learning. Ad-
vances in neural information processing systems, 29, 2016.

[18] Risto Vuorio, Shao-Hua Sun, Hexiang Hu, and Joseph J
Lim. Multimodal model-agnostic meta-learning via task-
aware modulation. arXiv preprint arXiv:1910.13616, 2019.

[19] Huaxiu Yao, Ying Wei, Junzhou Huang, and Zhenhui Li. Hi-
erarchically structured meta-learning. In International Con-
ference on Machine Learning, pages 7045–7054. PMLR,
2019.

[20] Huaxiu Yao, Xian Wu, Zhiqiang Tao, Yaliang Li, Bolin
Ding, Ruirui Li, and Zhenhui Li. Automated relational meta-
learning. In ICLR, 2020.

[21] Jaesik Yoon, Taesup Kim, Ousmane Dia, Sungwoong Kim,
Yoshua Bengio, and Sungjin Ahn. Bayesian model-agnostic
meta-learning. In Proceedings of the 32nd International
Conference on Neural Information Processing Systems,
pages 7343–7353, 2018.

2487

