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Abstract

Programmable scan LiDAR is able to measure arbitrary
areas and is expected to be used in various applications.
In this paper, we study a LiDAR sampling strategy for deep
depth completion of a programmable scan LiDAR with an
RGB camera. General data sampling strategies include
adaptive approaches such as active learning, in which can-
didate data are assessed through a task model for data se-
lection and then the selected data pool is updated sequen-
tially. Although it is an effective approach, the adaptive
approach requires many iterations involving the inference
process to assess the candidate data, which is not suitable
for LiDAR systems. Therefore, we propose a novel inter-
active LiDAR sampling method without each inference pro-
cess. Our key insights are that we assess sampling candi-
dates by depth estimation uncertainty and virtually update
the uncertainty by an approximation of the candidate as-
sessment. This enables us to add interactivity to the model
state without requiring each inference process. We demon-
strate the effectiveness of our method on the KITTI dataset
and the generalization performance on the NYU-Depth-v2
dataset in comparison with a conventional adaptive LiDAR
sampling method, and we find superior results in the depth
completion task. We also show ablation studies to analyze
our approach.

1. Introduction
Dense and high frame rate depth information is impor-

tant for understanding scenes as required by advanced ap-
plications such as autonomous driving. Light detection and
ranging (LiDAR) is a key sensor for 3D sensing that can be
used outdoors, has a long measurement range, and has high
measurement accuracy.

The scanning area cannot be freely adjusted in conven-
tional LiDAR because the scan position is mechanically de-
termined. However, with the evolution of LiDAR technol-

Figure 1: Sampling results by naive sampling (random) and our
method. Top to bottom: RGB image, sampling patterns,
estimated dense depth map

ogy, solid-state LiDAR[18, 24, 16] that is cheap and capa-
ble of programmable scanning has appeared owing to ad-
vances in phased array and micro electro mechanical sys-
tems (MEMS) technology. Programmable scan is a method
that can measure an arbitrarily configured area. In recent
years, there have been several studies on adaptive sampling
for depth completion with programmable scan LiDAR, such
as end-to-end, in which the sampling algorithms and up-
stream task are optimized together[3], and non-learning-
based methods[26]. In addition, the adaptive sampling
method[9], which can sequentially sample LiDAR depth
points based on assessment through the model output, is
proposed. This is effective because LiDAR points can be as-
sessed in model output that contains complementarity with
the already selected data. However, it is very costly in terms
of operation speed owing to the need to perform many iter-
ations involving the inference process to assess the candi-
dates because it is necessary to select comparatively many
samples in LiDAR sampling.

In this paper, we propose an uncertainty-aware interac-
tive LiDAR sampling method that does not require each
inference process to query the candidate assessment. Our
key insights are that we assess the sampling candidate by
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Figure 2: Comparison between adaptive LiDAR sampling[9] and our method. a) Adaptive LiDAR sampling performs the task model in-
ference process for every sampling process to update the uncertainty of the task model output. b) Our method enables interactive
sampling without performing the inference process by virtually updating the uncertainty using a candidate assessment table.

the depth estimation uncertainty, and we design a feed-
forward module which can directly predict the assessment
of depth estimation uncertainty with respect to each candi-
date. This module is called the candidate assessment mod-
ule. We also refer to its output as the candidate assessment
table, which is an efficient approximation of the candidate
assessment. Since the candidate assessment table can help
to virtually update the depth estimation uncertainty with re-
spect to selected LiDAR points, it enables interactive Li-
DAR sampling that considers already selected data without
an inference process. Fig 1 shows examples of sampling
results from using our method, which is based on the un-
certainty of task output, like active learning, and can cre-
ate a high-quality sampled depth map for estimating dense
depth. Fig 2 shows a comparison between adaptive LiDAR
sampling[9] and our method. Our contributions are as fol-
lows:

• We propose a novel LiDAR sampling method for deep
depth completion on programmable scan LiDAR. We
assess sampling candidates based on depth estimation
uncertainty and virtually update the uncertainty. This
enables us to add interactivity to the depth completion
module state.

• We demonstrate the effectiveness of our method on the
KITTI dataset[8] and the generalization performance
on NYU-Depth-v2[22] in comparison with the conven-
tional adaptive LiDAR sampling method and various
ablation studies.

2. Related Work

2.1. Depth Completion

Since high-end LiDAR that can output dense depth
is very expensive, depth completion that generates dense
depth from sparse depth and possibly image data is a suit-
able solution for obtaining dense depth with low spec Li-
DAR. Traditional depth completion methods usually em-

ploy handcrafted features or specific kernels to predict miss-
ing values. The performance of these methods is often lim-
ited. Recently, deep learning-based approaches have been
proposed that have achieved promising results. Uhrig et
al.[23] proposed sparsity invariant CNNs to extract better
representation from sparse input only. Ma et al.[14] pro-
posed feeding the concatenation of the sparse depth and
the color image into an encoder-decoder deep network. A
similar approach was also applied to the self-supervised
setting[13]. Instead of using a CNN, Cheng et al.[5]used
a recurrent convolution to estimate the affinity matrix for
depth completion. Zhang et al.[29] proposed estimating sur-
face normal and solving for depth via a global optimization.
Based on Zhang et al. [29], Qiu et al.[19] integrated surface
normal and image-based estimation results on an attention-
based method to perform on outdoor scenes targeting longer
distance ranges. Since the LiDAR sampling problem as-
sumes the performance of cheap solid-state LiDAR, it deals
with lower density problems compared to these depth com-
pletion works and it is very challenging.

2.2. Spatial Sampling Strategy

Spatial sampling strategies have been studied in various
fields. Furthest point sampling[6] is a technique often used
in 3D reconstruction problems. In the field of computer
graphics, Poisson disc sampling[21, 4] has been introduced,
and is also applied in the field of LiDAR sampling[27]. Re-
cently, adaptive sampling algorithms for depth completion
have been introduced. Wolff et al.[26] proposed an image-
driven sampling and reconstruction strategy based on di-
viding the image into approximately piecewise segments.
Bergman et al.[3] introduced a deep neural network for end-
to-end sampling and reconstruction.

The sampling problem is also related to active learning
in terms of data selection. The core idea of active learn-
ing is that the system being trained actively selects sam-
ples according to a policy and queries their labels surveyed
in [20]. Uncertainty sampling is one of the most popular
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Figure 3: Overall schematic of our method. First, we obtain the depth estimation and its uncertainty from rgb. Next, the candidate
assessment module predicts the candidate assessment table from rgb and the first step results. In the end, the uncertainty-aware
interactive LiDAR sampler performs depth sampling and virtually updates the depth estimation uncertainty using the candidate
assessment table.

Figure 4: Our prototype of a programmable scan LiDAR, which
uses a MEMS mirror with an RGB camera. Because
both devices use the same lens, the LiDAR and the RGB
camera have identical optical axes.

strategies in active learning for determining which samples
to request labels for[2, 25, 10, 21]. As an evolution of these
approaches, Yoo et al.[28] proposed a loss prediction mod-
ule that directly evaluates loss of sampling candidate data
for the target task. Gofer et al.[9] applied an active learn-
ing approach to the LiDAR sampling for depth comple-
tion that showed good performance. Inspired by this work,
our method can perform LiDAR sampling without inference
processing every time to query the candidate assessment.

3. Proposed Method
In this section, we introduce our adaptive LiDAR sam-

pling method. Our method consists of a depth completion
module that estimates dense depth from sparse depth ob-
tained by LiDAR sampling and RGB images, a candidate
assessment module that directly predicts the assessment
with respect to candidate LiDAR points, and an uncertainty-
aware interactive LiDAR sampler. Fig 3 shows an overall
schematic of our method. More details of each component
are shown below.

3.1. Problem Formulation

In this paper, LiDAR sampling is used to create a sparse
depth map including an arbitrary amount of depth infor-
mation as the input for deep depth completion on pro-
grammable scan LiDAR. As the source for the LiDAR sam-
pling, we use the dense depth map as ground truth of deep

depth completion. Note that the representation of depth is
a 2D depth map that projects LIDAR depth points onto the
RGB image plane so that the coordinate system of the depth
map can be shared with the RGB image. In other words, we
can find the coordinates for sampling LiDAR depth points
using the RGB image coordinate system.

In a hardware implementation, the sampling coordinates
can be used as the scan position by assuming that RGB and
LiDAR are aligned on the optical axis. As an example, Fig 4
shows our prototype of a programmable scan LiDAR, which
uses a MEMS mirror and an RGB camera that are aligned
on the same optical axis.

3.2. Our Approach

Our method is an interactive approach which uses se-
quential data selection based on the uncertainty of depth
completion module output such as active learning. Unlike
general active learning, the LiDAR sampling aims to gen-
erate a sparse depth map as the input for the depth comple-
tion module and does not require a re-training process of the
module. However, the iterative inference process to query
a model output is big issue in terms of operation speed be-
cause LiDAR sampling problems require real-time perfor-
mance and many sampling points.

Our solution is to approximate all the candidate assess-
ment processes using a deep neural network(DNN) de-
signed pixel-wise task to avoid iterative inference process.
The module that realizes this approximation is called the
candidate assessment module. This module can directly
predict the candidate assessment by training on the already
measured assessment value. The key idea is how we achieve
this approximation. We explain more details in the next sec-
tion.

3.3. Candidate Assessment Module

3.3.1 Definition of Candidate Assessment

The candidate assessment module aims to assess all the
sampling candidates in one process. First, we explain the
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definition of the sampling candidate assessment. We take
the depth completion module as f , input RGB image as rgb,
a single LiDAR point projected onto the RGB image plane
coordinates(x, y) as L(x, y) and zero-filled depth map as
Lblank. Note that L(x, y) is zero-filled except at (x, y) and
has the same resolution as rgb for input to f . Depth estima-
tion and its uncertainty with and without L(x, y) as input to
f are described as follows

UL(x,y), DL(x,y) = f(rgb, L(x, y)) (1)
Urgb, Drgb = f(rgb, Lblank) (2)

The difference in the uncertainty with respect to L(x, y)
is

AL(x,y) = Urgb − UL(x,y) (3)

This is very simple and directly express the assessment
for L(x, y) based on the uncertainty of f . Note that AL(x,y)

is the same resolution as UL(x,y) and DL(x,y). Since f
estimates the dense depth from sparse depth by exploiting
the local and global context mainly about rgb, each LiDAR
point affects a wide area around the sampling coordinates.
Thus, the entire size of uncertainty map is required to ex-
press the effect of a LiDAR point naively. This is not realis-
tic because a large amount of memory is required to express
AL(x,y) for all LiDAR candidates. Therefore, to handle it
more efficiently, we encode AL(x,y) as the average value in
a local patch of size H , W centered on (x, y) as

Ŷ (x, y) =
1

HW

x+⌊W/2⌋∑
i=x−⌊W/2⌋

y+⌊H/2⌋∑
j=y−⌊H/2⌋

AL(x,y)(i, j) (4)

By using this encoding, AL(x,y) can be expressed by one
element included local area influence, and the assessment
of all candidate coordinates can then be expressed in a 2D
table. We call this the candidate assessment table and this
is the output format of the candidate assessment module as
g . We show an example of this in Fig 5. We create the
candidate assessment table measured by already trained f
as the ground truth for training the candidate assessment
module.

3.3.2 Module Design

We design the candidate assessment module as a basic
encoder-decoder model for predicting the candidate assess-
ment table as a pixel-wise task. An important design factor
is deciding what to input to this module. The candidate as-
sessment table is defined based on the output of f in Eq. 4.
Thus, we select rgb , Urgb and Drgb as inputs to the module
for considering information about f . Indeed, Urgb is a bias
factor of the candidate assessment table, and it is effective
to estimate it.

Figure 5: Example of depth estimation uncertainty and candidate
assessment table. (Top-Left) RGB image. (Second
row-left) Depth estimation uncertainty with only RGB.
(Right) Candidate assessment table defined by equa-
tion4

Algorithm 1 Pseudo-code of the uncertainty-aware interac-
tive LiDAR sampler

Input: Sampling Budget N , Predicted Candidate Assess-
ment Table Y , Dense Depth Map D̂, Depth Uncertainty
Urgb as Eq(2)
Initialize:

Ui = Urgb

for i← 1, N do
x, y = argmax(Ui) ▷ This is an acquisition function
Ui+1 = Ui + decode(Y(x, y))
Dsampled(x, y) = D̂(x, y)

end for
Output: Depth map generated by sampler Dsampled

The loss function of the candidate assessment module is
the simple mean squared error as

Loss(Y, Ŷ ) = (Y − Ŷ )2 (5)

where Y is the prediction of the candidate assessment mod-
ule and Ŷ is the ground truth as given by Eq. 4. Since Ŷ
is created from the depth estimation uncertainty of f , the
candidate assessment module can be considered as a form
of the depth estimation uncertainty distillation.

3.4. Uncertainty-aware Interactive LiDAR Sampler

In this section, we describe the uncertainty-aware inter-
active LiDAR sampler. The uncertainty-aware interactive
LiDAR sampler performs LiDAR sampling based on the
depth estimation uncertainty and then virtually updates it
with respect to LiDAR sampling sequentially. The sampling
process is written in algorithm 1.

In the data sampling problem, the informativeness of
new points is assessed by an acquisition function. Our ac-
quisition function selects the largest area in Ui, which is the
virtually updated uncertainty map initialized by Urgb. The
value from candidate assessment table decoded to the patch
size H , W for considering local context is applied to vir-
tually update the uncertainty map. Our sampling policy re-
duces the depth estimation uncertainty by sampling the Li-
DAR points in high uncertainty areas. The uncertainty can
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Figure 6: Creation process of our candidate assessment table.

be reduced by sampling the LiDAR depth because LiDAR
depth is more precise and helpful for dense depth estima-
tion. Like active learning, reducing the uncertainty of the
output is effective for improving the task performance.

The key point of our sampler is interactivity by sampling
LiDAR while querying the state of the model as expected
uncertainty. Our sampler enables candidate data to be as-
sessed while considering already sampled data through the
uncertainty and this is useful for efficient sampling over a
scene. Moreover, since we can determine the uncertainty
with respect to the sampling sequentially, it is possible to
set a sampling number according to the difficulty of depth
estimation for the scene. For example, in easy scenes for
depth estimation, the uncertainty is low enough with even
a small number of points and we can determine this during
the sampling process, so the depth estimation performance
can be achieved with a small number of LiDAR points.

3.5. Modeling Uncertainty

As a method of uncertainty modeling, we train the depth
completion module to infer the mean µ(d) and variance
σ2(d) parameters for the distribution of the output by log-
likelihood maximization[15, 17]. The loss function of the
depth completion module, which can model the uncertainty,
is expressed as

Lossdepth(d, d̂) =
|µ(d)− d̂|
σ2(d)

+
1

2
logσ(d) (6)

where d is the predicted depth of the depth completion mod-
ule and d̂ is the dense depth map as ground truth for the
depth completion module. We treat σ2(d) as the uncer-
tainty. This method can capture the uncertainty caused by
noise inherent in the observations, which is called Aleatoric
uncertainty[11]. In our case, the region where uncertainty
is large implies that depth estimation is difficult due to less
information, for example, in the far region. The uncertainty
can then be reduced by sampling LiDAR points to add ef-
fective information about this kind of region.

3.6. Training Method

In our method, the modules that need to be trained are the
depth completion module and candidate assessment mod-
ule. Because we need the candidate assessment table, which
is measured using the trained depth completion module to
train the candidate assessment module, our training strategy
is two-step. First, we train the depth completion module us-
ing Eq. 6 taking the sparse depth map as the input randomly
sampled from dense depth ground truth. Note that amount
of sampled depth in this sparse depth map is the target Li-
DAR sampling number. Next, we create the candidate as-
sessment table Ŷ using Eq. 4 with the already trained f . Fig
6 shows the creation process of dense candidate assessment
table by iteratively entering a single LiDAR depth L to f
for all candidate coordinates. We then train the candidate
assessment module by Eq. 5 with Ŷ . Note that although
our training strategy is two-step, there is no need to split the
training data.

4. Experiments

To show the effectiveness of the proposed method, we
evaluated our LiDAR sampling method on a depth com-
pletion task in comparison with the conventional LiDAR
sampling method and ablation study. Since our method
is aimed at applications such as autonomous driving that
require high-frame rate operation, we mainly perform the
evaluation on the KITTI dataset composed of outdoor in-
vehicle scenes. We also evaluate NYU-Depth-v2 dataset
and our prototype for indoor scenes to confirm the general-
ization.

4.1. Datasets

KITTI:
We first evaluate our approach on the KITTI

dataset[8, 23], which includes RGB images and Li-
DAR depth transformed between camera and LiDAR in
outdoor scenes. The ground truth is created from multi-
frame LiDAR and a stereo camera to remove outliers in the
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Table 1: Performance of depth completion on KITTI validation set. We compare our method with other LiDAR sampling and depth
completion methods. Our method outperforms the others in terms of depth completion performance. Lower is better.

Method Sample Number of module executions RMSE[mm] MAE[mm]

Sparse-to-Dense[13] Random 1 2290.5 957.7

NConv-CNN-L2[7] Random 1 2379.6 829.0

Deep-Adaptive-LiDAR[3] Poisson-disc 2 1767.7 613.6

Deep-Adaptive-LiDAR[3] Adaptive 3 1753.1 642.0

Adaptive-LiDAR-Sampling(phase1)[9] Adaptive 4 1895.7 823.3

Adaptive-LiDAR-Sampling(phase4)[9] Adaptive 13 1500.1 623.5

Ours Adaptive 3 1463.5 592.5

Figure 7: Qualitative results using the KITTI dataset.

laser scans by comparing the scanned depth to results from
stereo reconstruction. It is not 100 percent dense and only
about 30 of points in the ground truth depth map have valid
depth values. The dataset consists of 85,898 training data,
1,000 selected validation data, and 1,000 test data without
ground truth comparison with state-of-the-art methods.
Our evaluation setting for the LiDAR sampling number is
512 which is the same as [9, 3].

NYU-Depth-v2:
The NYU-Depth-v2 dataset[22] provides RGB images

and dense depth maps captured by flash LiDAR in indoor
scenes. The dataset contains 120K training samples and

654 testing samples. We train our method on a 50K sub-
set and missing depth values are filled in using the inpaint-
ing method[12], which is the same setting as [1, 3]. Note
that we have down-sampled the original images from the
original resolution of 640×480 to half-resolution and center-
cropped to dimensions of 320×256 following [14, 29]. Our
evaluation setting of the LiDAR sampling number is 200.

4.2. Implementation Details

The model architecture of the depth completion module
and training parameters is based on Ma et al.[13]. We set the
model layer size to 18 and add another final layer to model
the depth estimation uncertainty. The model architecture of
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Figure 8: Comparison between the sampling pattern difference
with and without the interactive LiDAR sampler.

Figure 9: Comparison of sampling bias versus distance. The
number of sampled points computed by our interac-
tive method tends to increase with distance, as does the
depth estimation error without sampled depth.

the candidate assessment module uses the same settings as
the depth completion module. Note that to handle the three
elements Urgb, Drgb, and rgb as inputs, we add an initial
convolution layer. The patch size H , W with the candidate
assessment table are set to 30 respectively.

4.3. Comparison with the State of the Art

We first compare our method against several state-of-the-
art methods which treat very sparse depths as input on the
KITTI validation dataset. Table 1 shows the results. It can
be observed that our method achieves much better results
than related works. Our method has better adaptability to a
scene by performing point by point sampling shown in al-
gorithm 1. Although the performance difference between
our method and adaptive LiDAR sampling(Phase4)[9] is
small, adaptive LiDAR sampling requires multiple infer-
ence processes with multiple modules for effectiveness,
which is not suitable for operation speed in real scenar-
ios. In addition, the comparison with adaptive LiDAR sam-
pling(Phase1) which is few iterations, our method has great
advantages. Fig 7 shows the qualitative results from using
our method. Note that phases represent the number of iter-
ations, and each phase execute at least 3 modules for com-
puting the variance.

4.4. Ablation study

Importance of Interactive Approach: To understand
the impact of each module on the final output, we con-
duct ablation studies on the KITTI dataset. We compare

Figure 10: Depth completion performance for different sparsities.

the depth estimation performance with and without the
uncertainty-aware interactive LiDAR sampler. When the
uncertainty-aware interactive LiDAR sampler is not used,
the LiDAR sampling candidates are automatically selected
in order from the largest regions on the depth estimation un-
certainty. This means that we can consider each candidate
only in terms of depth estimation uncertainty and loss of in-
teractivity. Table 2 shows the results. Performance without
the uncertainty-aware interactive LiDAR sampler obviously
degrades, which shows the large impact of the interactive
approach. Fig 8 shows an example of qualitative results. It
seems unbalanced because the sampling pattern without the
uncertainty-aware interactive LiDAR sampler is too dense
in areas of high uncertainty. Fig 9 shows the sampling bias
versus the distance, which indicates that our sampler pro-
vides good bias toward areas that require LiDAR sampling,
such as distant areas with large depth estimation errors.
Against Input Sparsity: Since the LiDAR sampling prob-
lem mainly aims to create a depth map suitable for the target
task based on a very sparse setting, we evaluate the per-
formance of our method with various densities of sampled
depth. We set the LiDAR sampling numbers to 256, 512,
1024, and 2048, which correspond to 0.06%, 0.12%, 0.24%,
and 0.48% of the density, repsectively. Fig 10 shows the
depth estimation performance for various input densities of
the KITTI dataset. Since our method exploits the uncer-
tainty to sample more important areas, it works well under
both very sparse and more dense settings.

4.5. Generalization Capability

NYU-Depth-v2: We also evaluate our method on NYU-
Depth-v2 to investigate the generalization capability under
different kind of datasets. NYU-Depth-v2 was created in an
indoor environment and is different from the KITTI dataset
in terms of sensor range and sensor position variety. NYU-
Depth-v2 is captured by flash LiDAR which has more short
range than KITTI and various sensor positions. Table 3
show the quantitative results. It shows that our method is
superior to the others and has the generality to extend to
different datasets. We show examples of the results in Fig
11.
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Figure 11: Qualitative results on NYU-Depth-v2 dataset.

Figure 12: Qualitative results from using our prototype.

Figure 13: Sparsification plots of both actual and virtually up-
dated uncertainties monotonically decrease against the
removed pixels with the uncertainty on KITTI valida-
tion set. This indicates good modeling of the uncer-
tainty.

Our prototype: We show some qualitative results from us-
ing our LiDAR sampling method on the prototype shown
in Figure 4. Since this prototype cannot yet perform pro-
grammable scans sequentially, we perform a virtual scan
as a sampling problem, using a dense depth that integrates
multiple LiDAR frames. Figure 12 shows examples of the
results in our lab. The density of the sampled depth map is
0.10%, and this shows good performance at the same level
as other datasets.

5. Discussion
We analyze our key idea which is to virtually update

the uncertainty by the uncertainty-aware interactive LiDAR
sampler with the candidate assessment table. Thus, we
compare the difference between the virtually updated un-
certainty and the actual uncertainty of the depth estimation
by sparsification plots. Figure 13 shows the result on the
KITTI dataset. There are small gaps between these uncer-

Table 2: Ablation study for an interactive approach on the KITTI
validation set. Our full model can perform interactive
sampling, thereby achieving the best performance.

Module RMSE[mm]

W/O uncertainty-aware

interactive LiDAR sampler 2780.3

Full model 1463.5

Table 3: Performance of depth completion on NYU-Depth-v2
dataset. Note that the RMSE metric is in meters.

Method Sample RMSE[m]

Bilateral Random 0.479

Sparse-to-Dense[13] Random 0.230

NConv-CNN-L2[7] Random 0.209

Deep-Adaptive-LiDAR[3] Poisson-disc 0.207

Deep-Adaptive-LiDAR[3] Adaptive 0.193

Super-Pixel-Sampler[26] Adaptive 0.211

Ours Adaptive 0.179

tainties. In addition, since our method assumes that the ef-
fect of the uncertainty with respect to each LiDAR point is
independent of the other LiDAR points, the candidate as-
sessment table is measured by inputting only one LiDAR
point to each candidate coordinate. However, multiple Li-
DAR points are in fact sampled as the sparse depth map
and input to the depth completion module at the same time.
Therefore, even if the predicted candidate assessment table
is perfect, it is thought that the behavior of the uncertainty
differs from the assumption that the other LiDAR points
occur as errors. However, since the error is very small as
shown in the evaluation results, we think that our assump-
tion and approach are reasonable.

6. Conclusion

In this paper, we study LiDAR sampling for deep depth
completion of programmable scanning LiDAR with RGB
camera. Our method performs sampling candidate as-
sessment as depth completion uncertainty and uncertainty-
aware interactive sampling for depth completion module
state. We design a candidate assessment module which can
assess all the sampling candidate assessments in a single
process. This enables us to add interactivity to the model
state without each inference process. We conduct compari-
son with the state of the art and various ablation studies to
show the effectiveness of our LiDAR sampling.
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