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Abstract

We introduce a method for instance proposal generation

for 3D point clouds. Existing techniques typically directly

regress proposals in a single feed-forward step, leading to

inaccurate estimation. We show that this serves as a crit-

ical bottleneck, and propose a method based on iterative

bilateral filtering with learned kernels. Following the spirit

of bilateral filtering, we consider both the deep feature em-

beddings of each point, as well as their locations in the 3D

space. We show via synthetic experiments that our method

brings drastic improvements when generating instance pro-

posals for a given point of interest. We further validate our

method on the challenging ScanNet benchmark, achieving

the best instance segmentation performance amongst the

sub-category of top-down methods.

1. Introduction

Instance segmentation is a critical component of seman-
tic 3D understanding, with applications including robotic
manipulation [16, 45, 31, 27, 30] and autonomous driv-
ing [36, 50, 3, 44, 29]. An essential step of instance seg-
mentation [13, 46, 43, 42, 19] is to generate a set of reli-
able instance proposals. For natural images, state-of-the-art
methods generally follow the top-down paradigm [43, 42],
where one first detects candidate instance proposals and
then prunes them via non-maximum suppression (NMS).
Conversely, bottom-up methods [21, 41] learn per-point em-

beddings that are then used to cluster points into a disjoint
set of proposals.

It is quite surprising that the dominance of top-down
methods in natural images (2D) is not reaffirmed when we
change our domain to point clouds (3D), where bottom-up
methods dominate public leaderboards [40, 1]. While they

*Work partially done during an internship at Google.

Figure 1. Teaser – (top) Given a query point, we define the corre-
sponding instance as the element-wise product of feature (points
with similar class) and spatial (points with similar localization)
affinities; this leads to formulating instance segmentation as a neu-
ral bilateral filter. (bottom) Our technique can be applied to large-
scale instance segmentation of real-world ScanNet scenes, leading
to the best-performance-in-class amongst top-down methods.

perform well, bottom-up methods rely heavily on hand-
crafted heuristics in the clustering step, such as the speci-
fication of spatial distance thresholds [19] and average in-
stance sizes [1]. Still, because of the performance gap re-
cent 3D computer vision literature naturally focused on in-
cremental contributions attempting to improve the perfor-
mance of bottom-up techniques, leaving top-down methods
relatively under-investigated. Therefore, one is left to won-
der why such a striking difference in approaching 2D vs 3D
instance segmentation exists, and whether it is possible to
devise a competitive top-down method.

In this work, we argue that a critical bottleneck exists
in the proposal generation process for point clouds. Early
works follow a similar process as for natural images, where

551



bounding boxes are regressed [24, 17, 49, 48], but this re-
gression does not generally lead to sufficiently accurate pro-
posals. We ablate these techniques on a simple synthetic
dataset, demonstrating how they lead to weak performance
(i.e. mAP<50%), while we achieve near-perfect results.

Our top-down technique generates the proposal associ-
ated to a given query on the input point cloud; see Fig-
ure 1. We encode a proposal as an affinity score: a [0,1]
point-wise labeling of the point cloud that is conditional on
a query point (i.e. as the query point changes, the affin-
ity scores changes). We draw inspiration from bottom-up
methods [40], and determine two points belong to the same
instance if they are “close” to each other in both space
and semantic class; see Figure 1. Unlike bottom-up meth-
ods which would utilize the dual-space affinity to group all
points into distinct clusters [19, 40], our proposal genera-
tion step identifies the points that are affiliated with a given
query. The semantic affinity compares the similarity of se-
mantic features in order to separate points from distinct ob-
ject types. The spatial affinity is responsible for bound-
ing the spatial extent of the instance in order to separate
semantically-similar objects from each other. Hence, query-
conditional affinity can be factorized in two terms, leading
us naturally to a neural bilateral filter formulation.

In representing spatial affinity, we note the predomi-
nant representation employed in the 2D image domain axis-
aligned bounding boxes. And while parameterizing spatial
affinity with 3D bounding boxes is possible, this either re-
quires careful handling of SE(3) equivariance [7, 26, 32],
or careful prediction of rotations [22]. We avoid this issue
by introducing the use of differentiable convex hulls [5] for
instance proposal. Note that convex hulls are universal ap-
proximators of bounding boxes, capable of implicitly mod-
elling rotated bounding boxes. From a different standpoint,
our technique, which models convexes as the level set of
a field, can be viewed as the first method that attempts to
apply the rapidly growing area of Neural Fields [47] to 3D
instance segmentation.
Contributions. We validate the effectiveness of our method
on both synthetic and real datasets leading to the following
contributions:

• we introduce a simple synthetic dataset that reveals a ma-
jor bottleneck in instance proposal generation for point
clouds;

• we pose the problem of instance segmentation as gener-
ating the affinity of points in the cloud to a query point;

• we formulate the computation of affinity as a neural bilat-
eral filter, and demonstrate how an iterative formulation
improves its performance;

• we introduce the use of coordinate networks representing
convex domains to model the spatial affinity in our neural
bilateral filter;

• collectively, these contributions results in a method that

tops the leaderboard in point cloud instance segmentation
on ScanNet amongst top-down methods.

2. Related works

We briefly describe the recent works on 2D and 3D in-
stance segmentation and review methods on mean shift and
bilateral kernel. For a survey on 3D instance segmentation,
please refer to [16], and to [12] for 2D instance segmenta-
tion.

2D instance segmentation. Top-down methods [13, 46]
predict redundant instance proposals for sampled locations
in images, which typically requires NMS to remove the
overlap. Mask-RCNN [13] detects a set of bounding boxes
as the initial instance proposals, and then applies a seg-
mentation module and NMS to output the final mask. Po-
larMask [46] enhances the performance by using “center
priors” – locations close the center of object tends to pre-
dict better bounding boxes. SOLO [42, 43] predict instance
masks for every location, obviating the need of segmenta-
tion module. This is similar to our method where we also
output instance masks without segmentation module. Other
mainstream instance segmentation pipelines [21, 4] follow
the bottom-up paradigm clustering pixels into segments as
instance proposals, resulting in performance typically infe-
rior to that of top-down methods.

3D instance segmentation. In contrast to the 2D im-
age domain, bottom-up methods dominate 3D instance seg-
mentation benchmarks. PointGroup [19] first labels points
with semantic prediction and center votes, and then cluster
points into segments as the instance proposals. Follow-up
works [1, 40] further enhance the clustering method in dif-
ferent aspects. HAIS [1] develops hierarchical clustering
to have better instance proposals. SoftGroup [40] proposes
to group points using soft semantic scores and introduces
a hybrid top-down/bottom-up technique via a proposal re-
finement module. While bottom-up methods rely on the
heuristics such as object sizes and distance threshold, top-
down methods largely lag in performance. Top-down meth-
ods [48, 49] rely on precise bounding box prediction as
the initial instance proposal. In more detail, 3DBoNet [48]
directly predicts a fixed set of 3D bounding boxes, while
GSPN [49] proposes a synthesis-and-analysis strategy to
predict better bounding boxes.

Neural Bilateral Filtering. The idea of combining bilateral
filtering with neural networks has been mostly in the context
of filtering and enhancing natural images [18, 10, 28]. How-
ever, to the best of our knowledge, learned bilateral filter-
ing has not been applied to the context of 3D point clouds,
although classical point cloud processing layers for point
clouds do exist [8].
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Figure 2. Overview – (a) Given a query (�), we regress the bounding hull of the corresponding instance; (b) Together with semantic
segmentation, this defines an affinity function on the entire point cloud; (c) This affinity can be threshold to generate a candidate instance
proposal; (d) Instance proposals are then grouped by non-maximal suppression to generate the scene’s instance segmentation.

3. Method – Figure 2

Given a point cloud of N points in D-dimensional
space P={pn} and corresponding C-dimensional features
F={fn}=F(P;✓F ), computed by a deep learning back-
bone with learnable parameters ✓F , we generate instance
proposals by regressing the bounding volume (i.e. a con-
vex hull in RD) corresponding to the instance of a query
point (pq, fq), where q⇠[1, N ] is the index of query. To-
gether with segmentation features, bounding volumes im-
ply an affinity A2RN between the query (pq, fq) and the
whole point cloud, which can be thresholded to generate an
instance proposal (Section 3.1). These instance proposals
are then aggregated by classical non-maximum suppression
(NMS) to generate the desired instance segmentation.

3.1. Affinity definition

As illustrated in Figure 1, the affinity of points in the
point cloud to a query (pq, fq) can be intuitively defined as
the element-wise product of two affinities:

• Affinity in feature space: whether a point in the point
cloud belongs to the same class as the query;

• Affinity in geometric space: whether a point in the point
cloud belongs to the same spatial region as the query.

More formally, we define our affinity function A(q) as:

A(q) = Ap(q) � Af (q), (1)
Af (q)[n] = exp(�⌧f · Kf (q, n)), (2)
Ap(q)[n] = exp(�⌧p · Kp(q, n)), (3)

where � is the element-wise product, [n] indexes the n-th
element of the array, and ⌧ are hyperparameters controlling
the bandwidth of the kernels. We can then learn the param-
eters of kernels Kf and Kp, whose internals are provided in
what follows, by directly attempting to reproduce the target
affinity given a randomly drawn query point:

Eq⇠[1,N ]

��A(q) � Agt(q)
��2

1
. (4)

Figure 3. Spatial similarity – The semantic feature is uninfor-
mative in separating the two instances: (left) an isotropic affinity
kernel w.r.t. the query point would mistakenly assign points on
the left instance to the right one, regardless of bandwidth choice;
(right) a non-isotropic kernel does not suffer this shortcoming.

Kf – semantic similarity. We measure whether two points
have similar semantic classes via:

Kf (q, n) = k�(fq;✓�) � �(fn;✓�)k2
2 . (5)

where �(·;✓�) is a small projection layer with parameters
✓� that extracts semantic similarity features from the (task
agnostic) backbone features f .
Kp – spatial similarity. While classical bilateral filter-
ing employs isotropic kernels to account for spatial similar-
ity (i.e. gaussian with tunable bandwidth), this is not opti-
mal for instance segmentation. We illustrate our intuition in
Figure 3, where the proximity of two objects of the same se-
mantic class implies that no isotropic kernel centered at the
query point could be used to isolate the desired instance. We
achieve this while retaining commutative symmetry

1:

Kp(q, n) = C(pn�pq; (fq;✓ )) + C(pq�pn; (fn;✓ )),
(6)

where  (·;✓ ) is a small projection layer with parameters
✓ that extracts spatial similarity features from the generic
backbone features f . This leads us to the question of how
to design the function C(x; f). One potential solution is to
define C as a coordinate neural network [47] whose shape is
described by the feature f , and that is evaluated at location

1Affinity ought to be symmetric, because if point pn belongs to the
same instance as pq then we should ideally have K(q, n) ⌘ K(n, q).
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x. We opt to model C with CvxNet [5] – a coordinate neural
network that is a universal approximator of convex domains.
This choice is particularly well-suited, because:
• convex hulls are a topologically equivalent, yet more flex-

ible and detailed replacement for 2D/3D bounding boxes,
the core representation employed in 2D/3D object detec-
tion/instance segmentation, making them a particularly
well-suited choice for our problem;

• compared to coordinate neural networks implemented
as multi-layer perceptrons, CvxNet-like hyper-networks
generate very small output networks and are more mem-
ory efficient, allowing us to use larger mini-batch sizes
leading to faster training.

We further detail the design of C in Section 3.2, which will
fulfill the following base property with respect to the convex
domain specified by the feature f :

C(x; f)

(
= 0 if x inside convex defined by f ,

> 0 otherwise (⇡ boundary distance).
(7)

3.2. Convex parameterization C(x; f)

From f , via a fully connected decoder (with
shared parameters ✓D), we derive the nor-
mals {nh2RD | knhk2 =1, h⇠[1, H]} specifying the
H half-space orientations, and their distances {dh2R+}
from the origin o2RD:

o, {nh}, {dh} = D(f ;✓D), (8)

and define the distance of x from the h�th hyperplane as:

Hh(x) = nh · (x + o) + dh, (9)

which can be assembled into an (approximate, see [5]) dis-
tance function from the convex polytope as:

�(x; f) = max
h

{Hh(x)}, (10)

finally leading to our convex spatial proximity:

C(x; f) = max(�(x; f), 0), (11)

which can then, if necessary, be converted as an indicator
function (i.e. occupancy) for a convex [5]:

O(x; f) = sigmoid(��(x; f)). (12)

3.3. Neural Bilateral Filter – Figure 4

The resemblance of (1) to the product of kernels in bi-

lateral filtering [14, 39] inspired us to investigate the use
of iterative inference. Specifically, given a query, we ad-
vect both query position and features, where the advection

1: Input:
2: q 2 [1, N ] . query index
3: P 2 RN⇥D

. (const) cloud positions
4: F 2 RN⇥C

. (const) cloud features
5: function NEURALBILATERALFILTER

6: p(0) = pq = P[q]
7: f (0) = fq = F[q]
8: for t = 1, . . . , T do

9: A(t�1)(q) = A(p(t�1)
, f (t�1))

10: A(t�1)(q) = A(t�1)(q)/kA(t�1)(q)k1

11: p(t) = A(t�1)(q) · P
12: f (t) = A(t�1)(q) · F
13: end for

14: Return A(T )(q)
15: end function

Figure 4. Neural Bilateral Filter (Section 3.3)– Given a query
(position and feature) we iteratively apply the learned filters to ad-
vect the query point position and features. Ultimately, the final
attention A(T )(q) is used for downstream tasks.

weights are given by the affinity definition from (1). Note
that the point cloud P and corresponding features F remain
unchanged, only the query is affected. With a slight abuse
of notation, we denote A(t)(q) as the affinity at t-th iteration
for the query q. The outcome is simply that, rather than at-
tention A(0)(q)=A(q) in downstream processing, A(T )(q)
will instead be used.

3.4. Training

To train our network, we optimize:

arg min
✓�,✓ ,✓D,✓F

Laffinity + Lsem + Lpoly + Lshift. (13)

Of these losses Laffinity is our core loss, while the rest pro-
vide “skip-connection” supervision to the network to facil-
itate learning. Since our method performs iterative infer-
ence, we discount (↵=0.8) contributions of later iterations –
we found empirically that focusing on later iterations cause
training instability:

Laffinity = Eq⇠[1,N ]

TX

t=1

↵
t
���A(t)(q) � Agt(q)

���
2

1
(14)

Semantic supervision. To encourage the semantic features
in (5) to represent only the semantic similarity, we inject
semantic information by mapping intermediate point-wise
backbone feature to semantic logits (see Figure 5), and su-
pervising with ground truth labels sgt

q :

Lsem = Eq⇠[1,N ]

⇥
CrossEntropy(sq, s

gt
q )

⇤
(15)
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Figure 5. Architecture – The point cloud is processed by a back-
bone to produce fq=f (0)q , which is then processed by a neural bi-
lateral filter by our kernels K⇤. We supervise sq via ground truth
semantic classification labels, where S1 is a 2-layer MLP, and S2

is a linear layer.

Instance centroid supervision. To minimize the learning
complexity of D, we incentivize predicted convex hulls to
be expressed with respect to a stable coordinate frame2. We
employ the ground truth instance origin cgt

q and supervise
the predicted origin relative offset:

Lshift = Eq⇠[1,N ]

TX

t=1

↵
t
���(pq + o(t)

q ) � cgt
q

���
1

(16)

where the offset o(t)
q is computed from D(f (t)

q ).
Convex occupancy supervision. Note the affinity su-
pervision in (14) only penalizes points that are incor-
rectly marked as outside the convex hull. To correct this,
let Ogt

q (p) be the ground truth occupancy of point p belong-
ing to the convex hull of query q, we then penalize:

Lpoly = EqEn

TX

t=1

!q,n↵
tkO(pn�pq; (f (t)

q ))�Ogt
q (p)k2

2

(17)

where !q,n is a term to control class imbalance: if the in-
stance corresponding to q has Q points and the scene has N

points, then !q,n=1/Q if point n belongs to the instance,
and !q,n=1/(N�Q) otherwise.

3.5. Implementation details

We briefly discuss the core implementation details.
Network architecture. For the backbone we utilize the U-
Net-like backbone in [19, 1] which is implemented with
sparse convolution [11]. We set the dimension C of the
backbone feature f to 32 as in [1].
The projection layers �(·;✓�) in (5) and  (·;✓ ) in (6).
The layer � is composed of semantic layers (S1) and an em-
bedding layer (S2). The semantic layers convert the back-
bone features into semantic scores with a two-layer MLP

2If two points a and b belong to the same instance, then the predicted
convex origin oa ⌘ ob, and the same half-space configuration can be used
for all queries within an instance; Note this is similar to the coordinate
frame normalization in NASA [6].

with 32 neurons and then outputs the semantic feature with
a linear layer of C neurons. Note that during the itera-
tive process, we directly update the query’s semantic fea-
ture without re-using the semantic branch. The embedding
layer is a linear layer of C neurons. For  we use a small
projection layer and rely on the D for reasoning about the
3D convex polytopes. Specifically, we use a simple identity
mapping layer as the  , which we found to be good enough.
The polytope network D(·;✓D) in (6). The network D
consists of two MLP blocks. The first block – a two-layer
ReLU-activated MLP with 128 neurons – predicts o from
the query feature f and a residual to f . We then add the
residual to f and utilize the second block – a three-layer
ReLU-activated MLP with 128 neurons – to predict nor-
mals and offsets. For predicting the plane offset dh, we
use the strategy from [9] and discretize the offset values
into 32 equal bins in the range [0, 8] meters, and obtain
the predicted value via the weighted sum of classification
scores. We represent each 3D convex polytope with twelve
planes, striking a good balance between precision and com-
putational load, which linearly increases with the number of
planes. Finally, ⌧F=1 and ⌧P=50 in (2) and (3).
Forming the training batch. While possible, training with
all points in the point cloud is impractical and inefficient,
as it would create a quadratic increase in both memory and
computation. We use a batch of four scenes, and randomly
sample 32 random points/scene during training to form a
single training sample. Our algorithm has the computa-
tion and space complexity linear to the number of sampled
queries. We further set the number of mean shift iterations
T=2, which we ablate in Sec. 4.3.
Training. As in RAFT [37], we detach the gradient flow
between different iterations to stabilize training. We use the
Adam optimizer [20] with cosine annealing for the learning
rate [25], with 0.001 as the initial learning rate. We further
follow standard data augmentation/voxelization schemes of
existing instance segmentation methods [1]. Coefficients
for all loss terms are set as one.
Non-maximum suppression. To obtain the final instance
segmentation results for the ScanNet dataset we use stan-
dard non-maximum suppression [43, 35] to remove redun-
dant proposals. In more details, we visit a queue of input
candidate proposals in confidence score order; see Sec. 4.2.
For each candidate proposal, we compute the IoU with
all other candidates and merge/prune those that have IoU
higher than 0.25.

4. Results

In our results section, we:
• Sec. 4.1 – validate our method in a controlled synthetic

setup, where we show that current proposal generation
methods have limited effectiveness;
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Line segment Circle Average

mAP AP50 AP25 mAP AP50 AP25 mAP AP50 AP25

BBox 46.4±1.1 67.7±1.9 69.8±1.1 21.2±1.4 54.7±2.3 90.6±0.3 33.8±0.9 61.2±1.7 80.2±0.7

BBox w/ center 54.1±1.6 77.9±1.5 80.4±1.2 28.0±0.8 64.0±0.7 89.2±0.7 41.0±1.0 71.0±0.7 84.8±0.8

BBox + GT filtering 53.9±1.4 68.2±1.6 69.0±1.1 31.9±1.9 71.1±1.7 91.7±0.5 42.9±1.2 69.7±1.2 80.3±0.5

BBox w/ center + GT filtering 65.3±1.7 79.3±1.5 80.1±1.5 41.4±1.1 75.4±1.4 90.3±0.5 53.3±1.1 77.3±0.6 85.2±0.9

Ours 95.9±0.3 97.6±0.4 97.9±0.3 98.2±0.5 98.9±0.3 99.3±0.3 97.1±0.2 98.3±0.2 98.6±0.1

Table 1. Query-conditioned instance proposal generation – we randomly sample a single query for each instance and generate the
non-overlapped proposals. We report the mean and standard deviation of average precision by running the evaluation pipeline five times.

• Sec. 4.2 – demonstrate the potential of our method in a
more complex instance segmentation pipeline on the real-

world ScanNet dataset [2];
• Sec. 4.3 – perform an ablation study.

4.1. Synthetic dataset

We create a 2D synthetic dataset composed of lines, cir-
cles, and random noise; see Fig. 6. For each scene, we ran-
domly place 16 primitives sampled from a large pool (10k in
total) of randomly generated line segments and circles in a
2D space. We sample 4096 points for foreground instances
and 512 points for the background noise. To keep a simi-
lar point density for instances of different sizes, we make
the number of points for each instance proportional to the
length of the primitive instance. We generate these scenes
on-the-fly while training and keep 100 scenes for testing.
We limit the 2D coordinates to be within [�4, 4] to match
the typical size of ScanNet scenes, allowing us to reuse the
same backbone across both synthetic and real scenes.
Metrics. With the dataset, to show that instance propos-
als are a bottleneck, we are interested in their direct eval-
uation without any downstream Non-Maximum Suppres-
sion (NMS) heuristic. We randomly select a single point
for each instance in the point cloud and measure the quality
of the generated proposal for the selected point. Once the
proposals are provided, we use the standard metrics used in
the ScanNet benchmark [2]—AP50 and AP25, which are the
accuracy computed with the intersection-over-union (IoU)
threshold of 50% and 25%, respectively, and mAP, which is
the average AP over different thresholds ranging from 50%
to 95% with the step size of 5%.
Baselines. A commonly-used baseline is to directly pre-
dict the bounding box for each instance, within which post-
processing is applied [24, 17, 49, 48]. To do so, similarly to
GICN [24], we train a 2-layer MLP that predicts the bound-
ing box, parameterized by its two corners relative to the
query. We further compare against VoteNet [33], where one
first regresses a spatial offset given a query point and then
regresses the bounding box corners relative to the offset.
For these baselines, the bounding box often contains points
from noise or other classes (lines vs circle), so we utilize
the semantic predictions from the backbone to filter those

BBox BBox w/ center prediction Ours

Figure 6. Qualitative/Synthetic – Our method generates nearly
perfect query-conditioned instance proposals while the baseline is
limited by the noisy bounding box. Note the red large points are
the sampled queries. We color the points detected by different
instance proposals. And the black points are the background points
or the points detected by more than two instance proposals.

points out of each instance proposal. Clearly, this would
not perfectly filter out cases where the same class instances
overlap; hence, we further propose an oracle baseline which
uses ground-truth semantic and instance labels as an oracle
for filtering, thus emulating an ideal post-processing step
for the methods based on bounding boxes. We train with
10k iterations, which is enough for all methods to converge
on this simple dataset.

Results – Tab. 1 and Fig. 6. Our method outperforms
the baselines by a significant margin. Despite the success
of bounding box proposals in 2D images, these method
achieves a surprisingly low performance on this simple syn-
thetic dataset, even when ground-truth filtering is employed.
On the other hand, our method delivers near-perfect results,
as one would expect for such a simple dataset. For the
baselines, as shown in the examples in Fig. 6, we find that
many of the proposals are slightly off, with some being
completely off. While small errors in bounding box posi-
tion/size are not critical for detection in 2D images, they
can be catastrophic for point clouds sampled from the object
surface near the bounding box exterior, where a small mis-
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2
Figure 7. Visualizing the spatial kernels – Our method learns
the effective convex hulls that act as the tight bounding box of the
target instance. For each convex hull, the magenta lines are the
learned half-planes. The red polygon is the intersection between
half-planes. Points are colored with spatial similarity where red
means larger similarity while blue means smaller similarity.

Methods Validation Test

mAP AP50 AP25 mAP AP50 AP25

Bottom-up
PointGroup [19] 34.8 56.7 71.3 40.7 63.6 77.8
SSTNet [23] 49.4 64.3 74.0 50.6 69.8 78.9
HAIS [1] 43.5 64.4 75.6 45.7 69.9 80.3

Mix Dyco3D [15] 35.4 57.6 72.9 39.5 64.1 76.1
SoftGroup [40] � 67.6 78.9 50.4 76.1 86.5

Top-down

3D-SIS [17] � 18.7 35.7 16.1 38.2 55.8
GSPN [49] 19.3 37.8 53.4 � 30.6 �
3D-Bonet [48] � � � 25.3 48.8 68.7
Ours 36.0 55.5 71.1 35.3 55.5 71.8

Table 2. Quantitative/ScanNetV2 – instance segmentation
benchmark; our method provides the top performance for the top-
down category. For looser thresholds our method performs slightly
worse, which may be improved with advanced post-processing.

alignment could remove entire sections of geometry. For
example, in Fig. 6 top-left, the bottom right circle is de-
tected with a bounding box that would be considered ac-
curate should one consider only the bounding box, but the
majority of the point cloud points for this circle lie outside,
as the box is slightly smaller than the actual circle.
Visualizing the spatial kernels – Fig. 7. We visualize the
learned spatial kernel. As shown, the learned spatial kernel
forms a polytope that tightly bounds the instance in ques-
tion as desired. These learned kernels enable our method
to easily separate different instances spatially, even without
considering semantics. Such easy separation would not be
possible, for example with standard Euclidean distance as
points far away from each other on the line or on the circle
would be confused with other nearby points.

4.2. Instance segmentation on ScanNetV2

The ScanNetV2 [2] dataset consists of 1613 scenes in
total with 1201, 312, and 100 scenes dedicated for train-
ing, validation, and testing, respectively. We use the stan-

dard evaluation pipeline and report the standard metrics,
the same ones as the ones used for the 2D synthetic data.
To evaluate our method for top-down instance segmenta-
tion pipeline for point clouds, we introduce basic post-
processing steps that are commonly used in the litera-
ture [38, 43, 42, 24], as well as a scoring function to pro-
vide confidence scores for each instance proposal, as re-
quired by the benchmark protocol. Notably, our post-
processing steps are relatively simple compared to tricks
like “matrix NMS” [42] and query sampling using “center
priors” [24, 38]. Specifically, we first segment out all back-
ground points using �(fi) in (5). We then sample 256 query
points from the predicted foreground points and generate
256 instance proposals. When sampling queries, we apply
farthest point sampling [34] to ensure maximum coverage.
We then remove redundant instance proposals by applying
Non-Maximum Suppression (NMS) to instance proposals
with an IoU threshold of 30%. We train the entire pipeline
end-to-end for 500 epochs as in [1].
Confidence scores. As the benchmark protocol requires in-
stance proposals to have associated confidence scores, we
provide a confidence score for each proposal based on both
the semantic segmentation score (provided by sq) and an
MLP that is trained to regress the IoU of each proposal
with respect to ground-truth. Specifically, we train a two-
layer MLP with an `1 loss for the IoU. The final confidence
score for each proposal is computed by multiplying the re-
gressed IoU value and the average semantic segmentation
confidence. We also use these confidence scores and NMS
to filter our background points, which typically have low
foreground semantic confidence.
Dropping low-confidence proposals. In addition to the
above, we drop proposals that have low confidence values
(i.e. proposals with semantic confidence lower than 0.1, or
with estimated IoU less than 0.2). Furthermore, we drop
proposals that have different predicted labels for the pro-
posal and the query point. These proposals are from points
that are often located where two different instances of dif-
ferent classes meet, and hence are unreliable.
State-of-the-art comparisons – Table 2 and Fig. 8. Our
method shows promising results compared to the state-of-
the-art. Among purely top-down methods, our method
achieves top performance validating the effectiveness of
our instance proposals generation. We leave further im-
provement via better post-processing steps for future work.
While our method performs worse than the most recent
bottom-up methods or hybrid methods [40], we note that
these are methods heavily fine-tuned to achieve SOTA
benchmark results, whereas ours is not. Note that our top-
down method beats the leading bottom-up method that was
SOTA around CVPR 2020 [19]. Considering that top-down
methods have intriguing properties (e.g., their dominant
performance in image benchmarks [43, 42] and better gen-
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5
Figure 8. Qualitative/ScanNet – Instance segmentation results
on test set.

num iter 1 2 3 4

mAP 94.46±0.55 96.80±0.35 96.54±0.40 96.18±0.68

1

0-th iter 1-st iter 2-nd iter

Figure 9. Ablation: number of iterations T – (top) We report
the average and standard deviation of mAP by repeating the ex-
periment 5 times. (bottom) Our algorithm shifts the queries (red
points) to the centroid after a small number of iterations.

eralization ability), and are worthwhile to explore further,
we believe our work provides progress for instance segmen-
tation on point clouds.

4.3. Ablations

Number of iterations – Fig. 9. Our algorithm is capable
to shift query points to the center of each instance in just
two iterations. This leads to queries from the same instance
to share a similar coordinate frame, leading to a reduction
of representation complexity as noted in NASA [6]. This
is beneficial, as a smaller number of iterations reduces the
GPU memory load of training. Training with more than
two iterations seems to simply cause training to become less
stable and introduces slight performance degradation.
Losses – Fig. 10. With the proposed regularizers, our algo-
rithm learns tighter instance polytopes (w/ Lpoly and Loffset)
and semantic similarity (w/ Lsem), leading to significantly
improved performance. Note that, since we evaluate AP
for each the semantic category, we provide ground-truth se-
mantic label for the models trained without semantic pre-

loss w/o Lpoly w/o Lshift w/o Lsem Full

mAP 95.42±0.79 95.38±0.34 95.06±0.62 96.80±0.35

Figure 10. Ablation: losses – We report the average and standard
deviation of mAP by repeating the experiment 5 times.

diction (i.e., w/o Lsem), Finally, note also that even without
Lpoly and Loffset, our algorithm can still learn polytopes that
roughly segment instances.

5. Conclusions

We have proposed an instance proposal method for
point clouds. We formulate instance proposals as a query-
conditioned attention model and employ neural bilateral fil-
tering to provide much more accurate proposals than di-
rect regression. We demonstrate through synthetic data
that the proposal generation process is indeed a bottleneck,
which our method can significantly improve. We further
demonstrate the potential of our method on the ScanNet
dataset, achieving competitive performance amongst top-
down methods.

Limitations and Future works. While we have shown
clearly that a bottleneck exists, and that it can be avoided,
its benefit has not been as strikingly revealed when com-
pared to pipelines that are carefully engineered for instance
segmentation. We believe there is much room for this po-
tential to be realized, similar to how top-down methods are
the dominant strategy for natural images [43, 42].
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