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Abstract

In “vision and language” problems, multimodal inputs
are simultaneously processed for combined visual and tex-
tual understanding for image-text embedding. In this paper,
we discuss the necessity of considering the difference be-
tween the feature space and the distribution when perform-
ing multimodal learning. We deal with this problem through
deep learning and a generative model approach. We intro-
duce a novel network, GAFNet (Global Attention Fourier
Net), which learns through large-scale pre-training over
three image-text datasets (COCO, SBU, and CC-3M), for
achieving high performance on downstream vision and lan-
guage tasks. We propose a GAF (Global Attention Fourier)
module, which integrates multiple modalities into one latent
space. GAF module is independent of the type of modal-
ity, and it allows combining shared representations at each
stage. Various ways of thinking about the relationships be-
tween different modalities directly affect the model’s design.
In contrast to previous research, our work considers visual
grounding as a pretrainable and transferable quality in-
stead of something that must be trained from scratch. We
show that GAFNet is a versatile network that can be used
for a wide range of downstream tasks. Experimental re-
sults demonstrate that our technique achieves state-of-the-
art performance on multimodal classification on the Cri-
sisMD dataset and image generation on the COCO dataset.
For image-text retrieval, our technique achieves competitive
performance.

1. Introduction

Multimodal information dramatically increases the ef-

This work was supported in part by IIT Roorkee, India under grant
FIG-100874.

fectiveness of communication. Whether a news article or
a textbook, multiple modalities such as text, image, audio
and video make the information easily accessible to a wide
range of audiences. Further, in AI-based decision-making
systems, multiple modalities can improve predictive perfor-
mance [23, 18, 5].

In a multimodal learning problem setting, a network with
each modality as input is prepared. A learner that con-
nects the final layers of each network is trained to create a
joint representation of all modalities. However, a challenge
in multimodal learning is the heterogeneity between the
modality, which refers to significant differences between
modalities such as images and text. The datasets of dif-
ferent modalities may have different dimensions/structures,
and distributions [33]. For example, in a tweet with both
image and text, only the image may contain the complete
information, or only the text may contain the full informa-
tion. This is referred to as the deficiency in modality; Figure
1 shows some examples.

“The struggle is real. 

Harvey recovery for 

many Houstonians 

has just begun. 

Please remember 

and be patient”

“USNS Comfort 

Responds to 

Hospital—

Generator Failure 

in Puerto Rico”

(a) GT = Other relevant information (b) GT = Affected individuals

Figure 1. Examples of multimodal tweets. In (a) and (b), ground
truth (GT) is inferred primarily from text and image, respectively.
This shows the challenges of multimodal learning.

Similarly, an image may have a sequence length of 256,
whereas the text may have a length of four (“Wildfires strain
California hospital”). Thus, their sequence lengths do not
match. A single word in the text may correspond to a large
portion of the image, or many words in the text may de-
scribe a small portion of the image. Conventional networks
cannot describe explicit relationships between modalities.
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If the distributions between different datasets are differ-
ent, one-to-one deterministic mapping between modalities
cannot be designed. Therefore, we need to learn non-
deterministic relationships by using approaches such as ap-
proximately selecting the closest one after creating a deter-
ministic relationship (rule) [27] or using domain adaptation
method [33].

Contributions: In this paper, we propose a novel and
versatile network named GAFNet, which is useful for var-
ious problem settings in multimodal learning. GAFNet
uses a novel module named GAF module, which uses a
global attention mechanism in a multimodal scenario. The
GAF module circumvents model collapse due to modal-
ity deficiency by using a shared representation for multiple
modalities. GAFNet has three branches: image, text, and
a middle branch that combines image and textual represen-
tations. GAFNet processes image and text inputs in sep-
arate branches using vision transformers (ViT) and BERT,
respectively. These branches interact through GAF blocks.

GAF module can effectively handle the differences in di-
mensions, feature space and distributions of various modal-
ities. GAF module works independently of the dimension
or structure of the input modality. GAF module obtains an
appropriate shared representation that integrates all modal-
ities and has better accuracy than the conventional model.
For capturing modality-invariant elements at the semantic
level, we pre-train GAFNet on three datasets, viz., COCO,
SBU and CC-3M.

While GAFNet can be deployed for a variety of multi-
modal applications, we showcase its efficacy by evaluating
it on three tasks: multimodal tweet classification (Section
5.1), image generation under text guidance (Section 5.2)
and image-text retrieval (Section 5.3). To use GAFNet for
other tasks, a user needs to adjust the layers after the last
GAF block. We showcase that multimodal learning can en-
hance generative models. For multimodal classification on
the CrisisMMD dataset and image generation on the COCO
dataset, GAFNet achieves SOTA (state-of-the-art) perfor-
mance. For image-text retrieval, GAFNet achieves compet-
itive performance on MSCOCO and Flickr30K datasets.

2. Related Work

In recent multimodal learning, the methods using deep
neural networks have become the mainstream [23, 27, 4].
In multimodal learning, a network with each modality as
input is prepared, and a learner that connects the final lay-
ers of each network is trained to create a joint representa-
tion of all the modalities. There is a growing interest in
developing pre-training objectives for tasks with multiple
modalities based on the success of self-supervised learning

The source code can be obtained from https://candlelabai.
github.io/gaf

in intra-modal tasks (e.g., vision and language). For exam-
ple, the CLIP [25] technique predicts the correspondence
between the text and the image, resulting in a task agnos-
tic model that is competitive with task-specific supervised
models to leverage a much broader source of supervision
from the text. Using a noisy dataset of over one billion im-
age alt-text pairs, ALIGN [14] further scales up CLIP. The
object detector (e.g., Faster R-CNN [26]) is used to capture
vision features first; then a multi-layer transformer [28] is
applied to the concatenation of the extracted vision and text
features to learn joint embeddings.

SOHO [12] uses a visual dictionary to extract compact
image characteristics from a complete picture. This leads
to nearly 10× lower inference time than region-based ap-
proaches. For long-range dependencies spanning a series of
fixed-size non-overlapping picture patches, ViLT [17] com-
pletely discards convolutional visual characteristics and uti-
lizes vision transformers [8]. Osolo et al. [24] propose
a transformer-based image captioning technique that uses
Fourier transforms to improve efficiency while requiring
fewer operations. While it provides high performance, it
has a low inductive impact on the network since it combines
data from the frequency and spatial domains.

3. Architecture of Proposed GAFNet network
Figure 2(a) shows the block diagram of our proposed

network. The network has three branches: image, text, and
a middle branch that combines image and textual represen-
tations. GAFNet processes image and text inputs in sep-
arate branches, and these branches interact through GAF
blocks. For image modality, we use a pre-trained Vision
Transformer (ViT) trained on the Imagenet21M dataset. For
the text modality, we use a pre-trained Bert-base-uncased
[1], or simply BERT. GAFNet uses an equal number (12) of
ViT, BERT, and Global Attention Fourier (GAF) blocks to
ensure that both modalities contribute equally. The model
receives image and text representations as input. Then, for
each representation, positional embeddings are computed.
These image and text embeddings are supplied to the initial
ViT and BERT blocks, respectively.

As in the transformer, intermediate representation is uti-
lized to construct three matrices, Q, K, and V, which cor-
respond to queries, keys, and values, respectively. This
drives the transformer’s multi-headed self-attention block.
GAFNet exchanges the key and value between the BERT
and ViT blocks at each step. ViT and BERT use the dot-
product of the exchanged key vector and their own query
vector to get attentional distributions across the value vec-
tor. This facilitates co-attention between textual and visual
representations. This co-attention enables each ViT and
BERT transformer block to exchange information. The out-
puts of textual and visual transformer blocks are fed into
the GAF block, which reconciles the information present
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<SEP> The boy is standing on 

the street <EOS>

MLP

ViT Block 1 BERT Block 1

ViT Block 2

GAF 1

BERT Block 2

ViT Block 12 BERT Block 12

KV ,VV

KB ,VB

Image 

embeddings

Word 

embeddings MSA Add

Add

Layer norm FFF block

HRs from ViT
HRs from

BERT

HV

Output of previous 

GAF block

2D FFT

MLP

Add

Layer norm Inverse 2D FFT

(a) GAFNet

(b) GAF Block

(c) FFF Block

HB

ViT 1 BERT 1

ViT 2 BERT 2

ViT n BERT n

Image Text

KV ,VV

KB ,VB

(d) Previous network

Hfusion

Hprev

fAttention

GAF 2

GAF 12

S

FFourier

Y

Figure 2. (a) GAFNet architecture (b) GAF Block (HR=hidden representation) (c) FFF Block (d) Block diagram of a previous network
(ViLBERT) [22]

in language and vision to perform cross-modality learning.
GAF block incorporates the FFF block, which uses feature
vectors in frequency domains to analyze multi-modality fre-
quency distribution.

3.1. Proposed “Global Attention Fourier” (GAF)
block

We achieve cross-modality learning by integrating a
global attention mechanism into the proposed network. For
this purpose, we design a novel GAF block, which in-
cludes multi-headed self-attention (MSA), layer normaliza-
tion, and Fourier feed-forward block. GAF considers the
hidden states of ViT and BERT transformer blocks and cre-
ates the context vector containing the information of both
image and text representations.

The first GAF Block accepts three inputs: (1) A con-
cealed representation from the first ViT block, which serves
as a key and value for the MSA. (2) Stacked representation
of image and text positional embeddings, transmitted via
the feed-forward layer. (3) Hidden representations of the
first BERT block, given as query to the MSA. For the re-
maining GAF blocks, hidden representations from the cor-
responding ViT block serve as the MSA’s key and value. In
contrast, the output of the preceding GAF block and hidden
representations from the corresponding BERT block serve
as the MSA’s query. This is shown in Figure 2(b).

Let HV , HB and Hprev be the hidden representations
from ViT, BERT and previous GAF block, respectively. HV

acts as a key and value for the MSA, and the addition of HB

and Hprev acts as a query. The resultant vector obtained
after addition is Hfusion, such that Hfusion = HB+Hprev .

The MSA in the GAF block enables attention, which
recognizes the agreement between the two modalities, viz.,
image and text. As described above, MSA obtains inter-
mediary visual and linguistic depictions from the associ-
ated BERT, ViT and the previous GAF block. In order to

use these intermediate representations, HV is transferred
through linear transformation function of key (K(.)) and
value (V (.)) and Hfusion is passed through linear transfor-
mation function of query (q(.)). Later, they serve as key,
query and value to the MSA. This linear transformation
function is the feed-forward layer that gets trained during
training to enable key, query and value vectors to learn and
helps to provide attention to cross modalities.

The multi-headed self attention block (MSA) receives
the keys, queries and values from each modality as input.
As a result, the attention block generates attention-pooled
characteristics for each modality (refer to equation 1 given
below) that are conditioned on the other modality, i.e., ex-
ecuting image-conditioned language attention in the visual
stream and language-conditioned image attention in the lin-
gual stream. Let N be the number of attention heads in
MSA (we use N=8 in this paper). Then,

fAttention = Softmax(
k(HV )× q(Hfusion)√

N
)× v(HV )

(1)
This aids in discovering the internal relationship between

different modalities. Based on this, contextual clues can be
transferred between modalities.

From the output of MSA, we obtain S =
LN(fAttention + Hfusion), where LN represents layer
normalization. This is fed to the Fourier Feed Forward
(FFF) block (Figure 2(c)). This block learns the diverse
relationship between the text and image modalities, which
further improves the learning capability of the network.
In the FFF block, 2D Fourier transform is applied to S:
1D FFT along the sequence dimension and 1D FFT along
the embedding dimension. This provides the frequency
distribution across the fused sequence of vision and
language.

The output of 2D FFT block is Y = ℜ(FFT (S)), where
ℜ indicates that only the real part of the result is kept and
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FFT is the fast Fourier transform. We pass Y to MLP (mul-
tilayer perceptron), followed by residual connection and
Layer Normalization (LN), to make these frequency fea-
tures learnable. Note that we use MLP and the feed-forward
layer synonymously.

FFourier = LN (MLP (Y ) + Y ) (2)

Because the output features obtained after applying Eq.
2 are in the frequency domain, we need to transform them
to the spatial domain before passing them to the next block.
Hence, we perform Inverse 2D FFT on the calculated fea-
tures, as shown in Figure 2(c).

Finverse = ℜ (IFFT (FFourier)) (3)

Overall, in GAF, MSA pays attention to cross-modal
features and the FFF block focuses on high-level charac-
teristics. On comparing GAFNet (Figure 2(a)) with a re-
cent work, named ViLBERT (Figure 2(d)), we can see that
GAFNet concatenates image and text embeddings at the in-
put side and also introduces novel GAF blocks for better
shared-representation of both the modalities.

4. Pre-training

Humans have several ways of perceiving the world. Es-
sential elements present in the surrounding can still be de-
tected even if one channel is noisy or missing since they fre-
quently occur in numerous channels. For instance, a horse
can be described linguistically and visually. We use dif-
ferent pre-training techniques to enable GAFNet to capture
modality-invariant elements at the semantic level. We now
explain how we pre-train the GAFNet model using three
pre-training techniques, viz., Masked Language Modeling
(MLM), Image Text Matching (ITM) and Object Detection
(OD). Figure 3 shows our pre-training approach. On 5 RTX
2080 GPUs, pre-training on these three datasets took nearly
twenty days.

MLM

Boy Street

ITM

Yes/No

Bounding box 

regression

GAFNet

Class probabilities

Classification

<SEP> The <MASK> is standing 

on the <MASK> <EOS>.

Patch 

embeddings
Word 

embeddings

Figure 3. Pretraining approach

Each image region has been annotated with a region
name like “girl in a pink dress”. These annotations are uti-

lized as pre-training data for this task. Table 1 shows the
pre-training datasets used for GAFNet’s pre-training1.

Table 1. Datasets used for pre-training task
Dataset Image Caption Annotations
COCO 0.11 M 0.55 M 0.45 M
SBU 0.86 M 0.86 M -

CC-3M 2.9 M 2.9 M -

Masked language modeling: The MLM approach is
used to grasp the picture and text modalities by reconstruct-
ing the masked element using the unmasked remainders.
It implies that MLM makes predictions about the text’s
masked words based on the visual idea. We chose a like-
lihood of 35% for the input tokens to be randomly masked.
The model predicts these masked tokens using all the other
unmasked tokens and visual cues. To complete this task,
we take the output from the last GAF block of the GAFNet
network and run it through an MLM with a linear layer, a
SiLU activation layer, and another linear layer. This last lin-
ear layer generates an output vector by applying a softmax
function.

Let f(V, T ) be the GAFNet, where V is the model’s
input for vision and T is the input for masked text.
M(f(V, T )) is the MLM function which forecasts the prob-
ability of masked token t. Let y be a one-hot distribution
where the probability of the ground-truth token for t is 1.
We reduce the cross entropy loss by:

LMLM = −
∑

x∈M,V yx × logM(f(Vx, Tx))

Image-Text Matching (ITM): To create a representa-
tion of vision and language that is ubiquitous across lan-
guages, the ITM approach is modified. It foretells whether
the text and image match. A statement and several picture
areas serve as the inputs for ITM, and the output is a binary
label that indicates whether or not the inputs were matched.
During the training process, we select positive and nega-
tive pairs (V, T) from the dataset. The image and text in a
paired sample are swapped out with another randomly cho-
sen one from other samples to generate the negative pair.
After giving this vision and text pair to it, we retrieve the
output vector from GAFNet’s last GAF block as the joint
representation of the input image-text combination. Once
the mean on the axis of sequence length has been calcu-
lated, the resultant vector is passed to the ITM branch. The
ITM branch consists of an MLP layer and sigmoid function,
which predict a score between 0 and 1. Let I(.) be the ITM
classifier’s function, and y be the ground truth vector. The
loss LITM is calculated over the binary cross-entropy for
respective labels as

1On SBU and CC3M datasets, only MLM and ITM are done since the
bounding box information is not available for these two datasets. COCO
dataset provides text, vision and bounding box information; hence, the
model’s pre-training is done using the three methods described here.
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Table 2. Multimodal classification results on CrisisMMD dataset (acc =accuracy)

Model Informative Task Humanitarian Categorization Task
Acc Macro F1 Weighted F1 Acc Macro F1 Weighted F1

DenseNet [11] 81.57 79.12 81.22 83.44 60.45 86.96
BERT [7] 84.9 81.19 83.3 86.09 66.83 87.83

Compact Bilinear Pooling [10] 88.12 86.18 87.61 89.3 67.18 90.33
Compact Bilinear Gated Pooling [16] 88.76 87.5 88.8 85.34 65.95 89.42

MMBT [15] 82.48 81.27 82.15 85.82 64.78 88.66
Score Fusion 88.16 83.46 85.26 86.96 54.01 88.96

Feature Fusion 87.56 85.2 86.55 89.17 67.28 91.4
ViLBERT [22] 92.99 90.92 91.23 90.97 70.76 93.93

SSE-Cross-BERT-DenseNet [2] 89.33 88.09 89.35 91.14 68.41 91.82
GAFNet 94.71 92 94.35 93.99 73.86 95.34

LITM = −
∑

xϵT,V

yx × log I(f(Vx, Tx))

+ (1− yx)× log(1− I(f(Vx, Tx)))

(4)

Object Detection (OD): In this pre-training operation,
we perform text-aware object identification to obtain the
object’s high-level semantic information. This enables the
model to gain enough insights into the precise relation-
ships between objects in various areas of the image and use
textual information to distinguish between various things.
Given the representation of a picture and text, we allow the
model to estimate the bounding box (bbox) of the visual
notion. We expect the model to learn fine-grained vision-
language correlations more effectively by finding several
visual ideas in the same image.

The object detection block contains two branches,
namely the object classification branch and the bbox re-
gressor branch (refer to Figure 3). GAFNet output f(V, T )
is fed to the classification and bbox prediction branches,
which generate the class probabilities and anchor boxes, re-
spectively. This enables GAFNet to identify the object’s
class and specific location in the image. As shown in Figure
9, this enables the model to learn the features for precisely
locating a brown dog and distinguishing it from a black-
and-white dog.

Let O(.) be the regressor function that predicts bbox
coordinates. Let YBB be the ground truth coordi-
nates of bboxes. The regressor function uses IOU
loss LIOU defined as LIOU =

∑
P (f(V, T )) ×

IOU(O(f(V, T )), YBB). Let P (.) be the probability dis-
tribution function that predicts (1) confidence of the object
being present in the anchor and (2) the classification prob-
abilities of object classes. The corresponding losses are (1)
LConfidence =

∑
−pc × logP (f(V, T ))confidence where

pc is ground truth confidence score. (2) LClassification =∑
− logP (f(V, T ))class. The total loss of object-detection

pre-training (LOD) is computed as a sum as follows:

LOD = LIOU + LConfidence + LClassification

Overall, the loss functions LMLM , LITM and LOD

are added to obtain the final loss function, and the net-
work is trained jointly for MLM, ITM and OD tasks.
TotalLosspre−training = LMLM + LITM + LOD

5. Results

5.1. Multimodal classification

For multimodal classification, we evaluate GAFNet on
CrisisMMD dataset [3]. This dataset contains multimodal
tweets (image and text pairs) with corresponding annota-
tions. We use binary crossentropy loss for “informative-
ness classification” type in CrisisMMD dataset and cate-
gorical crossentropy for “humanitarian classification” type
in CrisisMMD dataset. The initial learning rate is 0.0001
with a cosine annealing scheduler. Training is done for 60
epochs, using a batch size of 24 and an AdamW optimizer.
We use PyTorch and CUDA 11.2. We use several augmen-
tations, including vertical flip, horizontal flip, random rota-
tion, distortion, etc.

Wildfires strain 

California hospital

GAFNet MLP Softmax
Class 

probabilitiesInput

Input

Figure 4. Architecture for multimodal classification

Figure 4 shows the changes to our model for perform-
ing multimodal classification. Here, the output of the last
GAF block is sent to the feed-forward layer and then the
softmax function is applied to get the class probabilities.
In this dataset, the number of samples varies significantly
across different categories. To evaluate this category imbal-
ance problem, Weighted F1-score with accuracy and Macro
F1-score are considered in Table 2. GAFNet significantly
outperforms both baseline models and previously proposed
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techniques on all metrics. On both the tasks, GAFNet pro-
vides reasonably good Macro F1 and Weighted F1 scores.
Note that the GAFNet results are obtained using both FFT
and pretraining.

5.2. Image Generation

Figure 5 shows a high-level representation of the im-
age generation architecture. The generator uses encoder-
decoder architecture, with GAFNet as the encoder and
pix2pix GAN [13] as the decoder. The inputs to the gen-
erator are text description t and segmentation mask s; and
the inputs to the discriminator are s and an unknown image
(which will be either a y or g(s, t)). Using the given param-
eters, a synthetic image conditioned on t and s is generated.
By incorporating text information into the generation pro-
cess and using GAFNet as the encoder, we create an exact
connection between text and the relevant semantic regions
of the mask and effectively control image creation. Patch-
GAN discriminator is employed as the discriminator.

Three colorful kites 

are flying in the 

empty blue sky.

GAFNet

(encoder)

Discriminator (D)
Generator (G)

Fake

G (s)

Mask (s)

Text (t)

Ground-truth (y)

Mask (s)

Discriminator (D)

Real

Decoder
Patch GAN

discriminator

Patch GAN

discriminator

(a)

(b)

Figure 5. Proposed image generation approach

Instead of identifying the entire image as real or fake,
this discriminator classifies specific (N×N) patches as real
or fake. More restrictions are imposed as a result, which
promotes finer high-frequency details. This model’s train-
ing uses a mix of adversarial and generator pixel-to-pixel
loss.

Let M(.) be the encoder function (GAFNet) and Dec(.)
be the decoder function. Hence, generator (G(.)) is a
function of M and Dec. Let D denote discriminator and
y be ground truth image. Then, the generator loss vs.
the discriminator loss is the conditional-adversarial loss
(LGAN (G,D)), shown as:

LGAN (G,D) = Es,y[log(D(s, y))]

+ Es,t[log(1−D(s,G(M(s, t), Dec))]

(5)

Since generator is used for synthetic image genera-
tion, we use L1 loss for this task, defined as LL1(G) =
Es,t,y[∥y −G(M(s, t), Dec)∥]. Combining these two loss
functions results in final loss, shown as:

G∗ = arg minG maxD LGAN (G,D) + λLL1(G)
The whole system gradually develops regional visual

characteristics that are semantically matched with the pro-
vided description and generate high-quality photos that fit
the global structure described by the segmentation mask.

Table 3. Inception Score (IS) and Rprecision (R-prcn) on COCO
Method IS R-prcn (%)

Real Images 27.41± 0.59 -
S-AttnGAN [29] 12.09± 0.28 75.24± 3.39

S-ControlGAN [19] 11.56± 0.16 80.43± 2.79
RefinedGAN [20] 15.96± 0.16 83.23± 1.37

RefinedGAN w/o POS 16.49± 0.18 84.01± 1.59
ViLBERT [22] 18.22± 0.02 85.99± 1.44

GAFNet 19.04 ± 0.12 88.24 ± 1.01

Results: We use L1 and SSIM loss for generator and
binary cross-entropy loss for adversarial training. The ini-
tial learning rate is 0.0002 with a cosine annealing sched-
uler. Training is done for 150 epochs using a batch size
of 12 and an AdamW optimizer. We have used inception
score (IS) and Rprecision as the metrics. Table 3 shows
the image-to-image translation results on COCO dataset.
Clearly, GAFNet outperforms previous networks on both
IS and R-prcn metrics. It shows that GAFNet can produce
highly accurate images with high diversity. Also, note that
RefinedGAN without POS (part of speech) performs better
than RefinedGAN. This shows how futile bonds are formed
between non-semantic words and visual features and how
these worthless bonds degrade the quality of synthetic out-
puts.

(a) Output of ViLBERT (b) Output of GAFNet

Figure 6. Comparison of image generated from ViLBERT and
GAFNet for the text “The blue-striped school bus is standing in
the grass field.”

Figure 6 compares GAFNet with ViLBERT for a sample
generated image on COCO dataset. Both models can learn
100% semantic coherence with the text descriptions since
both create blue buses standing on a green field. However,
ViLBERT produces distorted textures while GAFNet pro-
duces more realistic and high-quality images. ViLBERT’s
co-attention between text and visual modalities helps it
learn from both modalities. Yet, it cannot produce images
with sharp details. Here lies the superiority of GAFNet.
GAFNet can learn cross-modalities more effectively by us-
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ing global attention in the GAF block. It can be seen that
GAFNet can learn color and texture. GAFNet generates the
blue color bus precisely, and the image texture and quality
are better than that generated by ViLBERT.

As both ViLBERT and GAFNet were trained on the
same distribution of dataset, they attempt to create an anal-
ogous image when the text and binary mask are provided
as input. This is why Figure 6 shows comparable results.
However, regarding image quality, GAFNet creates images
with higher color and contrast than ViLBERT. This is be-
cause the GAF block draws attention to the visual and lin-
gual stream and learns every aspect of an image, including
color, contrast, and structure. As seen in Figure 7, both ViL-
BERT and GAFNet generate distinct images when black
image (i.e., only background and no mask) and text are used
as input. Here, GAFNet clearly outperforms ViLBERT.
 

Sentence ViLBERT GAFNet 

Man on 

the top of 

the hill 

 
 

Bicycle 

on the 

road  

 

 

Birds 

flying in 

pink sky 

 
 

Rocket 

in the sky 

 
 

 

Figure 7. Comparison of images generated from ViLBERT and
GAFNet for various texts

Figure 8 shows GAFNet output on the COCO dataset.
GAFNet can generate high-resolution images with real-life
objects. Also, the synthetic results generated from the
model have a perfect semantic consistency with given text
descriptions. From Figure 8, we can see that the image
generated from the segmentation mask of kites matches the
given text of “Three colorful kites are flying in the empty
blue sky”. On RTX 2080 GPU, for a batch size of six, im-
age generation takes 2.8 seconds.

TEXT
White bus is standing
on the street.

The blue coloured
bus is crossing the
road.

Three colorful kites
are flying in the
empty blue sky.

Segmentation
Mask

Image
Generated

Figure 8. GAFNet’s image generation output on COCO dataset.

5.3. Image-text retrieval

Figure 9 shows examples of Grad-CAM visualization of
images with related phrases. Clearly, GAFNet has a solid
ability to understand. It can predict the correct regions in
images even when the text descriptions differ by only one
word. Additionally, GAFNet can align each word in the text
with the matching image region. GAFNet can give attention
to the region represented by the word (e.g., “black and white
dog” vs. “brown dog”).

The black and 

white dog is seated 

behind the bench.

The brown dog 

is sitting on 

grass field

(a)

(b)

The man is 

seated on the 

wooden chair.
(c)

(d)

One of the person is 

holding pumpkin in 

his hand.

Figure 9. Sentences and specific words and corresponding Grad-
CAM visualization (on unseen images)

Table 4 shows image-text retrieval results on MSCOCO
and Flickr30K datasets. UNITER and VinVL are based on
object-centric features, while ALIGN, METER, and AL-
BEF are based on overall image features. GAFNet performs
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Table 4. Recall of different models (#PTI=pre-training images, TR/IR =text/image retrieval)

Method # params #PTI MSCOCO (5K test set) Flickr30K (1K test set)
TR IR TR IR

R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10
UNITER [6] 300M 4M 65.7 88.6 93.8 52.9 79.9 88 87.3 98 99.2 75.6 94.1 96.8

METER-Swin [9] 380M 4M 73 92 96.3 54.9 81.4 89.3 92.4 99 99.5 79 95.6 98
ALBEF [21] 210M 4M 73.1 91.4 96 56.8 81.5 89.2 94.3 99.4 99.8 82.8 96.7 98.4

METER-CLIP 380M 4M 76.2 93.2 96.8 57.1 82.7 90.1 94.3 99.6 99.9 82.2 96.3 98.4
VinVL [32] 550M 5.6M 75.4 92.9 96.2 58.8 83.5 90.3 - -
ALIGN [14] 490M 1.8B 77 93.5 96.9 59.9 83.3 89.8 95.3 99.8 100 84.9 97.4 98.6
ALBEF [21] 210M 14M 77.6 94.3 97.2 60.7 84.3 90.5 95.9 99.8 100 85.6 97.5 98.9
X-VLM [31] 216M 4M 80.4 95.5 98.2 63.1 85.7 91.6 96.8 99.8 100 86.1 97.4 98.7
X-VLM [31] 216M 16M 81.2 95.6 98.2 63.4 85.8 91.5 97.1 100 100 86.9 97.3 98.7

TCL [30] - 4M 75.6 92.8 96.7 59.0 83.2 89.9 94.9 99.5 99.8 84.0 96.7 98.5
GAFNet 337M 4M 79.81 94.8 98.65 60.29 85.2 92.7 95.9 98.99 99.08 86.21 97.12 98.32

Table 5. Ablation study results on multimodal classification (acc =accuracy, M-F1=Macro F1, W-F1=Weighted F1)
Model Informative Task Humanitarian Categorization Task

ACC M-F1 W-F1 ACC M-F1 W-F1
GAFNet (no FFT, no pretraining) 90.23 89.3 90.01 88.7 70.77 91.91

GAFNet (no pretraining) 92.8 90.01 91.7 92.6 71.48 93.31

better than METER-Swin, which also employs the Swin
Transformer as the image encoder. GAFNet performs sig-
nificantly better than all previous techniques except XVLM
in the 4M configuration, although previous approaches ei-
ther have more parameters or more training data. METER
also provides an empirical study demonstrating the vision
backbone’s importance in model performance. METER sig-
nificantly improves retrieval task scores across the board,
from Swin Transformer to CLIP-ViT.

5.4. Ablation Studies

5.4.1 Multimodal Classification

As shown in Table 5, on skipping FFT and pre-training,
there is nearly 4% in accuracy and weighted F1 scores.
Thus, both FFT and pre-training are vital for the model to
distinguish the low-frequency and high-frequency features.
Similarly, on using FFT but skipping pre-training, there is
a 2% drop in accuracy and Macro F1 scores, which shows
the importance of FFT in the proposed model.

5.4.2 Image Generation

As shown in Table 6, on not performing pre-training, there
is a drop of 2% in inception score and R-prcn. Clearly,
pre-training helps in learning feature importance in under-
standing the bonds between visual features and the semantic
meaning of texts.

Table 6. Inception Score (IS) and Rprecision (R-prcn) on COCO
Method IS R-prcn (%)

GAFNet (no pretraining) 17.01± 0.28 85.61± 1.19

6. Conclusion

In this paper, we proposed GAFNet, a pre-trained net-
work that simultaneously learns representations from both
image and text modalities. By virtue of the global atten-
tional GAF block, GAFNet accurately attends to both im-
age and text modality information. Further, it uses Fourier
transformation in the feed-forward layer to comprehen-
sively capture the diverse semantic relationships of different
modalities. GAF module offers a simple way to trade the
shared representation in the conventional modality branch
with a combined bi-directional shared representation. We
also demonstrate that adding a few layers to GAFNet of-
fers a simple way to extend the benefits of GAFNet to a
wide range of downstream cross-modal tasks. GAFNet pro-
vides state-of-art or competitive results on a broad range of
applications such as image generation under text guidance,
multimodal classification and image-text retrieval. Our fu-
ture work will focus on increasing the number of modalities
(e.g., audio, category).
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