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Abstract

Recent studies have shown an increased interest to in-
vestigate the reliability of point cloud networks by adver-
sarial attacks. However, most of the existing studies aim
to deceive humans, while few address the operation prin-
ciples of the models themselves. In this work, we propose
two adversarial methods: One Point Attack (OPA) and Crit-
ical Traversal Attack (CTA), which target the points crucial
to predictions more precisely by incorporating explainabil-
ity methods. Our results show that popular point cloud
networks can be deceived with high success rate by shift-
ing only one point from the input instance. We also show
the interesting impact of different point attribution distri-
butions on the adversarial robustness of point cloud net-
works. We discuss how our approaches facilitate the ex-
plainability study for point cloud networks. To the best
of our knowledge, this is the first point-cloud-based ad-
versarial approach concerning explainability. Our code
is available at https://github.com/Explain3D/
Exp-One-Point-Atk-PC.

1. Introduction
Developments in the field of autonomous driving and

robotics have heightened the need for the research of point
cloud (PC) data since PCs are advantageous over other 3D
representations for real-time performance. However, com-
pared with 2D images, the robustness and reliability of PC
networks have only attracted considerable attention in re-
cent years and still not been sufficiently studied, which po-
tentially threatens human lives e.g. driverless vehicles with
point cloud recognition systems are unreliable unless they
are sufficiently stable and transparent.

Several attempts have been made to investigate the ad-
versarial attacks on PC networks, e.g. [22] and [54].
The first series (shape-perceptible), represented by [22],
although produce geometrically continuous adversarial ex-
amples with external generative models, fundamentally aim
at deceiving the human eyes and therefore ignore the con-
straints on the perturbation dimensions. Another series

(point-shifting) represented by [54] have shown a possibility
that moving (dropping or adding) points at crucial positions
can successfully fool the classifier. Nevertheless, most of
such studies have only focused on minimizing perturbation
distances for imperceptibility. Conversely, we start from a
different perspective by exploring attacks on PC networks
with a minimal number of perturbed points. Additionally,
we argue that existing choices of critical points could be
further optimized incorporating explainability approaches.

In comparison to previous studies, our work is motivated
by the following reasons:

Model operating principle: Part of the point-shifting
methods also deceived the classifier by perturbing critical
points, however, we argue that their selection of critical
points is flawed. Since most of the selection methods for
critical points are based on gradients only, and existing
studies [1, 45] have demonstrated that raw gradients suf-
fer from saturation issues and are therefore biased. On the
other hand, [16] demonstrated that feature attributions for
PC classification networks are extremely sparse, while no
work has specifically studied how these attributions are dis-
tributed among the critical points as well as their impact on
the prediction sensitivity.

Potential for explainability: Another possibility of one-
dimensional perturbations is explainability. The explain-
ability method called counterfactuals alters the prediction
label by perturbing the input features to provide a convinc-
ing explanation to the users. Previous researches have doc-
umented that humans are more receptive to counterfactu-
als with sparse-dimensional perturbations [18, 28, 3]. For
high-dimensional decision boundaries like point clouds, re-
duction of perturbation dimension is an important way to
enhance the comprehensibility of the vicinity, which can
be regarded as ”cutting the input space using very low-
dimensional slices” [43]. Furthermore, by incorporating
part semantics, Our approach has the potential to be ex-
tended for generating high-quality counterfactuals. More-
over, ours require only the access of gradients and no ad-
ditional generative models, and are therefore more intrinsi-
cally explainable.

Altogether, the contribution of this work can be summa-
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rized as follows:

• We propose two explainability method-based adver-
sarial attacks: One Point Attack (OPA) and Critical
Traversal Attack (CTA). Incorporating the attribution
from explainable AI, our methods fool the popular PC
networks with high success rate. Supported by exten-
sive experiments, a significant margin is established
with existing approaches in terms of the perturbation
sparsity.

• We investigate diverse pooling architectures as alter-
natives to existing point cloud networks, which have
an impact on the internal vulnerability against critical
points shifting.

• We discuss the research potential of adversarial attacks
from an explainability perspective, and present an ap-
plication of our methods on facilitating the evaluation
of explainability approaches.

The rest of the paper is organized as follows: We intro-
duce the related researches of PC attacks in Sec. 2, then we
detailed our proposed methods in Sec. 3. In Sec. 4, we
present the visualization of the adversarial examples and
demonstrate comparative results with existing studies. In
Sec. 5 we discuss interesting observations derived from ex-
periments with respect to robustness and explainability. We
finally summarize our work in Sec. 6.

2. Related Work
As the first work [47] on adversarial examples was pre-

sented, an increasing variety of attacks against 2D image
neural networks followed [14, 8, 21, 32, 11, 29]. However,
due to the structural distinctions with PC networks (see
Supplementary Sec. 7.1.1), we do not elaborate on the at-
tack methods of image deep neural networks (DNN)s. Rel-
evant information about image adversarial examples refers
to [2]. It is notable that [43] investigated one-pixel attack
for fooling image DNNs and also aimed at exploring the
boundary of inputs. Nevertheless, their approach is a black-
box attack based on an evolutionary algorithm, which is es-
sentially distinct from ours.

Existing PC attacks are generally categorized into two
classes: (i) Shape-perceptible generation, which generates
human-recognizable adversarial examples with consecutive
surfaces or meshes via generative models or spacial geo-
metric transformations [55, 22, 51, 23, 17, 57, 25, 59]. (ii)
Point-shifting perturbation, which regularize the distance
or dimension of the point-wise shifting via perturbing or
gradient-aware white-box algorithms [19, 58, 52, 54, 44,
24]. Point-wise perturbations, especially gradient-aware at-
tack methodologies, enable more intrinsic explorations of
the model such as stabilities and decision boundaries. On

the other hand, from the perspective of explainability, the
majority of generative models contain complex network
structures that are inherently unexplainable. Utilizing their
output to interpret another model is counter-intuitive.

The conception ”critical points” has been discussed by
several previous studies as well as the PointNet proposer
[33], which forms the skeletons of the input instances in the
classification processes. Existing methods [54, 19, 58, 52]
extract the critical points by tracing the ones that remain
active from the pooling layer, or by observing the gradient-
based saliency maps. While such approaches succeed in
generating adversarial examples with minor perturbation
distances and sparse shift dimensions, we argue that their
modules for selecting critical points can be further opti-
mized. Due to the subsequent FC layers, it is difficult to
determine whether the surviving points from the pooling
layer conclusively make significant contributions to the pre-
diction. Besides, saliency maps based on raw gradients are
defective [1, 45]. The above factors may result in the in-
volvement of fake critical points or omission of real ones
during the perturbation process, which severely impairs the
performance of the adversarial algorithms.

Explainability has been gaining attention in recent years.
Popular explainability methods can be broadly categorized
into gradient-based [38, 46, 4, 37, 40, 41], which requires
the access of the gradient information, and perturbation-
based [35, 26, 36], which is model-agnostic. In addition,
counterfactual explanations [7] is proposed for tabular data
by modifying selected features to induce the model to make
different predictions. The properties of counterfactuals are
identical to the adversarial examples, therefore attack meth-
ods may possess similar explainability potentials [5].

3. Methods

In this section, we formulate the adversarial problem in
general and introduce the critical points set (Subsec. 3.1).
We present our new attack approaches (Subsec. 3.2).

3.1. Problem Statement

Let P ∈ Rn×d denotes the given point cloud instance,
f : P → y denotes the chosen PC neural network and
M(a, b) : Rna×d × Rnb×d denotes the perturbation matrix
between instance a and b. The goal of this work is to gen-
erate an adversarial examples P ′ ∈ Rn′×d which satisfies:

argmin( |{m ∈M(P, P ′))|m ̸= 0} |
+ ∥M(P, P ′))∥) : f(P ′) ̸= f(P )

(1)

Note that among the three popular attack methods for PC
data: point adding (n′ > n), point detaching (n′ < n) and
point shifting (n′ = n), this work considers point shifting
only.
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We address the adversarial task in equation 1 as a gra-
dient optimization problem. We minimize the loss on the
input PC instance while freezing all parameters of the net-
work:

L = α× Z[f(P )] + β ×D(P, P ′) (2)

where α indicates the optimization rate, Z[f(P )] indicates
the neuron unit corresponding to the prediction f(P ) which
guaranties the alteration of prediction, D(P, P ′) represents
the quantized imperceptibility between the input P and the
adversarial example P ′ and β is the distance penalizing
weight. The imperceptibility has two major components,
namely the perturbation magnitude and the perturbation
sparsity. The perturbation magnitude can be constrained
in three ways: Chamfer distance (equation 3), Hausdorff
distance (equation 4) or simply Euclidean distance. We en-
sure perturbation sparsity by simply masking the gradient
matrix, and with the help of the saliency map derived by the
explainability method we only need to shift those points that
contribute positively to the prediction to change the classi-
fication results, which are termed as ”critical points set”.

Critical points set: The concept was first discussed by
its proposer [33], which contributes to the features of the
max-pooling layer and summarizes the skeleton shape of
the input objects. They demonstrated an upper-bound con-
struction and proved that corruptions falling between the
critical set and the upper-bound shape pose no impact on
the predictions of the model. However, the impairment of
shifting those critical points is not sufficiently discussed.
Previous adversarial researches studied the model robust-
ness by perturbing or dropping critical points set identified
through monitoring the max-pooling layer or accumulating
loss of gradients [54, 19, 58, 52]. Nevertheless, capturing
the output of the max-pooling layer struggles to identify
the real critical points set due to the lack of transparency in
the high-level structures (e.g., multiple MLPs following the
pooling layer), while saliency maps based on raw gradients
suffer from saturation [1, 45], both of which severely com-
promise the filtering of the critical point set. We therefore
introduce Integrated Gradients (IG) [46], the state-of-the-
art gradient-based explainability approach, to further inves-
tigate the sensitivity and robustness to the critical points set.
The formulation of IG is summarized in equation S1.

Similarity metrics for point cloud data: Due to the ir-
regularity of PCs, Manhattan and Euclidean distance are
both no longer applicable when measuring the similar-
ity between PC instances. Several previous works in-
troduce Chamfer [19, 56, 54, 22, 25, 59, 55] and Haus-
dorff [60, 19, 56, 54, 25, 59] distances to represent the im-
perceptibility of adversarial examples. The measurements
are formulated as:

• Bidirectional Chamfer distance

Dc(Pa, Pb) =
1

|Pa|
∑

pm∈Pa

min
pn∈Pb

∥pm − pn∥2

+
1

|Pb|
∑

pn∈Pb

min
pm∈Pa

∥pn − pm∥2
(3)

• Bidirectional Hausdorff distance

Dh(Pa, Pb) = max(max( min
pn∈Pb

∥pm − pn∥2),

max( min
pm∈Pa

∥pn − pm∥2))
(4)

3.2. Attack Algorithms

One-Point Attack (OPA): Specifically, OPA (see algo-
rithm 1 for pseudo-code) is an extreme of restricting the
number of perturbed points, which requires:

|{m ∈M(P, P ′))|m ̸= 0} | = 1 (5)

We acquire the gradients that minimize the activation unit
corresponding to the original prediction, and a saliency map
based on the input PC instance from the explanation gener-
ated by IG. We sort the saliency map and select the point
with the top-n attribution as the critical points (n = 1 for
OPA), and mask all points excluding the critical one on
the gradients matrix according to its index. Subsequently
the critical points are shifted with an iterative optimization
process. An optional distance penalty term can be inserted
into the optimization objective to regularize the perturbation
magnitude and enhance the imperceptibility of the adversar-
ial examples. We choose Adam [20] as the optimizer, which
exhibits better performance for optimization experiments.
The optimization process may stagnate by falling into a lo-
cal optimum, hence we treat every 25 steps as a recording
period, and the masked Gaussian noise weighted by Wn is
introduced into the perturbed points when the average of the
target activation at period k + 1 is greater than at period k.
For the consideration of time cost, the optimization process
is terminated when certain conditions are fulfilled and the
attack to the current instance is deemed as a failure.

Critical Traversal Attack (CTA): Due to the uneven
vulnerability of different PC instances, heuristically setting
a uniform sparsity restriction for the critical points pertur-
bation is challenging. CTA (pseudo-code presented in algo-
rithm 2) enables the constraint of perturbation sparsity to be
adaptive by attempting the minimum number of perturbed
points for each instance subject to a successful attack. The
idea of CTA is starting with the number of perturbed points
n as 1 and increasing by 1 for each local failure until the
prediction is successfully attacked or globally failed. Simi-
larly, we consider the saliency map generated by IG as the
selection criterion for critical points, and the alternative per-
turbed points are incremented from top-1 to all positively
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attributed points. Again, for accelerating optimization we
also select Adam [20] as the optimizer. Since most PC in-
stances can be successfully attacked by one-point shifting
through the introduction of Gaussian noise in the optimiza-
tion process, we discarded the noise-adding mechanism in
CTA to distinguish the experiment results from OPA. The
aforementioned local failure stands for terminating the cur-
rent n-points attack and starting another n+1 round, while
the global failure indicates that for the current instance the
attack has failed. We detail the stopping criteria for OPA
and CTA in Sec. 7.2.1.

Algorithm 1: Np-critical Point(s) Attack. (Np = 1
for OPA)

Input: P → N ×D PC data, f → PC neural
network, α→ Optimizing rate, β →Weight
for constrain the perturbing
distance(optional), D → Distance
calculating function(optional), Np →
Number of shifting points(1 for One-point
attack), Wn → Gaussian noise weights

Output: Padv → N ×D Adversarial example
1 Aidx = Argsort(IG(P, f)) // Get IG mask of P
2 Rs = list() // Activation Recorder
3 Icur = 1 // Current iteration
4 while True do
5 ap ← f(P ) // Current activation of predicted

class
6 G = α ∗Ap + β ∗D(Padv, P ) // Add distance

constrain(Optional)
7 Padv = Adam(Padv, G[Aidx[0 : Np]]) // Adam

optimizing N points
8 Icur += 1
9 Rs.append(ap)

/* Add masked Gaussian random noise if
activation descending stopped */

10 if Rs[t] < Rs[t+ 1] then
11 Padv += Wn ×

GaussianRandom(Pδ)[Aidx[0 : Np]]

/* Success if predict class changed */
12 if max(a)! = pred then
13 return Padv

/* Fails if the stopping conditions related to Ra

and Icur are fulfilled */
14 if Stopping criteria are fulfilled then
15 return Failed

4. Experiments
In this section, we present and analyze the results of

the proposed attack approaches. We demonstrate quanti-

Algorithm 2: Critical Traversal Attack (CTA)
Input: P → N ×D PC data, f → PC neural

network, α→ Optimizing rate, β →Weight
for constrain the perturbing
distance(optional), D → Distance
measuring function(optional)

Output: Padv → N ×D Adversarial example
1 Aidx = Argsort(IG(P, f)) // Get IG mask of P
2 Numpos = count(IG(P, f) > 0) // # Points with

attribution >0
3 Rs = list()
4 Icur = 1
5 for Np from 1 to Numpos do
6 while True do
7 ap ← f(P ) // Activation of predicted class
8 G = α ∗Ap + β ∗D(Padv, P ) // Add

distance constrain(Optional)
9 Padv = Adam(Padv, G[Aidx[0 : Np]])

// Adam optimizing N points
10 Icur += 1
11 Rs.append(ap)

/* Success if predict class changed */
12 if argmax(ap)! = pred then
13 return Padv

/* Current Np round fails if the local
stopping conditions related to Ra and
Icur are fulfilled */

14 if Local stopping criteria fulfilled then
15 break;

/* Current instance fails if the global stopping
conditions are fulfilled */

16 if Global stopping criteria fulfilled then
17 return Failed

18 return Failed

tative adversarial examples in Subsec. 4.2 and scrutinize
the qualitative result in Subsec. 4.1. Our experiments1

are primarily conducted on PointNet [33], which in gen-
eral achieves an overall accuracy of 87.1% for the classifi-
cation task on ModelNet40. Moreover, we extended our ap-
proaches on the most popular PC network PointNet++ [34]
and DGCNN [50], which outperform the PC classification
task with 90.7% and 92.2% accuracies respectively. We
also experiment on PointMLP [27], the state-of-the-art clas-
sification model to date, which achieves the best accuracy
of 94.5% on ModelNet40. Modelnet40 [53], our main ex-
perimental dataset, contains 12311 CAD models (9843 for
training and 2468 for evaluation) from 40 common cate-

1Our code is available at https://github.com/Explain3D/
Exp-One-Point-Atk-PC

4584



gories, and is currently the most widely-applied point cloud
classification dataset. We randomly sampled 25 instances
for each class from the test set, and then selected those in-
stances that are correctly predicted by the model as our vic-
tim samples. When configuring parameters, the optimiza-
tion rate α is empirically set to 10−6, which performs as
the most suitable step size for PointNet after grid search.
Specifically for OPA, we set the Gaussian weight Wn to
10−1, which proved to be the most suitable configuration.
For CTA, we investigate both β = 0 and 1e − 3. More
analytical results of different configuration of β and Wn is
demonstrated in Fig. S5. We also validate our methods on
ShapeNet [9] dataset. All attacks performed in this section
are non-targeted unless specifically mentioned. In all exper-
iments, we only compare the performances among point-
shifting attacks, motivated by exploring the peculiarities
of PC networks. Though previous shape-perceptible ap-
proaches such as [57, 17, 59, 22, 55] also addressed adver-
sarial studies of PCs, they were devoted to generate adver-
sarial instances with human-perceptible geometries. There-
fore, comparison of perturbation distances and dimensions
with their works is not relevant.

4.1. Quantitative evaluations and comparisons

In this section, we compare the imperceptibility of pro-
posed methods with existing attacks via measuring Haus-
dorff and Chamfer distances as well as the number of shifted
points, and demonstrate their transferability among differ-
ent popular PC networks. Additionally, we show that CTA
maintains a remarkably high success rate even after convert-
ing to targeted attacks.

Imperceptibility: We compare the quality of generated
adversarial examples with other point-shifting researches
under the aspect of success rate, Chamfer and Hausdorff
distances, and the number of points perturbed. As Tab.
1 shows, compared to the approaches favoring to restrict
the perturbation magnitude, despite the relative laxity in
controlling the distance between the adversarial examples
and the input instances, our methods prevail significantly in
terms of the sparsity of the perturbation matrix. Simultane-
ously, our methods achieve a higher success rate, implying
that the network can be fooled for almost all PC instances
by shifting a minuscule amount of points (even one). Note
that while calculating Dc and Dh, we employ the L2-norm.
Therefore, despite the large Hausdorff distance, the average
perturbation magnitude along each axis is 0.488. Consid-
ering that each axis of ModelNet40 is regularized into the
interval [−1, 1], this magnitude occupies 24.4% of the in-
terval, which corresponds to an average perturbation of 62.2
gray values in 2D grayscale images. We thus consider the
perturbation magnitude to be acceptable (also see Sec. 7.4
for legitimacy check).

To eliminate potential bias, we also test the proposed

attack methods with ShapeNet [9] dataset. As Tab. 2
presents, our approaches perform similarly on the two dif-
ferent datasets, and therefore the vulnerable bias in the data
distribution of ModelNet40 can be basically excluded.

In addition to PointNet, we also tested the performance
of our proposed methods on PC networks with different ar-
chitectures. Tab. 3 summarize the result of attack PointNet,
PointNet++, DGCNN and PointMLP with both OPA and
CTA respectively. Both OPA and CTA achieve high suc-
cess rate fooling those networks while only a single-digit
number of points are shifted. PointMLP seems to be the
most stable model, and we speculate that this is attributed
to the affine module of relative position [27]. Intuitively,
PC neural networks appear to be more vulnerable compared
to image CNNs ([43] is a roughly comparable study since
they also performed one-pixel attack with the highest suc-
cess rate of 71.66%, see Tab. S3 and Fig. S7 in supplemen-
tary for results of OPA). An opposite conclusion has been
drawn by [54], they trained the PointNet with 2D data and
compared its robustness with 2D CNNs against adversar-
ial images. Nevertheless, we argue that the adversarial ex-
amples are generated by attacking a 2D CNN, such attacks
may not be aggressive for PointNet, which is specifically
designed for PCs.

Transferability: We investigate the transferability of
proposed attacks across different PC networks by feeding
the adversarial examples generated by one network to the
others and recording the success rate. Fig. 1 presents the
adversarial transferability between PointNet, PointNet++,
DGCNN and PointMLP. What stands out in the figure is
that PointNet++, DGCNN, PointMLP show strong stability
against the adversarial examples from PointNet. We believe
this is because the aggregated adjacency features disperse
the attribution of a single point. Recall the EdgeConv [50] in
DGCNN, which extracts adjacent features in both point and
latent spaces, while PointNet++ possesses a similar module
that aggregates neighboring points [33], which can be con-
sidered as a point-space-only EdgeConv. Such an integra-
tion distributes the feature contribution to multiple adjacent
points, and a modest shifting of one point has limited im-
pacts on the aggregated cluster. For PointMLP, this module
transforms into affines of relative-position encodings [27].
Despite the involvement of adjacent points information, the
features of relative positions may be severely corrupted if
the centroids are perturbed. However, the feature extrac-
tor in PointNet can also be regarded as a special EdgeConv
with K = 1, preserving the location information of the cen-
tral point only, and therefore is more sensitive to the per-
turbation. Surprisingly, PointNet++ performs stably against
adversarial examples from DGCNN and PointMLP, while
the opposite fails. We consider the stability of PointNet++
stems from the multi-scale(resolution) grouping, where la-
tent features are concatenated by grouping layers at differ-
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S(↑) Dc(↓) Dh(↓) Np(↓)
Lp Norm [54] 85.9 1.77× 10−4 2.38× 10−2 967

Minimal selection [19] 89.4 1.55× 10−4 1.88× 10−2 36
Adversarial sink [25] 88.3 7.65× 10−3 1.92× 10−1 1024
Adversarial stick [25] 83.7 4.93× 10−3 1.49× 10−1 210
Random selection [52] 55.6 7.47× 10−4 2.49× 10−3 413
Critical selection [52] 19.0 1.15× 10−4 9.39× 10−3 50
Critical frequency [58] 63.2 5.72× 10−4 2.50× 10−3 303
Saliency map/L [58] 56.0 6.47× 10−4 2.50× 10−3 358
Saliency map/H [58] 58.4 7.52× 10−4 2.48× 10−3 424

Ours (OPA) 98.7 8.64× 10−4 8.45× 10−1 1
Ours (CTAβ=0) 100 8.92× 10−4 8.19× 10−1 2

Ours (CTAβ=1e−3) 99.6 7.73× 10−4 6.68× 10−1 6
Table 1. Comparison of existing point-shifting adversarial generation approaches for PointNet, where S, Dc, Dh and Np denote the success
rate, Chamfer and Hausdorff distances and the number of shifted points respectively. Part of the records sourced from [19]. It is worth
noting that we only compare the gradient-based point-shifting competitors. The upward (↑) and downward (↓) arrows indicate whether a
larger or smaller value is better, respectively.

Dataset S(↑) Dc(↓) Dh(↓) Np(↓)

OPA ModelNet40 98.7 8.64× 10−4 8.45× 10−1 1
ShapeNet 95.1 8.39× 10−4 8.06× 10−1 1

CTA ModelNet40 100 8.92× 10−4 8.19× 10−1 2
ShapeNet 100 8.91× 10−4 7.26× 10−1 3

Table 2. Comparison of attack results with ModelNet40 and
ShapeNet dataset.

Model S(↑) Dc(↓) Dh(↓) Np(↓)

O
P
A

PN [33] 98.7 8.45× 10−4 8.64× 10−1 1
PN++ [34] 99.1 1.58× 10−2 1.61× 101 1

DGCNN [50] 90.9 1.70× 10−3 1.69 1
PointMLP [27] 52.9 1.91× 10−3 1.90 1

C
T
A

PN [33] 100 8.92× 10−4 8.19× 10−1 6
PN++ [34] 99.5 1.22× 10−2 8.90 6

DGCNN [50] 100 2.13× 10−3 1.48 3
PointMLP [27] 99.8 3.77× 10−3 9.83× 10−1 13

Table 3. Comparison of attack results on PN(PointNet),
PN++(PointNet++), DGCNN and PointMLP.

ent scales, resulting in more points involved in the aggre-
gation. In addition, the incorporation of random sampling
enhances robustness. See Sec. 7.6 for detailed analyses.

Targeted attack: We also extend the proposed methods
to targeted attacks. To alleviate redundant experiment pro-
cedures, we employ three alternatives of conducting ergodic
targeted attack: random, lowest and second-largest activa-
tion attack. In the random activation attack we choose one
stochastic target from the 39 labels (excluding the ground-
truth one) as the optimization destination. In the lowest and
second-largest activation attack, we decrease the activation
of ground truth while boosting the lowest or second-largest
activation respectively until it becomes the largest one in
the logits. The results, as shown in Tab. 4, indicate that
though the performance of OPA is deteriorated when con-
verting to targeted attacks due to the rigid restriction on the

Figure 1. Transferability for PointNet, PointNet++, DGCNN and
PointMLP. Networks on the rows and columns denote from
which victim networks the adversarial examples are generated and
to which those examples are transferred respectively. Brighter
squares denote higher transferabilities. The total transferabilities
under the matrices are the averages of the off-diagonal values of
corresponding methods.

perturbation dimension, CTA survived even the worst case
(the lowest activation attack) with a remarkably high suc-
cess rate and a minuscule number of perturbation points.
We also demonstrate the results from LG-GAN [59], which
also dedicates to targeted attack for PC networks. In com-
parison, CTA achieves an approximated success rate with
a much smaller Dc. Note that their approach is based on
generative models and the comparison is for reference only.

4.2. Adversarial examples visualization

Fig. 2 visualizes two adversarial examples for OPA and
CTA respectively. Interestingly, in CTA, regardless of the
absence of the restriction on the perturbation dimension,
there are instances (e.g. the car in CTA) where only one-
point shifting is required for an adversarial example. More
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Pattern S(↑) Dc(↓) Dh(↓) Np(↓)
O
P
A

Second-largest 58.5 9.49× 10−4 9.33× 10−1 1
Random 20.9 1.06× 10−2 1.08× 101 1
Lowest 6.3 4.73× 10−3 4.80 1

C
T
A

Second-largest 99.5 1.55× 10−3 8.14× 10−1 5
Random 97.7 5.75× 10−3 2.31 10
Lowest 99.0 8.52× 10−3 3.06 13

LG-GAN [59] 98.3 3.80× 10−2 - -
Table 4. Targeted OPA and CTA on PointNet. Targeting all labels
for each instance in the test set is time-consuming. Therefore, we
generalize it with three substitutes: random, the second-largest and
the lowest activation in the logits. We also show the results of LG-
GAN as a reference.

qualitative visualizations are presented in Fig. S1 and S2.

5. Discussion
In this section, we present our viewpoint concerning the

robustness of PC networks (5.1) and discuss the potential
of OPA from the viewpoint of explainability (5.2).

5.1. Structural stability of PC networks

Plenty of researches have discussed defense strategies
against intentional attacks for PC networks [56, 24, 60, 25,
19, 44, 59, 55], the majority of which were with respect to
embedded defense modules, such as outlier removal. How-
ever, there has been little discussion about the stability of
the intrinsic architectures. Inspired by [44] who investi-
gated the impacts of different pooling layers on the robust-
ness, we replace the max-pooling in PointNet with multi-
farious pooling layers. As Tab. 5 shows, although PointNet
with average and sum-pooling sacrifice 3.3% and 10.4% ac-
curacies in the classification task, the success rates of OPA
on them plummet from 98.7% to 44.8% and 16.7% respec-
tively, and the requested perturbation magnitudes are dra-
matically increased, which stands for enhanced stabiliza-
tion. We speculate that it depends on how many points
from the input instances the model employs as bases for
predictions. We calculate the normalized IG contributions
of all points from the instances correctly predicted among
the 2468 test instances, and we also introduce the Gini co-
efficient [12] to quantify the dispersion of the absolute attri-
butions which is formulated as:

G =

∑n
i=1

∑n
j=1 ||ai| − |aj ||
2n2 |ā|

(6)

where a is the attribution mask generated by IG. We
demonstrate the corresponding results in Tab. 5, 6 and
Fig. S11. There are significant distributional distinc-
tions between the max, average and sum-pooling archi-
tectures. PointNet with average and sum-poolings adopt
70.18% (718.5 points) and 84.78% (868.2 points) of the
points to positively sustain the corresponding predictions,
where the percentages of points attributed to the top 20% are

0.65% (6.7 points) and 1.16% (11.9 points), respectively,
while these proportions are only 38.79% (397.2 points) and
0.15% (1.5 points) in the max-pooling structured PointNet.
Moreover, the Gini coefficients reveal that in comparison to
the more even distribution of attributions in average (0.53)
and sum-pooling (0.49), the dominant majority of attribu-
tions in PointNet with max-pooling are concentrated in a
minuscule number of points (0.91). Hence, it could con-
ceivably be hypothesized that for PC networks, involving
and apportioning the attribution across more points in pre-
diction would somewhat alleviate the impact of corruption
at individual points on decision outcomes, and thus facili-
tate the robustness of the networks. Surprisingly, median-
pooling appears to be an exception. While the success rate
of OPA is as low as 0.9%, the generated adversarial exam-
ples only require perturbing Dh = 9.55 × 10−2 in aver-
age (all experiments sharing the same parameters, i.e. with-
out any distance penalty attached). On the other hand, de-
spite that merely 53.53% (548.1) points are positively at-
tributed to the corresponding predictions, with only 0.23%
(2.4 points) of them belonging to the top 20%, which is
significantly lower than the average and sum-pooling archi-
tectures, median-pooling is almost completely immune to
the deception of OPA. We believe that median-pooling is
insensitive to extreme values, therefore the stability to per-
turbations of a single point is dramatically reinforced.

Another interesting observation about the attribution dis-
tribution is based on Activation Maximization (AM), which
we report in section 7.9.

5.2. Towards explainable PC models

Despite the massive number of adversarial methods that
contribute to the model robustness for computer vision
tasks, to our best knowledge, none has discussed the ex-
plainability of PC networks. However, we believe that the
adversarial methods can facilitate the explainability of the
models to some extent. Recall the roles of counterfactu-
als in investigating the explainability of models processing
tabular data [7]. Counterfactuals provide explanations for
chosen decisions by describing what changes on the input
would lead to an alternative prediction while minimizing
the magnitude of the changes to preserve the fidelity, which
is identical to the process of generating adversarial exam-
ples [10]. Unfortunately, owing to the multidimensional ge-
ometric information that is unacceptable to the human brain,
existing image-oriented approaches addressed the counter-
factual explanations only at the semantic level [15, 49].

Several studies have documented that a better counter-
factual needs to be sparse because of the limitations on hu-
man category learning [18] and working memory [28, 3].
In addition, previous adversarial studies on images have
also suggested that unidimensional perturbations contribute
to depicting relatively perceptible vicinities and boundaries
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Figure 2. Adversarial examples for OPA and CTA. Np denotes how many points are shifted.

Acc. S↑) Dc(↓) Dh(↓) Npos Gini.
Max-pooling 87.1 98.7 8.45× 10−4 8.64× 10−1 397.2 0.91

Average-pooling 83.8 44.8 2.94× 10−3 2.96 718.5 0.53
Median-pooling 74.5 0.9 1.28× 10−4 9.55× 10−2 548.1 0.57

Sum-pooling 76.7 16.7 2.50× 10−3 2.53 868.2 0.49
Table 5. Model accuracies, success attacking rates, average Chamfer and Hausdorff distances of OPA on PointNet with max, average,
median and sum-pooling on the last layer respectively. The evaluation accuracy is also presented in the second column. Npos denotes how
many points are positively attributed to the prediction, and Gini. denotes the Gini coefficient of the corresponding attribution distributions.

Top 20% Top 40% Positive
Max-pooling 0.15% 0.23% 38.79%

Average-pooling 0.65% 2.12% 70.18%
Median-pooling 0.23% 0.59% 53.53%

Sum-pooling 1.16% 4.53% 84.78%
Table 6. Overview of the percentage of top-20%, top-40% and
positive attributed points with four different pooling layers. Com-
plete pie diagrams are shown in Fig. S11.

[43]. Fig. 3 compares the visualization of multidimensional
and unidimensional perturbations. The latter, though larger
in magnitude, shows more clearly the perturbation process
of the prediction from ”car” to ”radio”, and makes it easier
to perceive the decision boundary. Conversely, while higher
dimensional perturbations perform better on imperceptibil-
ity for humans, they are more difficult for understanding the
working principles of the model.

In addition, we found another application where the pro-
posed method facilitate the explainability. Evaluating ex-
planations is a major challenge for explainability studies
due to the lack of ground truth [6]. An intuitive idea is
sensitivity testing, i.e., perturbing features in the explana-
tion that possess high attributions and observing whether
the prediction results dramatically change. Theoretically, in
our methods, a more accurate explanation induces a more
precise selection of critical points, and therefore a higher
success rate when perturbing them for generating adversar-
ial examples. Tab. 7 presents the attack performances utiliz-
ing gradient-based explainability methods: Vanilla Gradi-
ents [39], Guided Back-propagation [42] and IG as the crit-
ical identifier respectively. Our results are consistent with
[16] and [48], the performance of IG is comparatively bet-
ter than that of Vanilla Gradients and Back-propagation.

Figure 3. Intuitive visualization of multidimensional shifting(left),
unidimensional OPA shifting(middle) and the shifting process of
OPA(right). In the right plot, the redder the point the higher the
confidence for label ”car”. In the right plot the green point indi-
cates that the prediction is altered.

Mtd. S(↑) Dc(↓) Dh(↓) Np(↓)
VG 82.5 8.20× 10−4 8.01× 10−1 1
GB 83.4 8.21× 10−4 8.02× 10−1 1
IG 98.7 8.64× 10−4 8.45× 10−1 1

Table 7. OPA performances utilizing various gradient-based ex-
plainability methods to identify the critical points, where VG, GB
and IG denote Vanilla Gradients [39], Guided Back-propagation
[42] and Integrated Gradients respectively.

6. Conclusion
As the first attack methods for PC networks incor-

porating explainability, we demonstrate the significance
of individual critical points for PC network predictions.
For future work, filtering out those critical points in
advance is a promising direction to improve explainability.
Besides, we are looking forward to higher-quality and
human-understandable explanations for PC networks.
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