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Abstract

Point clouds are playing an increasingly important roll
in autonomous driving and robotics. Although current
point cloud classification models have achieved satisfactory
accuracies, most of them trade slight performance gains
by stacking complex modules on the grouping-local-global
framework, which leads to prolonged processing time and
deteriorating interpretability. In this work, we propose a
new pipeline named Fractual Projection Forest that exploits
fractal features to enable traditional machine learning mod-
els to achieve competitive performance with DNNs on clas-
sification tasks. Though compromises by few percentages
in accuracy, FPF is faster, more interpretable, and easily
extendable. We hope that FPF may provide the community
with a novel view of point cloud classification. Our code
is available on https://github.com/Explain3D/
FracProjForest.

1. Introduction
In recent years, point clouds have attracted great atten-

tion due to their potential in fields such as autonomous
driving [3, 18] and robotics [27, 14]. In Deep Learning
(DL), due to irregularity, traditional convolutional kernels
cannot be applied directly on point clouds and early solu-
tions mainly include voxelization [23] and multi-view ap-
proaches [35]. With the proposal of PointNet [28], 3D
recognition has started a new period, i.e., learning features
and predicting directly with raw point clouds. Upon this
foundation, a large number of deep architectures have been
proposed [29, 40, 17, 22, 43], which have achieved higher
accuracies.

However, most of the latest point cloud models are un-
able to get rid of the general term [22], i.e.:

gi = A(Φ(fi,j)|j = 1, · · · ,K) (1)

where A, Φ and f are global symmetric function (various
pooling layers), local feature extractor (MLP [28, 29], CNN
[17], Residual [22], attention [43] etc.) and local group-
ing function (MSG [29], Graphs [40], etc.) respectively.

Recent models frequently incorporate more complex tricks
to these components in exchange for minor accuracy gains.
Although the ”arms races” have won slight boosts in ac-
curacy, the side effects cannot be ignored. First, excessive
module burden leads to prolonged runtime. This can be de-
rived from the quantitative comparison of PointMLP [22],
even the latest and cleanest MLP architecture has double
the processing time compared to PointNet. More impor-
tantly, these models with sophisticated modules suffer from
a lack of interpretability [9]. Humans cannot trust mod-
els that are not interpretable, especially in the field of au-
tonomous driving or medicines, where the predicted results
are crucial for human lives [10]. Although several recent
researches have addressed the explainability of point cloud
models by demonstrating the decision basis through post-
hoc methods [7, 37], explainability is still in its infancy as
an emerging field and numerous existing studies have indi-
cated that the currently widely utilized explainability meth-
ods may not be reliable [38, 15, 11]. Besides, the lack of
ground truth makes post-hoc explainability methods diffi-
cult to be evaluated [47].

In addition to post hoc approaches, the employment of
interpretable models also facilitate plausibility [4]. One
study suggests that if appropriate features are chosen, even
with simpler and interpretable models, there will be no sig-
nificant drop in accuracy compared to black-box ones [30].
Fortunately, recent post-hoc attribution researches reveal
that the features of point clouds are sparse [7, 37]. Compa-
rable accuracy can be achieved using simple interpretable
models if these features are filtered out from point cloud
input in advance.

In this work, we propose a new pipeline of point cloud
classification by extracting the input projections through
multi-size fractal windows. This approach jumps out from
the race of adding tricks to Deep Neural Network (DNN)s,
and performs classification through simpler models with
only few percent accuracy compromised. Moreover, our
method enables the training of the entire ModelNet40 in
tens of seconds (several minutes if pre-processing is in-
cluded) with a CPU, which is barely possible for DNNs.
Besides, our model provides two explanations, i.e., intrinsic
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Gini impurity and perturbation-based attributions. For the
latter, our model allows the ablation of entire grouped fea-
tures, thus avoiding the concern of feature correlation and
out-of-distribution issues [11] as in raw point clouds. Ad-
ditionally, our approach is more extensible as it can adapt
to different classification scenarios by manually adding ap-
propriate features or switching models. In summary, our
contribution is primarily summarized as follows:

• We propose a non-DL pipeline Fractual Projection
Forest (FPF), that converts point cloud classification,
which is previously only solvable with DNNs, into
traditional machine learning tasks. Compared with
DNNs, FPF is faster, more interpretable and extensi-
ble, while compromising only few percent of accuracy.

• We demonstrate two explanations of FPF, both of
which are challenging to accomplish on DNNs.

The overall structure of this paper is as follows: In Sec-
tion 2, we introduce popular point clouds models and corre-
sponding explainability methods. Section 3 elaborates the
ideas and technical details of FPF. In Section 4, we show the
performance of the proposed method and the corresponding
explanations. In Section 5, we give a short summary and
propose future research directions.

2. Related Work
In this section, we introduce the widely applied classi-

fication models (2.1)and the research that promotes the ex-
plainability for point clouds (2.2).

2.1. Classification models for point clouds

Before the advent of models that act directly on raw
point clouds, there were typically two ways for the clas-
sification tasks, namely the voxel-based [23, 31, 19] and
the multi-view-based approaches [35, 6, 13, 5]. The voxel-
based approaches are dedicated to organizing irregular point
clouds so that they are spatially ordered, which enables
the extraction of adjacent features between points using
3D convolutional kernels. The voxel-based methods, as
early solutions to address the irregularity, suffer from lim-
ited processing speed due to the incorporation of additional
pre-processings, such as voxelization [23]. The multi-
view-based methods project point clouds onto planes, sub-
tly downscaling them to two-dimensional images. Inter-
estingly, in recent research [6], a simple 6-view-method
achieves almost state-of-the-art accuracy by introducing
tricks into the training process. With the proposal of Point-
Net [28], a series of classification methods that operate di-
rectly on raw point clouds come into view. PointNet estab-
lishes a pipeline for following studies, i.e., Eq. 1. Most sub-
sequent models based on raw point clouds [29, 40, 17, 43]

are subject to this pipeline, with more complex tricks at-
tached to the individual modules to achieve higher accura-
cies. However, all the aboves are based on neural networks,
which are black-box models, and humans struggle to under-
stand their decision-making principles [24].

2.2. Explainability research for point clouds

Post-hoc explanability methods: There are currently
only few explainability studies on point cloud models. [7]
and [37] explain the decision attributions by incorporat-
ing gradient-based and surrogate model-based explainabil-
ity methods [24] to point clouds respectively. For the re-
search on model intrinsic attribution, [46] observes changes
in the prediction confidence by filtering and incrementally
flipping the key points. However, all the aforementioned
methodologies are post hoc attributions, and the explana-
tions obtained may be biased due to flaws in explainability
or perturbation approaches [38, 15, 11].

Interpretable models: Before DL was widely applied,
point cloud classification was usually accomplished by
manually extracting features and trivial ML models, e.g.
LDA [45] or Markov network [25]. Nevertheless, these ap-
proaches were promptly replaced by newly emerged point
cloud DNNs due to the limited performance. To address
interpretability, a recent study [1] proposes a prototype-
based model that accomplishes classification by clustering
the features in the latent space. Although the decision ba-
sis of their approach is intuitive, it is less extensible, and
we argue that the extraction of latent features with neu-
ral networks aggravates the opacity. In addition, PointHop
[44] is also a non-DL method that utilizes a random for-
est to learn adjacent features of points extracted by a mod-
ule called PointHop Unit. However, although PointHop im-
proves the interpretability of the model, the geometric fea-
tures between points are still incomprehensible for humans.
In addition, PointHop performs significantly degraded on
real scanned datasets.

3. Methods
In this section, we introduce the mechanism and struc-

ture of FPF. Section 3.1 outlines how fractal-based features
operate, Section 3.2 details the internal structure of FPF,
and Section 3.3 illustrates how FPF generates reliable ex-
planations.

3.1. Fractal features

This work is inspired by Hausdorff dimension [8], whose
formula can be seen in eq. S1. Hausdorff dimension reflects
the smoothness of geometry and can be estimated by count-
ing the total number of fractals in different sizes and apply-
ing an exponential fit. Similarly, we create features of point
clouds manually with multi-size fractal windows. Fig. 1 il-
lustrates an overview of fractal features. With progressively
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increased window sizes, the point set is sampled into differ-
ent subgroups. We then extract relevant statistical informa-
tion from each subgroup, which varies according the distri-
bution of points within the subgroups. For instance, from
the two point sets (first column), we can extract the feature
sequences [4, 2, 2], [1, 2, 2] (top) and [4, 4, 4], [1, 1, 1] (bot-
tom) with respect to n and p̄, respectively. Note that we
only list the total number of windows (n) and the average
number of points contained (p̄) here, additional information
will be discussed in Sec. 3.2.

3.2. Model architecture

Fig. 2 shows the architecture of FPF. FPF consists of the
following components: projection, fractal sampling, feature
generation & concatenation and prediction modules. Con-
sider the input as a D dimensional point cloud instance with
N points: {xi|i = 1, . . . , N} ∈ RN×D, and we illustrate
with the simplest case, i.e., N = 3.

Projection: Inspired by the multi-view classification
methods [35, 42, 6], we first project the point cloud on each
axis (x,y and z) and planes (xy, xz and yz). Subsequently,
three 1-D and 2-D projections are obtained, they are de-
noted as: P1 ∈ RN and P2 ∈ RN2

.
Fractal sampling: According to the mechanism in 3.1,

we perform fractal sampling for each of the six projections.
Let the number of multi-scale sampling be I . The start of
the sampling window size is half of the entire spatial value
range, i.e. Wmax = 1

2 {maxxi −minxi}, which is scal-
able and 1 for ModelNet40 [41]. The window size at the
i-th sampling is:

Wi = e(−i×α) (2)

where α is a smoothing coefficient that flattens the changes
in the sampling window sizes. We chose exponential be-
cause the points sampled by the equidistant window size are
prone to alter drastically when i is small and almost constant
when i is large (see Sec. S1.3 for analysis). The return of
the sampling is which window each point belongs to, and
two sampling results are obtained, S1 ∈ NN and S2 ∈ NN2

for P1 and P2, respectively. Note that the records of those
windows that do not sample any points are marked as 0,
which are also important features.

Feature generation & concatenation: Compared with
raw point clouds, the advantage of tabularized features is
that they are more intuitive when explaining attributions.
Therefore, we extract statistics from point clouds in the
form of tabular features as training data. Similar to other
DNN models, FPF requires global and local features for
prediction as well.

Global features: Three global features are involved:
the number of non-zero fractal windows: Gn = |{s ∈
S1, S2|s > 0}|, basic statistics for all sampling windows,
and the Gaussian parameters. The base statistics include the
maximum and minimum (non-zero) values of points within

a single window, and the corresponding window indexes.
To obtain the parameters, we employ Gaussian fits to ap-
proximate the distribution of the sampled points in corre-
sponding projection space. This feature is based on the as-
sumption that most objects are normalized to be located in
the middle of the spatial coordinates. We estimate the pa-
rameters using one- and two-dimensional Gaussian models,
respectively. The former contains two parameters, i.e., the
mean (µ) and the variation (σ), and the latter consists of
five, i.e., the means along each axis µx and µy , the standard
deviations σx and σy , and an amplitude bias α. Fig. S2
shows an example of a Gaussian feature that captures the
distribution differences across classes and windows sizes.

Local features: Two local features are involved: (aver-
aged) distributions of the points within all windows as well
as several specified windows. For the former, we calculate
the extremes, means and variances of the points within each
window separately and obtain their global averages. For
the latter, we selectively monitor the windows of particu-
lar indexes and compute the internal distributions of points.
However, since the total number of windows obtained af-
ter sampling with different sizes is inconsistent, we specify
a proportion m ∈ [0, 1) and select |S| × m (|S| is total
number of windows) as the monitored window. We record
the number, mean and variance of the points in this window
as features. In addition, multiple monitored targets can be
appended.

Feature concatenation: We simply concatenate global
and local features as final inputs. Note that our features
are arbitrarily expandable, and different statistical features
can be explored for specific datasets to achieve optimal ac-
curacu.

Others: FPF incorporates other modules to further en-
hance performance.

Rotation augmentation: Rotating objects R times to cre-
ate R new training data is an augmentation method pro-
posed in [28, 29]. In this work, we set the angle of each
rotation to 2π/R, i.e., the object is rotated by an identical
angle R times, and the R + 1st time returns to the original
one. There are two types of rotation augmentation available
in FPF: feature and quantity augmentation. We first perform
the same tabular feature extraction on the rotated object to
obtain R additional feature series. In feature augmenta-
tion, we horizontally concatenate R sequences (R+1 times
lengthened), which provides each training data with ad-
ditional rotation information and enhances rotation invari-
ance. The quantity augmentation is similar as in [28, 29].
The rotated features are vertically aggregated to the dataset
as new training data, which increases the amount of training
data to mitigate overfitting.

Attribution filtering: In decision making, there are fea-
tures that contain either positive or negative attributions.
Positive attributions reinforce the predictions while nega-
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tive ones diminish the confidence. Therefore, after training
a raw model, we obtain attributions of each feature based on
the explanation (see Sec. 3.3) and filter out those features
whose attributions are below a threshold THp to further en-
hance the accuracy.

3.3. Explainability

FPF offers two perturbation-based explanations: Gini
Importance and grouped feature ablation.

Gini Importance is calculated as the average of the de-
creasing impurity of all nodes over all trees [21]. The ad-
vantage of this approach is the calling simplicity, which can
be obtained directly through RF.feature importances
from sklearn in few milliseconds. One drawback of impu-
rity attribution is the bias towards continuous or high cardi-
nality variables [26]. Another concern is the bias in datasets
containing highly correlated features, which leads to sub-
optimal predictor variables being assigned greater weights
[33, 32].

Grouped feature ablation is an alternative method that
addresses the above issues. Traditional feature ablation ap-
proaches suffer from out-of-distribution problem [11], i.e.,
when certain features are ablated, the data consisting of the
remaining ones are outside the distribution from original
dataset, resulting in unreliable prediction analyses. There-
fore, we first group features according to types, i.e. fea-
tures belonging to 1-D projection or sampling window size
1. Subsequently, we ablate all features belonging to the
same type t to avoid any information residual. According
to the methodology proposed by [11], we retrain the ablated
dataset and record the accuracy of the entire testset as Acc′t̄.
The attribution of features in type t can be represented as:

Atrt ∝ Acc−Acc′t̄ (3)

where Acc is the accuracy of the original model on the un-
ablated testset. Grouped feature ablation alleviates the bias
in the explanations, while prolongs the processing time as
the model has to be retrained as many times as the number
of feature groups.

4. Experiments
In this section, we report the quantitative results of FPF

through extensive experiments. Section 4.1 presents the
performance of FPF on multiple datasets, and Section 4.2
provides visual explanations for the feature importances. In
our experiments, we choose ModelNet40 [41] as the main
dataset, which contains 9,843 and 2,468 CAD models be-
longing to 40 classes in the training and test sets, respec-
tively. In addition, we test our approach on ScanObjectNN
[39] and ShapeNet [2]. The former is a real-world dataset
containing 15,000 objects in 15 categories, and the latter is
a dataset containing 35,708 and 10,261 training and test-

Figure 1. A simple illustration of fractal feature extraction. Sam-
pling the input using fractal windows of different sizes yields se-
quences of statistics, which vary depending on the distribution of
input points.

ing instances, respectively. Specifically, ShapeNet is orig-
inally proposed for 3D reconstruction and is extended to
classification tasks in our experiments. All calculations
are performed on an Intel(R) Core(TM) i7-4650U CPU @
1.70GHz CPU except for the training of DNNs for the pro-
cessing time comparison. For FPF, we set the smooth-
ing coefficient α to 0.135, the number of fractal windows
I to 30, and the number of rotational enhancements R to
3, which empirically yields the best efficiency-performance
trade-off.

4.1. Quantitative Results

Results on ModelNet40. We compare FPF with two NN
baselines (FC and CNN), four DL-based models (PointNet
[28], PointNet++ [29], DGCNN [40] and PointMLP [22])
and one non-DL model. The selected DNN-based mod-
els are representative, where PointNet can be considered
as a baseline for deep learning (the components in Equ. 1
are max-pooling, MLP and no point-wise correlation, re-
spectively). PointNet++ replaces the last term with Multi-
scale grouping (MSG), while DGCNN upgrades MLP to
dynamic graph networks. PointMLP is the state-of-the-art
model for point cloud classification. As reported in Table
1, our non-deep learning model FPF approximates DNNs
in terms of accuracy (4.1% and 7.5% lower than PointNet
and PointMLP respectively), with a significantly reduced
processing time. However, FPF predicts the entire test set
(2,468 instances) in less than 1 second with CPU, and the
training time is approaching 1 minute. In addition, the raw
FPF is enhanced in accuracy and speed with attribution fil-
tering (empirically setting the threshold to THp = 7e− 5),
demonstrating the necessity of filtering out negative attri-
bution features, which is unachievable in neural networks.
Compared with the non-DL model PointHop, though FPF is
slightly inferior in accuracy, its prediction is faster and the
model size is almost 40 times shrunk.

Additionally, we attempt to train simple neural networks
to learn the fractal features. We train a simple FC network
and a CNN with the features extracted from the fractal win-
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Figure 2. An overview of FPF architecture. Given a point cloud object, FPF first projects it onto the three axes and planes separately. For
each projection, we record fractal feature extracted by the multi-size fractal windows. Under the assumption that the points in the fractal
window overall subject to Gaussian distribution, we estimate the Gaussian parameters and concatenate the statistical information of other
fractal windows together as features to train a random forest.

dows as NN baselines (the structure can be found in Section
A). Interestingly, the performance of NNs is inferior to ran-
dom forest. Interestingly, NNs perform inferior to random
forests, but they are thousands of times faster compared to
other DL methods. One possibility is that better network
structures may exist that outperform random forests, but this
would not only compromise speed, but also sacrifice inter-
pretability.

Results on ScanObjectNN. We select the hardest vari-
ant (PB T50 RS) of ScannObjectNN as the training and test
set, in which most of the objects are incomplete and retain
only surface information. Table 2 reveals the quantitative
results on ScanObjectNN. Note that FPF is potentially ex-
tensible and can concatenate more appropriate features for
different data to achieve better performances. Here we fol-
low the hand-crafted features in ModelNet40, which may
not be optimal for ScanObjectNN, nevertheless, the accu-
racy of FPF outperforms PointNet, which is considered as
the baseline for DNNs. We leave the methodology of craft-
ing the most suitable features for different data as future
work. Moreover, PointHop underperforms on this dataset
(14% lower). We believe this is because the local region
features extracted by the PointHop Unit are only suitable for
hand-crafted datasets, and not for difficult ones like Scanob-
jectNN (most samples are available with surface informa-
tion only). This restriction does not exist for FPF, since the
hypothesis of FPF presupposes only that the distribution of
the points from the train and test sets are similar.

Results on ShapeNet. Since ShapeNet is not a bench-
mark for classification, we only observe whether FPF suf-
fers from accuracy collapse on different datasets. We report
the accuracy of raw FPF as 79.1, and the accuracy of FPF
after (empirically) filtering with THp = 8e− 5 as 79.3.

4.2. Explanations for Feature Importance

In addition to rapidity, a more important advantage of
FPF is the interpretability. Aside from replacing DNNs
with traditional models like PointHop [44] to enhance in-
terpretability, we provide two explanations according to the
properties of FPF, i.e., Gini Importance and Grouped fea-
ture ablation, which are shown in Fig. 3 and Fig. 4, re-
spectively. The two explanations agree on the attribution of
rotations, with one divergence in the attribution of features
and a distributional discrepancy in the attribution of win-
dow sizes. The discrepancy stems mainly from the inher-
ent deficiencies of existing explainability methods. Feature
importance based on Gini impurity tends to assign more at-
tributions to features with large cardinality [26], such as the
fractal window sizes. In contrast, the importance of features
with smaller cardinalities, such as the point statistics in win-
dows, are prone to be underestimated (see Fig. 3, in ”In db”
of the third subplots). The advantages of this explainability
method are the simplicity and rapidity of invocation, which
can be called directly in sklearn, and consumes an average
computation time of approximately 0.03 seconds.

The post-hoc explanation based on grouped feature ab-
lation is more plausible. The feature groups are indepen-
dent of each other and the dataset is retrained based on
ROAR [11] after each ablation round to prevent the out-
of-distribution issue. However, ROAR is also controversial.
The feature importance of ROAR depends on the magnitude
of the decline in accuracies of the retrained models, while
several studies questioned whether the explanations should
be faithful to the original model or to the data [34, 36, 12].
One of the difficulties of explainability methods is the lack
of ground truth, and exploring more accurate and plausible
explanations is the potential research direction.
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Models OA(%) mAcc(%) F1 Ttr Tte Tavg Size

DL

Baseline FC 74.2 65.5 64.0 / 0.21 8.50× 10−5 6.8 MB
Baseline CNN 81.4 75.0 74.4 / 4.22 1.71× 10−3 4.2 MB
PointNet [28] 90.4 85.5 85.6 / 3068.07 1.22 39.8 MB

PointNet++ [29] 92.5 89.8 89.5 / 3004.10 1.20 20.1 MB
DGCNN [40] 92.7 89.6 89.7 / 968.99 0.39 6.9 MB

PointMLP w/o vot. [22] 93.8 90.2 89.9 / 2039.05 0.83 101.3 MB

Non-DL
PointHop [44] 87.3 81.5 78.9 301.03 6.91 2.8× 10−3 3.16 GB

FPF (raw) 85.4 79.0 79.7 68.88 0.31 1.25× 10−4 77.5 MB
FPF (fltd) 86.3 80.4 81.1 68.36 0.29 1.16× 10−4 76.1 MB

Table 1. Classification results on ModelNet40. Ttr , Tte, Tavg and Size are the processing time for training the whole train set, validating
the whole test set, the average time for predicting a single instance and the model size, respectively. FPF (fltd) and FPF (raw) denote FPF
with/without attribution filtering, respectively. See section S1.7 a for detailed experimental configurations.

Model DL Non-DL
PN PN++ DGCNN PointMLP PointHop FPF(raw) FPF(fltd)

OA(%) 68.0 77.9 78.1 85.4 54.2 68.2 68.8
Table 2. Comparison of the overall accuracy on the PBT 50RS of ScanObjectNN (the hardest task). PN and PN++ denote PointNet and
PointNet++, respectively.

4.3. Others

In this section we present additional results of FPF, in-
cluding the feasibility of fractal features, ablation studies
and salinity checks for the explanations.

Feasibility of fractal features. To further confirm the
effectiveness of fractal features, we train a simple decision
tree (max depth = 20) with multiple fractal features and
observe whether the accuracies outperform the baselines.
We consider two baselines, uniform and weighted random
guesses. The former assumes that each label has the same
probability of being guessed, while the latter is weighted
according to the amount of data in each class. As shown
in Table 3, each fractal feature significantly outperforms the
random guess baseline.

Rotation vote. Rotation vote is a technique to further
improve accuracy by rotating and predicting an object mul-
tiple times and then performing a majority voting, which
exhibited superior results in several point cloud models
[20, 29]. For FPF, we consider two candidates: rotation
votes with/without rotation augmentation (see the last sub-
section of 3.2), which represent whether rotating informa-
tion of the object is incorporated in the training, respec-
tively. Note that since the selection of rotation features is
only possible before the attribution filtering, we only com-
pare the performance with raw model. Surprisingly, rota-
tion vote yields no performance boost for FPF and the ac-
curacy even collapses if rotation augmentation is not em-
ployed (see Table S7). We believe the reason is that the frac-
tal features dramatically change with rotations, evidenced
by the degradation of performance after ablation of the rota-
tion augmentation in Table 4. The solution is to learn more
fractal features at different rotation angles, which however

leads to more time consuming.
Ablation study. We decompose and ablate each module

of FPF in turn, and record the corresponding accuracies. For
ablating multiple fractal series, we calculate the results for
fractal windows with different sizes individually and take
the average. For the rotation enhancement, we simply set
R = 1. For the remaining fractal features, we remove them
sequentially from the aggregated features. We train a new
random forest model after each ablation in order to avoid
the out-of-distribution issue. The results are demonstrated
in Table 4. The absence of each module results in a degra-
dation of accuracy, while the drop is more significant when
employing single size of fractal windows.

Sanity checks. Due to the lack of ground truth, there
are few metrics available to assess the plausibility of expla-
nations. Among them, salinity check [38] is an important
indicator. The fundamental idea is that the generated expla-
nation should be relevant to the model, and the collapse of
the explanation is supposed to be observed as the model is
randomized.

Due to the utilization of random forest, we can hardly
modify arbitrary layers of the model as in [38]. Instead,
we randomize certain percentages (from 10% to 100%) of
decision trees that are randomly selected from the forest.
However, it is challenging to edit the weights of decision
trees directly, we therefore randomize the chosen trees by
retraining them with random labels. For evaluating the sim-
ilarity of explanations, we follow [38] using Krippendorff’s
α [16], which is formulated as:

α = 1− Do

De
(4)

where Do and De are the disagreements observed and ex-
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Figure 3. Intrinsic feature importance explanations based on Gini impurity. Fractal, Rotation and Feature represent the feature attributions
of each fractal sizes, rotation degrees and hand-crafted features, respectively. Among Features, Num F , 1D proj, 2D proj, In db and
Samp db indicate the number of fractions, statistics and estimated Gaussian parameters for 1D and 2D projections, statistics over all
fractions and inside specifically sampled fractions, respectively.

Figure 4. Explanation of Grouped feature ablation.

pected by chance respectively. If the Krippendorff’s α
approaches 1, the two explanations are highly analogous,
while if it approaches 0, they are almost independent (Neg-
ative values indicate an inverse proximity). As the results
in Fig. 5 demonstrate, the grouped feature ablation passed
the salinity check, where the more trees are randomized, the
closer Krippendorff’s α converges to zero. However, the in-
trinsic feature importance is shown to be flawed. Though
the α-value of the fractal window feature is rapidly cor-
rupted, there is minimal decrease with respect to the ro-
tation feature, and almost no changes in the hand-crafted
feature. This can be attributed to that the interpretation
based on Gini impurity suffers from neglect of low cardi-
nality features, while the correlation between features also
raises problem due to the absence of retraining.

5. Conclusion
In this work, we propose a non-deep learning point

cloud classification pipeline FPF. By extracting statistical
features from fractal windows, FPF enables traditional
machine learning models to achieve comparable perfor-
mance to deep learning. Compared to DNNs, traditional
models are not only faster but, more importantly, possess
better interpretability. We hope that our ideas will inspire
more explainable-oriented work for point cloud recognition.
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Random Baselines Fractal Features
Baseline U Baseline W Num F 1D Proj 2D Proj In db Sample db

Accuracy 2.5 3.0 65.5 65.4 66.5 63.3 61.1
Precision 2.6 2.4 59.8 56.8 57.7 54.4 54.1

Recall 2.4 2.4 60.1 57.5 58.4 55.4 54.4
Table 3. Feasibility tests for fractal features. The baselines are: Uniform random guess and weighted random guess. The fractal features
from left to right: number of fractions, 1D projection, 2D projection, intra-fraction distribution, sampled distributions.

Module Augmentations Fractal features
((((((
Multi Frac (((((Rotat Aug ((((Num F �����1D Proj ����2D proj ���In db (((((Sample db All

OA(%) 81.9 85.4 85.8 85.7 85.5 85.3 85.9 86.3
mAcc(%) 75.0 79.2 79.9 79.4 79.4 79.2 79.6 80.4

F1 75.3 79.8 80.3 80.2 79.9 79.5 79.9 81.1
Table 4. Ablation study for modules. From left to right, the absent modules are: Multiple fractal series, rotation augmentation, number of
fractions, 1D projection, 2D projection, intra-fraction distribution, sampled distributions. The last column indicates that all modules are
integrated.

Figure 5. Results of sanity checks. The left side is the intrinsic feature importance, and the right side is the group feature ablation. The
blue, orange and green lines denote fractal windows, rotation and hand-crafted features respectively.The x and y axes denote the percentage
of randomized trees and Krippendorff’s α score, respectively.
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