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Figure 1: Qualitative Results of Reconstruction by Encoding Facial Priors (ReEnFP). We focus on the task of detail-
preserving face reconstruction, which recovers texture and geometry with vivid details manifestation from input image. The
bottom-left shows the refined mesh obtained by geometry prior encoding. The bottom-right demonstrates the reconstructed
appearance through texture prior encoding.

Abstract

We address the problem of face modeling, which is
still challenging in achieving high-quality reconstruction
results efficiently. Neither previous regression-based nor
optimization-based frameworks could well balance between
the facial reconstruction fidelity and efficiency. We no-
tice that the large amount of in-the-wild facial images con-
tain diverse appearance information, however, their un-
derlying knowledge is not fully exploited for face model-
ing. To this end, we propose our Reconstruction by En-
coding Facial Priors (ReEnFP) pipeline to exploit the po-
tential of unconstrained facial images for further improve-
ment. Our key is to encode generative priors learned by
a style-based texture generator on unconstrained data for

fast and detail-preserving face reconstruction. With our tex-
ture generator pre-trained using a differentiable renderer,
faces could be encoded to its latent space as opposed to
the time-consuming optimization-based inversion. Our gen-
erative prior encoding is further enhanced with a pyramid
fusion block for adaptive integration of input spatial infor-
mation. Extensive experiments show that our method recon-
structs photo-realistic facial textures and geometric details
with precise identity recovery.

1. Introduction
Reconstructing 3D facial geometry and texture from a

single image is an important task in the computer vision
and graphics field, leading to countless applications such as
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face editing [54, 16], virtual reality [11, 8] and face recog-
nition [43, 72]. It is very challenging to efficiently recon-
struct realistic and identity-preserving appearance from a
single input image. 1) Studies relying on parametric model
such as 3D Morphable Model (3DMM) [7, 9, 23, 56, 55]
assume linear property of facial appearance space. It sacri-
fices model expressiveness to describe detailed and realis-
tic texture, thereby causing non-realism or blurry artifacts.
2) Another slew of studies [21, 53] that employ Generative
Adversarial Networks (GANs) [24] could generate realis-
tic texture, but they require laborious data collection proce-
dure. This usually demands expensive 3D-scanning equip-
ment and long-time monitoring from experienced special-
ists. The data diversity and quality will further constrain
upper limit of model performance.

On the other hand, large corpus of in-the-wild images
contain diverse appearance information. Intuitively, they
are potentially beneficial for face reconstruction. Several
recent attempts have been made [54, 43, 20] to involve in-
the-wild images. Nevertheless, some of them [54, 43] pro-
duce unsatisfactory results [54]. Particularly, [20] requires
a large amount of time for optimization and a tedious data
post-processing procedure, which limits their applications.
The problem of how to exploit the underlying rich informa-
tion within real-world images for high-fidelity face recon-
struction is still worth exploring.

To tackle the above challenge, we propose the Recon-
struction by Encoding Facial Priors (ReEnFP) pipeline,
aiming to take full advantage of StyleGAN’s expressive
power with a sophisticated encoding strategy. The key is
to learn high-quality facial priors with style-based gener-
ators, and encoding faces into the learned latent spaces
for fast and detail-preserving face reconstruction. Specif-
ically, for realistic and diverse appearance representation,
we adopt a style-based generator with modifications on the
dual representation inspired by [27]. Rather than using lim-
ited UV texture dataset [21], enormous in-the-wild images
are employed to facilitate model performance. Aided by a
differentiable renderer [22], modeling UV textures solely
with real-world images can be achieved through 3DMM-
guided rendering and adversarial training. To ease the train-
ing difficulty and encourage superior appearance modeling,
this generator is trained through dual learning of a set of
(pseudo) albedo and illumination. Particularly, we devise a
low-dimensional implicit illumination code which functions
in a similar way as the shading process in Spherical Har-
monics (SH) Lighting [47]. It synthesize ratio images [27]
progressively by weight modulation operation. Baking it
into the pseudo albedo [27], the final UV texture is yielded.
Similarly, a displacement map [49, 67] generator describ-
ing the structural details like winkles is also introduced as
geometric prior.

While the pre-trained facial priors in the generators guar-

antee both the diversity of the identities and the quality for
recovery, a strategy is required to comprehensively exploit
its potential. A natural approach is to project the image fea-
ture to W or W+ space [2, 57, 48] of the generator by op-
timization. However, optimization-based methods are too
slow to be acceptable on many cases. Thus we naturally
seek an efficient and effective way of encoding images into
the learned generative priors. Specifically, we involve a
new encoder structure, termed as Adaptive Fusion Block, to
adaptively integrate extracted multi-resolution spatial fea-
tures with forwarded features of the fixed generators for
better identity preservation. Armed with this encoder, the
high-fidelity predictions of both textures and geometric dis-
placements can be achieved in an efficient manner.

Our contributions are summarized as follows: 1) We
propose the Reconstruction by Encoding Facial Pri-
ors (ReEnFP) framework, which achieves efficient detail-
preserving face reconstruction with high-quality texture and
detail-enhanced geometry. 2) For the purpose of mining the
facial diversity underlying large corpus of in-the-wild im-
ages, a novel style-based architecture is proposed to learn
appearance prior with dual representation. 3) A pyramid fu-
sion block is devised for generative prior encoding, which
facilitates identity-consistent texture reconstruction and de-
tail preservation.

2. Related Work
3D Morphable Models. Blanz and Vetter [6] first proposed
the concept of 3DMM that represents face model with linear
bases of shape, expression and texture by Principal Com-
ponent Analysis (PCA) on collected 3D facial scans. The
3DMM model is composed of shape bases Aid, expression
bases Aexp and mean shape S. A template face mesh is
constructed as S = S + Aidαid + Aexpαexp after fitting the
shape and expression coefficients α. Due to the inherently
linear nature, approaches [6, 7, 9, 23, 29, 37] regressing
3DMM coefficients usually lack facial details and likeness
of the subject. To extend the representation power of lin-
ear model, later approaches et al. [60, 61, 59] propose non-
linear 3DMM, encoding shape, texture and camera parame-
ters as latent codes in deep neural network. While spanning
wider space and outperforming previous work, their results
still suffer from blurry and low-quality artifacts.
Non-Parametric Models. Some studies [30, 52, 3, 69, 71,
41] do not rely on the parametric model but directly regress
3D face model such as position map, depth or face norm.
Despite higher flexibility, these methods [30, 3, 19] usu-
ally capture limited geometric details since many of them
utilize synthetic data created by the statistical model as su-
pervision. Other model-free approaches [71, 65] with only
weakly symmetric constraints are able to recover more de-
tails but suffer from appearance ambiguity and incorrect ge-
ometric structure.
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Figure 2: The Architecture of Texture Prior Modeling. The input latent codes za and zi modulate common spatial features
to generate p-albedo and p-illumination within two branches, respectively. After integrating and rendering them via differen-
tiable renderer, we enforce rendered image as realistic as possible by adversarial loss Ladv .

Detailed Reconstruction. A lot of work [10, 35, 38] has
been conducted to yield vivid textures. For producing high-
resolution photorealistic 3D faces, Lattas et al. [35] capture
a large dataset of shape and reflectance, with which their
methodology exhibits an unprecedented level of realism.
Another slew of studies [51, 49, 26, 67] attempt to recover
mesoscopic geometric facial details. Usually, they will re-
fine an obtained coarse parametric model by adding facial
details with displacement. Richardson et al. [49] and Guo
et al. [26] regress displacement maps to reconstruct fine-
grained structures in visible regions, resulting in unsatisfac-
tory artifacts in the occlusion part. Yang et al. [67] make a
high-resolution 3D scanned dataset and presents a pix2pix
framework for displacement prediction, but still not robust
to occlusions. Feng et al. [18] present an approach to learn
animatable details without paired 3D training data, causing
incorrect details and noise.
GAN inversion and Face Reconstruction. Recent years
have witnessed unprecedented advances of GAN [33, 32] in
achieving superior image quality with high realism. Tons of
works [2, 48, 48, 1] have studied how to effectively and effi-
ciently invert to the desired point of manifold. Researchers
either directly optimize a latent code through gradient de-
scent [13, 42] or design an encoder [4, 5, 57, 48, 2] to map to
it. Gecer et al. [20, 21] achieves high-quality texture com-
pletion by minimizing the error of synthesized image, but
consumes huge time on optimization. Furthermore, pre-
vious methods [4, 5, 57, 48, 2] mainly invert to the low-
dimensional latent code in which case the perfect inversion
may not lie in this space [57].

3. Methodology

We tackle the problem of single-image facial reconstruc-
tion, with the goal to recover realistic textures with fine-
grained geometric details. To do so, we present Recon-

struction by Encoding Facial Priors (ReEnFP) pipeline,
where the facial reconstruction procedure is achieved by
mapping input image to latent space of facial prior network.
The whole architecture is depicted in Fig. 3. In this sec-
tion, we first introduce the formulation of facial appear-
ance prior by dual learning of pseudo-albedo and pseudo-
illumination (Sec.3.1), then we briefly provide the dataset
and design of geometry generator (Sec.3.2). Finally, we il-
lustrate the facial prior encoding pipeline and its training
strategy (Sec.3.3).

3.1. Facial Appearance Prior Learning

The key of facial appearance prior learning is to rep-
resent person-specific textures distribution by a generator
Gtex. Since the appearance is supposed to be indepen-
dent of facial poses and expressions, we devise the gen-
erator to synthesis facial textures that comply with prede-
fined layout according to UV parameterization of paramet-
ric model [39]. The whole training architecture is illus-
trated in Fig. 2. Two random noise, za and zi are separately
mapped to style codes wa and wi, accounting for p-albedo
and p-illumination generation respectively. After integrat-
ing them [27], we obtain UV texture. It will be rendered to
image space controlled by the pose and shape of a randomly
sampled real image. Masking out backgrounds, a discrimi-
nator D is introduced to constrain rendered image close to
real one by adversarial loss Ladv .
Multi-View Rendering. One problem of current rendering
strategy is that the generator might cheat by only synthe-
sizing visible appearance for a given 3D mesh. To avoid
incomplete UV texture map generation, we render texture
UV under multiple views to ensure reasonable generation
of different angles. Specifically, we enforce multiple occur-
rence of the same texture code within a batch with proba-
bility pmv . The pmv is empirically set to 0.5 in our experi-
ments.
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Figure 3: Overall architecture of Reconstruction by Encoding Facial Priors (ReEncFP) pipeline. We encode input image
to latent space of well-trained texture and geometry generators. Adaptive Fusion Block (AFB) plugged in generators allows
for comprehensive utilization of spatial features.

Dual Learning of Pseudo Albedo and Illumination. Al-
though concentrating on synthesizing following fixed UV
parameterization, our model still needs to handle infinite il-
lumination conditions. In order to ease the texture learn-
ing difficulty, we propose to implicitly learn a set of pseudo
albedo and illumination1. Notably, though they are not de-
signed for perfect disentanglement, such formulation still
benefits learning procedure. Inspired by the effective-
ness of ratio-image based relighting [27], we represent p-
illumination by ratio image, which will be multiplied to the
Y channel of p-albedo and obtain the final UV texture.
Modulation as Shading. Recall that in Spherical harmonic
lighting [47], irradiance is a quadratic polynomial of the co-
ordinates of the (normalized) surface normal n, which is
formulated as

E(n) = ntMn. (1)

The M is a symmetric 4x4 matrix, depending on 9 light-
ing coefficients. If we consider surface normal as a fea-
ture map, the rendering process is simply convolution by a
kernel M determined by a few parameters. Naturally, this
motivates us to simulate it with weight modulation [34], in
which case we expect the network to automatically learn
to synthesize p-illumination from extracted facial structure
feature. Hence, we design an illumination latent code zi
with only 9 dimensions, responsible for modulating com-
mon features to generate p-illumination images.
P-Albedo Regularization. To constrain constant skin tone
and eliminate highlights or shadows, we apply symmetric
loss Lsym and standard deviation loss Lskin on blurred tex-
ture map following previous work [39].

1They are referred to as p-albedo and p-illumination for clearer presen-
tation.

Figure 4: Geometry Refinement with Displacement.
From left to right list input image, coarse shape by 3DMM,
predicted displacement and refined shape with fine-scale de-
tails.

P-Illumination Regularization. We further enforce the
smoothness of predicted ratio image by TV loss [50] to
avoid learning facial structure information. Formally,

Lreg =
∑
i,j

|ri+1,j − ri,j |+ |ri,j+1 − ri,j | . (2)

where r denotes the predicted ratio image.

3.2. Facial Geometry Prior Learning

Due to the limited representation power of parametric
face models, they are incapable of recovering facial details
such as wrinkles and dimples. Thus, the geometry prior at-
tempts to offer reasonable detail information for refinement
of coarse shape. Concretely, we describe facial geometric
details with a displacement along the normal direction of
each pixel in UV map. But unlike the texture generator
with numerous in-the-wild facial images for training, there
are very limited data with geometry details in real world.
Thus, we train the geometry generator with collected dis-
placement datasets [67].
Geometry Refinement with Displacement. Let d be our
predicted displacement values of pixels in UV map. We first
rasterize coarse face mesh to its UV space and represent its
shape by position map. Then the updated position p′

uv in
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UV map can be written as

p′
uv = puv + dnuv, (3)

where puv and nuv denote positions and normal directions.
Projecting it back to the vertices of face mesh, we end
up with a refined geometry with facial details as shown in
Fig. 4.

3.3. Encoding Framework

The encoding framework targets to reverse an input im-
age back to correct point of prior manifold, thereby recover-
ing consistent facial appearance and geometric details. As
illustrated in Fig. 3, input information will be injected into
the fixed generator Gtex and Ggeo in two flows. On one
hand, we map image feature to K latent codes wk

· with
1 ≤ k ≤ K in extended W+ space following typical GAN
inversion methods [2]. On the other hand, we directly fuse
extracted spatial features to decoders by Adaptive Fusion
Block (AFB) in a pyramid manner.
Shared Image Feature Extractor. The image encoder
aims to extract image feature pyramids, capturing facial ap-
pearance information while being robust to various poses
and expressions. Instead of solely feeding the input im-
age, we also concatenated its unwrapped texture acquired
by 3DMM [17]. Though it is inevitably contaminated by
noisy illumination and occlusion, we believe its visible part
offers aligned texture information and high-frequency geo-
metric details. They are fed into an encoder E to extract
spatial features and concatenated as Ei for later use.
Map2Style Block. With extracted spatial features pyra-
mids, we use K different Map2Style blocks to obtain its
corresponding style vector. Particularly, each Map2Style
block gradually down-sample the 8 × 8 feature map in the
lowest level of pyramids to a 1 × 1 latent code wk

· , which
dominates the main direction of fixed facial priors.
Adaptive Fusion Block. Feature fusion [63] with prior net-
work has proved effective on balancing prior and input in-
formation. Similarly, we introduce Adaptive Fusion Block
(AFB) for integration of identity-specific details and facial
prior regularization. Specifically, given the intermediate
feature Ei, our network will learn an attention mask Ai to
pay high attention to Ei for visible parts and resort to prior
feature Gi when it comes to occlusion or blurry condition.
After the weighted sum of Ei and Gi, the obtained feature
F i will be forwarded to the next level of pyramids.
Unsupervised Training of Texture Encoding. After en-
coding input image to latent space with Map2Style and
Adaptive Fusion Block, our texture generator synthesize
a UV texture. To constrain it containing consistent char-
acteristics as input, we expect to minimize the difference
between its rendered image and the input. We only con-
sider differences on face regions Mface obtained with a

pre-trained face parsing network [68] trained on CelebA-
MaskHQ [36]. Firstly, we utilize masked pixel-wise L1

loss, which is formulated as

L1 =
MfaceMproj ∥I − I ′∥1

MfaceMproj
, (4)

where Mproj denotes the visible region projected by face
mesh, and I and I ′ are the input and rendered image. Addi-
tionally, for perceptual similarities, we employ LPIPS [70]
loss

Llpips = MfaceMproj ∥F (I)− F (I ′)∥2 , (5)

where F (·) represents perceptual feature extractor. More-
over, to encourage the reconstructed face to share same
identity with input image, we incorporate a dedicated recog-
nition network, ArcFace [15], to measure their cosine simi-
larity. The identity-preserving loss Lid is defined as

Lid = 1− < F (I), F (I ′) >, (6)

where F (·) indicates feature extractor of ArcFace [15].
The overall learning objective for the texture inversion

flow can be written as follows:

Ltex = Llpips + λ1L1 + λ2Lid, (7)

where the λs are balancing coefficients.
Semi-Supervised Training of Geometry Encoding. We
apply L1 and Llpips loss on the labeled data [67]. For model
generalization, adversarial loss is added, which formulates
as

Ladv = min
G

max
D

EI [logD(I)] + EI′ [log(1− D(G(I ′)))].

(8)

Thus, the overall training loss for geometry encoding
flow is defined as:

Lgeo = L1 + λ1Llpips + λ2Ladv. (9)

We only use adversarial loss Ladv when there is no labeled
displacement map.

4. Experiments
4.1. Experimental Settings

Datasets. For diverse and high-fidelity appearance embed-
ding, the texture generator is trained with FFHQ [33] and
CelebA-HQ [31], which contain 70,000 and 30,000 images
with a resolution of 1,0242, respectively. The geometry
generator is trained by Facescape [67]. It consists of 888
people with 17,760 displacement maps covering various ex-
pressions while 360 identities are not processed for privacy
protection. We use a combination of these three datasets
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Table 1: Quantitative comparisons of texture on
CelebA [40] test split. Note that our method achieves
higher similarity scores compared to previous methods. [17,
14]

Method [17] [14] Ours

L1 distance ↓ 0.052 / 0.025
PSNR ↑ 26.58 22.9∼26.5 30.70
SSIM ↑ 0.826 0.887∼0.898 0.895
LightCNN ↑ 0.724 / 0.859

Table 2: Quantitative comparisons of texture on
LFW [28] . We achieve highest identity retrieval on a
dataset of 13,000 photos containing over 5,000 identities
than existing methods [62, 22].

Method Rand [62] [22] Ours

R@1 ↑ 0.0002 0.001 0.16 0.54
R@5 ↑ 0.001 0.002 0.51 0.71

Table 3: Quantitative comparisons of texture on test split
of FFHQ [33]

Method OSTeC AvatarMe Ours

LightCNN ↑ 0.8093 0.6095 0.8131

to train our main architecture. We also conduct qualita-
tive and quantitative comparison with existing approaches
on Mofa [56], CelebA [40] and LFW [28].
Implementation Details To encourage clean facial appear-
ance learning, we train both prior generators with manu-
ally screened images not involving heavy occlusions such
as glasses and masks. Prior Networks are trained at reso-
lution 5122 following default hyper-parameters and losses
of StyleGAN2 [34]. For texture generator, the pre-trained
parameters of discriminator are loaded and lower layers are
frozen for fast convergence. In the main pipeline, all input
images are of size 2242 while outputs are at resolution 5122.
For the shared image feature extractor E, we borrow blocks
of style encoder in StarGAN v2 [12] with initialization by
their pretrained weights due to the robustness of their set-
ting in various poses and expressions. The architecture de-
sign of Map2Style block is quite similar to the encoder in
Restyle [2]. The λs are empirically set to 1. Our models are
implemented by PyTorch [46] with four 32 GB Tesla V100
GPUs.
Comparison Methods. We compare our method with state-
of-art approaches in terms of texture and geometry. For tex-
ture, we employ Chen et al. [10], Deng et al. [17], Gecer
et al. [21], Genova et al. [22] and Tran et al. [62] as our
baselines. Specifically, Chen et al. [10] captures 366 high-
quality scans of 122 people and exploits UNets for detailed
facial synthesis. Deng et al. [17] leverages a robust, hy-
brid loss function for weakly-supervised learning to regress
3DMM coefficients. Gecer et al. [21] optimizes the la-

Inputs Ours Chen et al. Deng et al. Gecer et al. Genova et al.

Figure 5: Qualitative comparison of texture on
Mofa [56]. Facial reconstruction results of our architecture
and [10, 17, 21, 22] are listed from left to right respectively.

tent code of a progressive GAN trained by 10,000 high-
resolution textures. Genova et al. [22] proposes an unsu-
pervised procedure in an end-to-end framework to predict
3DMM coefficients. Tran et al. [62] fits an expression-
less model to many photographs with an iterative optimiza-
tion. Besides, we also compare with very recent works,
AvatarMe [35] and OSTeC [20].

For the geometry, we exploit non-parametric models
including PRNet [19] and LAP [71], 3DMM based ap-
proaches including Deng et al. [17] and 3DDFA et al. [25],
and frameworks specifically designed for facial detail syn-
thesis such as DECA [18] and Extreme-3D [58].

4.2. Quantitative Evaluation

Evaluation Metrics. We conduct quantitative evaluations
on metrics that are commonly utilized in facial reconstruc-
tion field. L1 distance and PSNR are adopted to evaluate
accuracy of reconstruction while SSIM [64] account for im-
age quality. LightCNN [66] is employed to asses identity
similarity. Retrieval rate R@K [22], indicating the ratio of
successful retrievals in the top-K similar faces, is utilized to
measure VGG-Face [45] feature distance.
Evaluation Results. The comparison results measuring the
similarity between reprojection and input image are pre-
sented in Table 1. Lower L1 distance and higher PSNR
score indicate our reconstructed texture achieves better sim-
ilarity in pixel level. Closer feature distance calculated by
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Deng et al.

Figure 6: Qualitative comparison of geometry with [71, 19, 25, 17, 18, 58].

28

26

41

Inputs OSTeC AvatarMe Ours

Figure 7: Qualitative comparison of texture on test split
of FFHQ with OSTeC and AvatarMe.

face-recognition network suggests that our results preserve
more identity characteristics. To further measure identity
similarity, we also render our texture to neutral pose and re-
trieve its nearest neighbor by VGG-Face similarity. Table 2
shows the retrieval results. Higher retrieval rate implies ca-
pability of our model in retaining person-specific informa-
tion. Table 3 demonstrates that our approach could even
achieve slightly better identity similarity than very recent
optimization-based method OSTeC [20].

4.3. Qualitative Evaluation

Qualitative Comparison of Texture. Similar to previous
methods [10, 17, 21, 22], we demonstrate our facial re-
construction results2 on Mofa [56] test dataset in Fig. 5.
3DMM-based methods [22, 17] lose detailed facial in-
formation due to limited representation ability. Gecer et

2For more comparison results, readers are highly recommended to read
supplementary.

Table 4: User study on geometry recovering by Mean
Opinion Scores. Larger is higher, with the maximum value
to be 5.

MOS Detail Consistency Identity Similarity

Deng et al. 2.49 4.35
LAP 3.35 3.49

DECA 3.09 4.05
Extreme-3D 3.64 3.21

EncFP(Ours) 3.87 4.39

al. [21] and Chen et al. [10] predict inconsistent skin col-
ors while our results demonstrate better performance under
challenging scenarios such as heavy makeup, complicated
illumination and extreme expressions. We further evaluate
our approaches by comparison with more recent works, OS-
TeC [20] and AvatarMe [35] as Fig. 7. Both their meth-
ods exhibit extreme photo-realism. However, AvatarMe
omits many identity details especially their makeup. OS-
TeC demonstrate slight inconsistency in whole skin color.
But we achieve higher identity similarity with fast inference
speed.
Qualitative Comparison of Geometry. As can be seen in
Fig. 6, our methods exhibit fine facial details compared to
pure 3DMM-based methods [17, 25]. Without relying on
synthetic data by 3DMM, non-parametric method LAP [71]
reconstructs rough local structure with higher precision than
PRNet [19], but still struggling at tiny details. Attempting to
increase facial details, DECA [18] and Extreme-3D [58] re-
fine coarse shape with displacement. However, their models
suffer from noisy geometric artifacts while our results show
correct detailed reconstruction with less ambiguity even on
extreme expressions.
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Figure 8: Ablation study with visual results. The facial highlights without dual learning (green circle) are weaker. The
dimple without AFB (red circle) are shallow. For geometry, the model struggles at capturing mouth shape without AFB.

Table 5: Ablation study with quantitative comparisons
on CelebA [40]. The results are shown when we vary en-
coder design, loss function and training paradigm.

Metric L1 distance ↓ PSNR ↑ SSIM ↑ LightCNN ↑ CPBD ↑

psp encoder 0.032 28.14 0.858 0.812 0.324
w/o AFB 0.034 28.29 0.862 0.806 0.327
w/o Lid 0.025 30.74 0.895 0.826 0.316
w/o light 0.028 30.06 0.886 0.828 0.317
w/o m-view 0.031 29.12 0.882 0.821 0.312
Full model 0.025 30.70 0.895 0.859 0.321

4.4. Further Analysis

User Study. We conduct a user study of 15 participants for
their opinions on 25 geometric reconstruction results gener-
ated by our methods and the competing ones as Fig. 6. We
adopt the widely used Mean Opinion Scores (MOS) rating
protocol. The users are required to give their ratings (1-
5) on the following two aspects for each video: (1) detail
consistency (2) identity similarity. The results are listed in
Table 4. As 3DMM based methods [17, 18] either produce
over-smoothed results or cause noisy displacements, their
scores on detail consistency are reasonably low. But partic-
ipants believe they acquire higher identity similarity since
they look natural and close to input. Our pipeline refines
geometry on top of accurate proxy [17] with dedicated ar-
chitecture, thereby performing favorably in terms of both
aspects.
Ablation Studies. We conduct ablation studies given sev-
eral key aspects such as the encoder design, the optimiza-
tion loss of encoding framework and the training paradigm
of texture generator. Hence, we do experiments on 1) psp
encoder 2) w/o Adaptive Fusion Block; 3) w/o identity-
preserving loss; 4) w/o illumination representation; 5) w/o
multi-view rendering. The overall settings are similar to
previous quantitative comparison on CelebA, but introduc-
ing an extra CPBD [44] metric to evaluate the sharpness of
recovered texture. The quantitative results are demonstrated
in Table. 5. Directly employing an existing psp encoder [48]
lead to inferior results. The LightCNN score dramatically
reduces without Adaptive Fusion Block, validate its effec-
tiveness in preserving identity-related information. Drop-

ping identity loss Lid also causes lower LightCNN score,
implying its crucial role in identity retaining. Furthermore,
degradation results without light identifying and multi-view
rendering when training prior suggest their necessity in ob-
taining sufficient diverse appearance embedding. One in-
teresting fact to notice is that our model reaches best CPBD
score without AFB. We speculate that modifying spatial fea-
ture with AFB may damage the prior distribution and lead
to slightly worse image quality. Particularly, we demon-
strate examples of visual results in Fig. 8. The reconstruc-
tion results suffer from imprecise illumination without dis-
entangling illumination while inaccurate facial details with-
out AFB.
Discussion of Limitation. The disentanglement of p-
albedo and p-illumination is imperfect due to no special de-
sign of light elimination mechanism. In our work, they are
solely proposed for complicated lighting conditioned tex-
ture modeling to ease the training difficulty of our gener-
ator. Further exploration on ideal albedo and illumination
disentanglement require sophisticated design of joint opti-
mization of geometric and light environment.
Discussion of Ethics. The inappropriate use of face recon-
struction such as synthesizing others’ portraits for commer-
cial profit will cause violation of portrait rights.

5. Conclusion
In this paper, we propose an unified pipeline, Recon-

struction by Encoding Facial Priors (ReEnFP), which
reconstructs photorealistic facial textures with precise iden-
tity recovery and manifests expressive geometric details.
We emphasize several appealing properties of our frame-
work: 1) We achieve high-quality texture reconstruction
and fine-grained facial detail expression without requiring
large-scale 3D scans or long-time optimization. 2) For
superior facial appearance prior modeling, we exploit a
large corpus of diverse in-the-wild images to train a style-
based generator through dual learning of p-illumination
and p-albedo. 3) The adaptive fusion strategy is proposed
to encourage identity-consistent texture reconstruction and
detail preservation.
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