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Abstract

So far, few researchers have targeted the explainability
of point cloud neural networks. Part of the explainabil-
ity methods are not directly applicable to those networks
due to the structural specifics. In this work, we show that
Activation Maximization (AM) with traditional pixel-wise
regularizations fails to generate human-perceptible global
explanations for point cloud networks. We propose new
generative model-based AM approaches to clearly outline
the global explanations and enhance their comprehensibil-
ity. Additionally, we propose a composite evaluation met-
ric to address the limitations of existing evaluating meth-
ods, which simultaneously takes into account activation
value, diversity and perceptibility. Extensive experiments
demonstrate that our generative-based AM approaches out-
perform regularization-based ones both qualitatively and
quantitatively. To the best of our knowledge, this is the
first work investigating global explainability of point cloud
networks. Our code is available at: https://github.
com/Explain3D/PointCloudAM .

1. Introduction
Point clouds are one of the most widely used data forms

for 3D representation. Due to the irregularity, traditional
CNNs are not directly applicable to point cloud data. Re-
cently, several studies have proposed multifarious deep neu-
ral networks (DNN)s for point clouds [26, 27, 40] that
achieved state-of-the-art accuracies in existing benchmark
datasets. So far, however, very little attention has been
paid to the trustworthiness of point cloud networks. In
fields where human lives are at stake, such as autonomous
driving, models without trustworthiness will pose potential
risks. The research of explainability plays an important role
in addressing the issue of trustworthy AI. Previous stud-
ies proposed a considerable number of explainability ap-
proaches including gradient-based [34, 4, 32, 36, 35, 38]
and local surrogate model-based [28, 16, 29], which gener-
ate post-hoc local explanations to a specific input instance.
Global explainability approaches are another solution that

allow for an inclusive explanation of the entire black-box
model, such as surrogate model simplification [14] and Ac-
tivation Maximization (AM) [25]. Although the aforemen-
tioned approaches facilitate the faithfulness of models deal-
ing with tabular and image data, there has been little discus-
sion about the explainability of point cloud networks. Due
to the specific architecture, point cloud networks possess
distinctive properties from traditional multi-width convolu-
tional neural networks (for instance, [10] found the features
learned by point cloud networks are extremely sparse), sug-
gesting that explainability studies on point cloud networks
may lead to novel discoveries.

On the other hand, it is difficult to quantitatively evalu-
ate the accuracies of the generated explanations due to the
lack of ground truth, and human assessments are highly sub-
jective and therefore lack persuasiveness and reproducibil-
ity. For AM, several previous studies have used quantitative
metrics to evaluate the quality of the synthesized images
[21, 18, 46]. However, we argue that the performance as-
sessed by these traditional metrics is neither comprehensive
nor precise for point cloud networks.

This work strives to investigate the global explanations
of the popular point cloud networks with AM, which vi-
sualizes what point cloud models learn from the distribu-
tion of the entire dataset. We also show that non-generative
network-based AM approaches for images are not applica-
ble to point clouds (see figure 1), and propose generative
AM methods for the global explainability of point cloud
networks. Additionally, we propose a more persuasive and
comprehensive evaluation metric for point cloud AM, and
demonstrate that our point cloud AM methods outperform
all other methods both at the human cognitive level and
in quantitative assessment. Our contributions are primarily
summarized as follows:

• As the first work investigating global explainabil-
ity of point cloud networks, we exhibit that non-
generative AM methods are unable to generate human-
comprehensible explanations. Addressing the chal-
lenge, we propose generative model-based AM ap-
proaches that depict the global peculiarities of point
cloud networks.
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• We propose a convincing evaluation metric for point
cloud AM: Point Cloud-Activation Maximization
Score (PC-AMS), which simultaneously captures the
activation value, diversity, human perception-level and
physical-level authenticity of generated AM examples.

The rest of this paper is organized as follows: Section
2 introduces explainability methods for point clouds, es-
pecially AM and corresponding evaluation methods. Sec-
tion 3 provides the proposed generative AM approaches for
point clouds as well as a more persuasive evaluation met-
ric. Section 4 demonstrates our experimental results and we
summarize our work in Section 5.

2. Related Work
In this section, we introduce popular explainability

methods, review the proposed AM approaches, and state the
current progress of explainability research on point cloud
neural networks.

Explainability methods: In contrast to interpretability
approaches that render the decision process understandable,
explainability methods aim to elucidate the operating prin-
ciples of black-box models with mechanisms that are asyn-
chronous with the decision-making periods. Explainability
methods are categorized into two groups according to their
objects: local and global explainers.

Local explainers typically generate explanations corre-
sponding to individual inputs by tracing gradients [34, 4,
32, 36, 35, 38] or employing surrogate models and pertur-
bations [28, 16, 29]. Nonetheless, gradient-based explain-
ability methods are considered noisy, and in recent san-
ity studies, part of the methods were found to be model-
independent [2]. Surrogate model-based approaches re-
quire extensive perturbation instances as training datasets
and are therefore computationally intensive. Another com-
mon drawback of local explainability methods is the lack of
holistic views of the overall datasets, compounding the cost
of intrinsically understanding the decision process.

Global explainers provide explanations in regard to
entire datasets rather than individual input instances by
demonstrating its inherent characteristics. The global expla-
nation may not be precise for each classification case, how-
ever, it provides a more intuitive representation of how the
model works. Global explanations are typically presented
in the following forms: [14] extracts decision rules from the
original model that is comprehensible for users, [5, 8] rank
the aggregated feature importance according to the whole
datasets. For computer vision tasks, listing the feature im-
portance is challenging because of the extensive number of
unaligned features. As an alternative, AM is thus proposed
to exhibit intuitive global explanations by generating highly
representative examples of specific classes.

Activation Maximization (AM): AM is a high-level

feature visualization technique that was first proposed by
[9]. AM chooses a target activation unit and maximizes
it by optimizing the input vector while freezing all other
neurons in the DNN. However, without incorporating any
prior or constraints, AM will synthesize mosaic images that
are incomprehensible to humans and are not explainable
[23]. Optimization constrains, such as L2-norm [33], Gaus-
sian blur [44], Total Variation [17] or priors, such as av-
erage image initialization [24] and patch dataset [41, 20],
successfully synthesize object images with clear outlines,
and therefore facilitate the explainability. Another solution
for enhancing the comprehensibility of AM images is to
learn the distribution of real objects with generative mod-
els. [22, 46, 18, 15] utilized auto-encoders and GANs to
produce high quality AM images. [21] proposed Plug &
Play embedding generative networks that simultaneously
address the high-resolution and diversity of synthesized
AM images. Additionally, [43] proposed a black-box AM
approach based on evolutionary algorithms. Nevertheless,
point clouds are structurally different from traditional im-
age DNNs so that the aforementioned AM methods are not
directly applicable to point cloud networks.

Moreover, evaluating the quality of AM images is chal-
lenging and so far, most previous work relies on subjective
human intuition as the evaluation criterion. [21] accessed
the definition and diversity of AM images via Inception
Score (IS) [30]. [18] incorporated Fréchet inception dis-
tance (FID) [13] to estimate the similarity between gener-
ated AM examples and real instances in latent spaces. AM
score, another evaluation metric proposed by [46], is ame-
liorated from IS and addresses the uneven distribution of
data categories.

Explainability research on point clouds: There are rel-
atively few explainability studies in the area of point clouds.
[45] traced the critical points to generate saliency maps
of the point cloud network by dropping points. [10] was
the first work to incorporate explainability methods, who
started an observation of the intrinsic feature of point cloud
networks via Integrated Gradients (IG). A follow-on study
was conducted by [39], which proposed a local surrogate
model-based approach for explaining point cloud networks.
However, one limitation of the approaches mentioned above
is that local explainability methods are only concerned with
specific inputs that can hardly present the intrinsic proper-
ties of the whole point cloud network.

3. Methods

In this section, we demonstrate our AM approach for
point clouds (Section 3.1) as well as the proposed evaluation
metric for point cloud AM (Section 3.2).
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3.1. Global explanation and AM

Global explainability can be considered as a summariza-
tion of the data distribution and the model behavior. In con-
trast to local explainability, it focuses more on the intrinsic
properties of the whole model and data rather than on the at-
tribution of individual decisions. Global explainability can
be achieved by various techniques, e.g., by generalizing the
model decision rules [12] or by training a global surrogate
model [19]. For point clouds, the above methodologies are
challenging due to the high dimensionality and structural
complexity in 3D space. Since the structures of point cloud
models are opaque, it is difficult to generalize their decision
conditions. Explainable global surrogate models often suf-
fer from significant performance degradation due to their
inability to emulate complex architectures [19]. AM is a
more intuitive global explanation for point clouds, which
visualizes instances that maximize a certain activation and
presents a globally representative input for a specific class
to humans [31]. To visualize such an activation in DNNs,
[9] proposed the AM, which is formulated as:

x∗ = argmax
x

(ali(θ, x)) (1)

where x and θ denote the input instance and the parameters
in the DNN respectively, and ali(θ, x) denotes the ith neu-
ron at lth layer. The selected layer is typically the last layer
(logits), since the output of this layer can be considered as
the predicted probability of the corresponding class, while
the neurons in the intermediate layers possess no semantics.
However, 2D AM without any prior suffers from generat-
ing examples with high-frequency mosaics that are unrec-
ognizable [23]. Several studies have investigated regular-
izing AM examples with non-generative priors, such as L2
Norm, Gaussian blur and Total variation [33, 44, 17]. While
the above mentioned enhancements have made progress in
human interpretability for 2D images, their effectiveness is
severely compromised while processing point clouds (see
figure 1). We believe that on the one hand, the features
of point cloud networks are comparatively sparse and the
global structure information of instances is seriously im-
paired [10], and on the other hand, the adjacency-based reg-
ularizations fail due to the disorderliness of point clouds.

To address the scarcity of structural information, we at-
tempt to search for outputs which subject to two obligatory
restrictions: they highly activate a neuron at a high level of
the networks (equation 1) and are under the similar distri-
bution as the dataset that is recognizable for humans. The
former is a straightforward task and only requires maximiz-
ing an activation of the point cloud network by back propa-
gation. For the latter, we choose generative models to con-
strain the distribution of generated point clouds to be as re-
alistic as possible. An outline of our approach is shown in
Fig. 2. In the following contents we present the details of

the proposed module.
AM for point cloud NNs: Typically, an instance as

an input to a point cloud model fc can be represented as
P = {pi | i = 1, ..., N} ∈ RN×D, where N is the number
of points and D is the dimensions (D = 6 if color informa-
tion is attached, otherwise D = 3). The model outputs a
logits vector fc(P ) ∈ RNc×1, where Nc denotes the num-
ber of classes. Our goal is to build a module which out-
puts a Pg that argmaxf i

c(Pg), and Og ∼ Px, where f i
c(Pg)

denotes the ith activation of the logits and Px denotes the
real instances from dataset X . Our approach starts by train-
ing a module that searches the RN×D space for examples
with similar distribution to Px, and then filters out those
that maximize a target activation.

Point cloud AutoEncoder (AE): Existing study [1] has
demonstrated that the Autoencoder can reconstruct point
cloud instances with a high level of restoration. They uti-
lize point-wise convolutions followed by a symmetric pool-
ing layer to encode point clouds into 1-dimensional latent
representations, and build a simple multi-layer, fully con-
nected network to decode the latent vector. We follow their
design and exploit an AutoEncoder (AE) to learn the dis-
tribution from real data. The point cloud AE consists of
two components, the encoder hAE and the generator (de-
coder) gAE . The input of the encoder hAE is a point cloud
instance Px ∈ RN×D and the output is a latent encoded
vector V ∈ R1×k, where k is an adjustable dimensionality
parameter. The generator gAE takes V as input and gener-
ates a point cloud Pg with the same dimensions as Px and
Pg ∼ Px. The detailed structure of the AE is shown in Fig.
S4. When training, we measure the gap between the gener-
ated examples and the original data with Chamfer Distance
(CD) loss LC , which is formulated as:

LgAE
= LC =

1

|Pg|
∑

pm∈Px

min
pn∈Pg

∥pm − pn∥2 (2)

AutoEncoder with Discriminator (AED): Although
AE is capable of reconstructing point cloud instances at a
high level, it is not sufficient as global explanations, since
diversity is an important property for explainability [7].
Adding Gaussian noise during AM optimization phase is a
potential solution. However, unrestricted noise inclines to
downgrade the quality of explanations rather than enhance
their diversity. Therefore, we propose AutoEncoder with
Discriminator (AED), which is based on AE with two en-
hancements: a discriminator Dc and a latent distance loss
LF . Dc acts similarly in GANs: while the generator of
AED (gAED) tries to fool Dc by generating fake examples
that mislead Dc to classify them as real instances, and Dc

attempts to correctly identify both. The input of Dc is also
a point cloud of N × D, and the output is a probability
pb ∈ [0, 1] for each input (pb → 1 for real instances and
pb → 0 for fake examples). We build a discriminant loss
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Figure 1. AM for point clouds without generative priors (class “car”). Due to the specific architecture of the point cloud network, traditional
regularization priors (for 2D images) are incapable of generating human-perceivable global explanations. More details can be found in
Sec. S1.1.

Figure 2. General overview of the architecture for point cloud AM. The green and gray bars represent vectors and networks, respectively. In
the point cloud network, the black and blue circles represent the neurons in the middle layer and the last layer (the activations), respectively.
The thick black arrows and thin green arrows represent forward inference and backward propagation, respectively.

Ld
DAED

with Dc for the discriminator, which is formulated
as:

Ld
DAED

= Dc(Pg)−Dc(Px) (3)

Note that the value domain of Ld
DAED

is [−1, 1]. We ob-
serve that since the performance of Dc easily outperforms
gAED (Ld

DAED
→ −1) during training, the latter struggles

to be further optimized [3]. We therefore train only one of
them alternately for each batch: If Ld

DAED
< 0, we train the

gAED only and vice versa. Furthermore, if the discrimina-
tor is overperforming (Ld

DAED
< −0.75), we add Gaussian

noise to its parameters to disrupt the performance.
The latent distance loss LF measures the feature distinc-

tion between two inputs. We choose the output of the sec-
ond convolutional layer for measurement, which is a hidden
vector of dimension N × 128. The latent distance loss is
computed as:

LF =
1

|V c
g |

∑
vm∈V c

x

min
Vn∈V c

g

∥vm − vn∥ (4)

where V c
x and V c

g represent the output of the second convo-
lutional layer in the encoder, computed with real instances
and generated examples, respectively. LF can be regarded
as the CD computed on the latent space.

The final generative loss of AED is formulated as:

LgAED
= LC + wFLF − wDLg

DAED
(5)

where wF , wD are the corresponding weights and Lg
DAED

denotes the loss for the generator to deceive the discrimina-
tor, which is −Dc(Pg). The detailed architecture of AED
is presented in S5.

Noisy AutoEncoder with Discriminator (NAED): De-
spite the enhancement in diversity, practice shows that the
samples generated by AED suffer from instability. To ad-
dress this issue, we continue to refine the structure on the
basis of AED. There are two main improvements: a) Gaus-
sian noises are added to the encoder and b) another global
latent distance regularization is introduced. The former is
straightforward to implement, requiring only the insertion
of Gaussian noise to the output of each layer in the encoder.
However, experiments demonstrate that it is significant (see
Sec. S1.5). For the latter, recall the latent distance regu-
larization used in AED, whose latent vectors are extracted
from the second convolutional layer of the encoder. How-
ever, due to the irregularity, the convolutional layers of point
cloud networks typically extract local features only and lack
global information. Therefore, in NAED, we append an ad-
ditional lossLF2, which is obtained by computing the latent
distance of the output from the max-pooling layer. The dis-
tance measurement is identical to Eq. 3, with the only dif-
ference that the local vector V c is replaced by a global one
V ∈ Rk. The final generative loss of NAED is formulated
as:

LgNAED
= (LC +wFLF +wF2LF2)−wDLg

DNAED
(6)
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where wF2 is the weights of LF2 and Lg
DNAED

is the dis-
criminative loss of NAED and is calculated identically as
Lg
DAED

. The elaborated architecture of NAED is shown in
Fig. S6.

AM optimization: After the aforementioned modules
are well-trained, we concatenate them with the point cloud
model. The final optimization process is that we initialize
a latent vector Vini ∈ R1×k and decode it with the gener-
ator (g(N)AE(D)). Here an initialized point cloud example
Pini ∈ RN×D is generated. Subsequently Pini is fed into
the whole encoder-decoder system and we extract the out-
put P ′

ini and the discriminator loss LD(N)AED
, which forces

the generated examples to be close to real ones (No LDAE

exists for AE, but for fairness, we repeat this encoding and
decoding process as well). We then obtain the target activa-
tion value f t

c(P
′
ini) and optimize Vini via back-propagation.

The general term of the AM optimization loss is:

−(f t
c(P

′
ini) + LD(N))AED

) (7)

Moreover, inspired by [24], we calculate the average of the
dataset and encode it as Vini so that the initial distribution
does not deviate significantly from the real data. When the
optimization process is stuck, we introduce Gaussian noises
to Vini to escape from the local optimum. Finally, the opti-
mization stops after reaching a certain number of iterations.

3.2. Evaluation Metrics for Point Clouds AM

Most previous research evaluates explainability methods
by showing examples to humans. However, this approach
is costly and relatively subjective. Our goal is to find a
quantitative measurement that is both consistent with hu-
man perception and computationally assessable in a quan-
titative way. Since there is no proposed metric for point
clouds AM, we list three types of metrics that measure ac-
tivation values or prototype similarity:

Activation-targeted metrics, represented by IS [30] or
AM Score [46], aim to assess the maximization of a certain
neuron in logits. However, this series of approaches only
evaluates the generation quality by calculating the entropy
of the logits, while the disparity in human perception levels
is absent. For point clouds, they fail to distinguish between
AM methods without priors and those based on generative
models, although the latter are apparently more comprehen-
sible to humans.

Pixel-wise metircs, represented by Lp (2D), Chamfer
and Hausdorff distances (3D), address forcing the generated
instances to be pixel-wisely approximated to the real ob-
jects. Nevertheless, instances that comply with these met-
rics may lose the ability to be “global explainable” as it does
not require the instances to be globally representative. Sup-
pose a generator that perfectly reconstructs the original in-
stance, even though the distance loss can be minimized to 0,

but it does not facilitate human understanding of the model
peculiarities.

Latent feature metrics, represented by FID, measure
the distinction on the feature level, which are theoretically
promising and widely applied in 2D generative models. We
follow the FID from [37] which compared the global fea-
tures from the PointNet architecture. Nonetheless, we ob-
serve that the metric is vulnerable for AM (see table 1: ran-
domly initialized instances achieve FID scores as high as
those from generative models, though they are not perceived
well by humans). We believe that the FID is affected to
some extent by the sparsity of the point clouds due to the
scarcity of adjacent relations in the point cloud networks.

PC-AMS: Targeting the limitations of the aforemen-
tioned methods, we propose a composite AM evaluation
metric: PC-AMS. Our PC-AMS is formulated as:

PCAMS = ISm −
(log(FIDPN ) + log(CD))

2
(8)

ISm denotes the modified Inception Score (M-IS) [11],
which is formulated as:

ISm = eExi
[Exj

[(KL(p(y|xi)||p(y|xj))]] (9)

where xi and xj denotes different instances with the same
label. In addition to the values of the corresponding ac-
tivations, M-IS concentrates more on the diversity of the
generated examples within classes than the variety of inter-
class labels. Therefore we utilize the M-IS which employs
the cross-entropy of the predictions within intra-class exam-
ples. The value range of M-IS is [1, Nc].

FIDPN denotes the PointNet-based FID and is formu-
lated as:

FIDPN = ∥µr − µg∥2 + Tr(σr + σg − 2(σrσg)
1
2 ) (10)

where Ar ∼ N (µr, σr) and Ag ∼ N (µg, σg) are the ac-
tivations from the reference network, which are approx-
imately considered as Gaussian distributions. FID mea-
sures the distance between the two distributions, lower FID
scores imply closer proximity of the generated examples to
the real instances, and therefore higher perceptibility. Nev-
ertheless, the standard reference network Inception-v3 is no
longer applicable to FIDPN since the multi-width convo-
lutional kernel for images fails to extract adjacent features
from unordered point clouds. Following [37], we substitute
the backbone of PointNet for Inception-v3 and choose from
the layers above the max-pooling (global features) as the
activation. The value range of FID is [0,+∞].

Due to the fragility of FIDPN , we introduce an addi-
tional perceptibility measure: CD, formulated as:

CD(xg, xi) =
1

|xg|
∑

pm∈xg

min
pn∈xi

∥pm − pn∥2 (11)
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whose value range is also [0,+∞]. Although CD estimates
the similarity between examples more precisely, it lacks
generality as a scoring criterion for AM. To alleviate this
deficiency, we randomly draw several instances from the
dataset with the same labels as the generated examples and
calculate the average of the CDs. We finalize the aforemen-
tioned three metrics by logarithmically scaling FID and CD
to the same order of magnitude with M-IS, such that the
final score does not collapse due to the numerical explo-
sion of any single term. The final value field of PC-AMS
is [−∞, Nc]. In addition, we introduce another point-wise
distance used for comparison in Sec 4: Earth Mover’s Dis-
tance (EMD), which is formulated as:

EMD(xg, xi) =

∑m
i=1

∑n
j=1 Pri,jdi,j∑m

i=1

∑n
j=1 Pri,j

(12)

where Pri,j denotes the pair-wise combination of points in
xg and xi, and di,j denotes their spatial distance.

In summary, PC-AMS simultaneously considers activa-
tion values (M-IS), diversity (M-IS), point-wise distances
(CD), and latent distances (FID) when evaluating AM ex-
planations of point clouds.

4. Experiments
In this section, we qualitatively demonstrate the gener-

ated examples of our proposed point cloud-applicable AM
(section 4.1), and show the quantitative evaluations of exist-
ing point cloud AM approaches (section 4.2). Additionally,
we also provide an example of application scenes of pro-
posed methods for prediction examination in section 4.3.
In our experiments, we choose ModelNet40 [42] as test
dataset, which contains 12311 CAD models in 40 common
classes and is currently the most widely-used point cloud
dataset. Besides, we also test our approaches on the clas-
sification set of ShapeNet [6], which is composed of 45969
point cloud instances (35708 for training and 10261 for test-
ing) in 55 classes. We select PointNet as our primary exper-
imental model, which is the pioneer of deep learning for raw
point clouds. We also validate our result in the most pop-
ular point cloud models i.e., PointNet++ [27] and DGCNN
[40]. During AM generation, we heuristically set the latent
dimensions of the AE as 128 and the learning rate as 5e−6.
The AM optimization stops after 2× 104 iterations. All in-
troduced Gaussian noises areN (0, 1e−5). All loss weights
are 1 (e.g. wF , wF2 and wD) when training the generation
module. For quantitative evaluation, we generate 10 AM
examples for each class, and we randomly select 5 real in-
stances from the dataset as the baseline for calculating FIDs
and CDs and average the corresponding results.

4.1. Point Cloud AM Visualization

Perceptibility: Figure 3 shows the point cloud AM ex-
amples of common classes generated by multifarious ap-

proaches on ModelNet40. Zero and random initialization,
while highly activating the selected neurons, results in only
the expansion of individual points due to the lack of a prior
and therefore fails to yield human understandable global ex-
planations. Initialization with the average of the test data
performs better in 2D images. However in point clouds, ex-
plainability is not significantly enhanced compared to the
no-prior methods since the point cluster in the center strug-
gles to render the distribution of common objects. Initial-
ized from a specific instance though outlines the objects
best, nevertheless, the information of the “global” is ab-
sent, i.e., the general distribution of the whole dataset. The
contours of the objects are derived from the input instances
themselves rather than the global activation-optimization
process. The former tends to expose more local informa-
tion about particular inputs and is therefore more gener-
ally utilized in adversarial attacks. In addition, due to the
irregularity of point clouds, incorporating traditional regu-
larizations (L2, Gaussian blur and Total variation) also fail
to yield globally perceivable explanations. In comparison,
our generators with latent priors dominate in terms of both
shape consistency and human perceptibly.

Among the generative methods, AM examples provided
by AE are intuitively more stable, especially compared to
those from AED. We believe this is due to the absence of
noise mechanisms and the singularity of the loss term. In
AE, no noise is incorporated except for the neuron max-
imization module that prevents the optimization process
from sticking in local optimums, and the generator is trained
via an one-fold CD loss which only forces the output to be
point-wise approximated to real objects. These mechanisms
regularize the profile of the generated examples to be re-
constructed precisely as the real instances from the dataset
while the outputs suffer from a scarcity of diversity. On the
other hand, in AED and NAED, the multi-fold loss func-
tions balance the constraints of approximating the dataset in
both point-wise and latent feature levels. Compared to AE,
this module causes a few collapses of the output geometries,
but by introducing adversarial learning with a discriminator,
the generator is still able to reconstruct the contours of real
objects and enrich their diversity simultaneously. Moreover,
we surprisingly find that incorporating cascaded Gaussian
noise to the encoder during training further enhances the
quality and diversity of the AM outputs. We present the
generation diversity in the next subsection.

Diversity: Another key factor of AM quality is the diver-
sity. In figure 4, we visualize 5 examples for each generative
AM methods which are randomly selected from the gen-
eration repository. We also demonstrate the five examples
in the dataset that most highly activate the neuron “table”,
as well as five stochastically selected examples respectively
for references. As can be seen from the figure, AE is more
stable than the others, while lacks diversity. In comparison,
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Figure 3. AM results of different approaches. From left to right: Zero initialization, random initialization, initialized with the average of the
test data per class, initialized from a specific instance, regularization with L2 Norm, Gaussian Blur and Total Variation, and our proposed
AE, AED and noisy NAED. Apparently, except for the instance initialization, the non-generative model-based approaches suffer from
serious flaws in perceivability of AM examples. Moreover, the AM example initialized from a certain instance lacks the “global” property,
and the generated examples are unrepresentative. More qualitative comparisons can be found in Fig. S2.

Figure 4. Diversity of AM generations. We choose 5 examples
from instances that (from top to bottom) 1) most hightly activate
the neuron 2) are selected randomly 3) are from the generations
of AE 4) of AED 5) of NAED. It can be seen that although the
examples generated by AE are stable, they are severely deficient
in diversity. AED enhances diversity but suffers from instability,
where part of the generated examples are imperceptible. NAED
outperforms in both diversity and stability.

both AED and NAED depict the multiplicity of the objects
while AED is somewhat deficient in terms of stability.

We conduct ablation studies for each module and demon-
strate the results in Sec. S1.5.

Experiments on ShapeNet: We also present the AM
results of the class “airplane” generated by the proposed
methods employing ShapeNet as the experimental dataset in
figure S3. Similar to ModelNet40, the global explanations
presented by AE also exhibit only minimal spatial offsets,
while AED and NAED outperform AE in terms of the di-
versity of object outlines. Subjectively, the examples gener-
ated by NAED are more stable due to the noise introduction
in the training process.

4.2. Evaluation Metric of Point Cloud AM

Visually assessing the AM global explanation is highly
subjective, and therefore we quantitatively evaluate the re-
sults via the proposed methods in table 1. Since there is
no existing AM study for point clouds, we consider the no
prior and point-wise prior approaches as our baseline. Note
that in terms of FID, AMs with random initialization also
achieve a satisfactory loss while the examples are almost
indistinguishable by humans, which results in the inability
to accurately capture the perceptual distance between ex-
amples. Therefore, we introduce CD as another regulariza-
tion. We also incorporate EMD to validate the approxima-
tion of the examples. According to the comparisons, our
generative AM approaches (latent prior) dominate the rest
regarding the PC-AMS. Though AE possesses the mini-
mum distance loss, it suffers from a significant drawback of
diversity, which leads to the M-IS being lower than the other
approaches (which is consistent with the demonstrations in
figure 4). In addition, figure 3 reports the corresponding
evaluations on ShapeNet, where it can be seen that our pro-
posed approaches consistently achieve similar performance
on different datasets.

We also evaluate the performance of the proposed meth-
ods on different point cloud networks with PC-AMS, and
present the results in table 2. As a reference, we show an
example of the corresponding visualization in figure 5. We
notice that AED performs unstably, especially when ex-
plaining PointNet++, which occasionally fails to generate
perceptible structures (middle plot of the second row). This
is also revealed in PC-AMS: in table 2, the lowest score is
obtained by explaining PointNet++ with AED.

Another interesting observation we noticed is that the
global feature-based FID proposed by [37], to some ex-
tent, measures only the “diffusion degree” rather than the
“similarity” to real objects. For verification, we synthe-
size instances that are randomly distributed and therefore
completely “dissimilar”. We yield examples that are uni-
formly distributed Pu ∼ U(−r, r), and normally distributed
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m-IS FID CD EMD PC-AMs

Initializations

Zero 1.113 0.119 0.266 364.35 2.84
Random 1.081 0.016 0.245 413.52 3.85
Average 1.001 0.097 0.230 377.20 2.90
Instance 1.015 0.071 0.085 228.87 3.57

Regularizations
L2 Norm 1.001 0.256 0.139 375.93 2.66
Gaus blur 1.000 0.420 0.148 372.88 2.38

TV 1.000 0.092 0.376 490.842 2.67

Generative
Model

AE 1.085 0.016 0.044 143.13 4.71
AED 1.124 0.018 0.086 241.35 4.37

NAED 1.461 0.014 0.074 207.65 4.89
Table 1. PC-AMS evaluation metric for point cloud AMs. EMD
is also introduced for point-wise distance validation. Note that
since there is no comparable global explainability method for
point clouds, we consider the traditional AMs as baselines. De-
tailed descriptions of the baselines can be found in Sec. S1.1.

m-IS FID CD EMD PC-AMs

AE
PN 1.085 0.016 0.044 143.13 4.71

PN++ 1.103 0.008 0.041 134.16 5.12
DGCNN 1.020 0.010 0.105 252.82 4.43

AED
PN 1.124 0.018 0.086 241.35 4.37

PN++ 1.107 0.020 0.122 255.46 4.12
DGCNN 1.358 0.013 0.109 343.15 4.63

NAED
PN 1.578 0.018 0.071 353.10 4.92

PN++ 1.866 0.011 0.072 236.42 5.43
DGCNN 1.316 0.015 0.109 335.51 4.52

Table 2. PC-AMS evaluations for different point cloud models,
where PN and PN++ denotes PointNet and PointNet++.

Figure 5. AM visualization for the most popular point cloud net-
works: PointNet, PointNet++ and DGCNN. The proposed method
is applicable to all point cloud networks.

m-IS FID CD EMD PC-AMs
AE 1.012 0.017 0.047 147.87 4.57

AED 1.146 0.012 0.076 208.02 4.65
NAED 1.157 0.011 0.067 203.74 4.75

Table 3. Quantitative evaluations on ShapeNet.

Pn ∼ N (0, σ2), where r increase from 0 to 1 and σ grows
from 0 to 0.1 in 10 steps respectively, in order to represent
inputs with different “diffusion degrees”. For comparison,
we stochastically choose real objects from the dataset, and
calculate their FID with objects of the same class. Theo-
retically, FID performs consistently with human judgment.
Randomly distributed artificial examples should exhibit sig-

nificantly large FID with real objects, as they possess no
recognizable geometric structures. However, as figure S7
demonstrates, FID (the brighter blue line) dramatically de-
creases with the point expansion of the instances (r = 0.1
and σ = 0.02). After the diffusion reaches the thresh-
old (r ≈ 0.2 and σ ≈ 0.05), FID fails to distinguish the
meaningless point clouds from the real objects (the darker
blue line), though we can still observe the discrepancies be-
tween them through CD and EMD. A better point cloud-
applicable perceptibility metric for generating examples in
terms of latent distance is a promising research direction.

4.3. AM for data reviewing

Explanations can facilitate human understanding of the
operating behavior of DNNs. As a global explainability
method, AM depicts the ideal input learned by the model.
When the performance of the model is sufficiently promis-
ing, one considers that the result of AM should be a gener-
alization of an outline of the objects from the corresponding
class. Therefore, we can review those misclassified input in-
stances utilizing this characteristic. An example is shown in
figure S8. Several instances in the dataset with the “plant”
label are misclassified as “vase”, whereas a comparison ex-
hibits that a single “plant” label is ambiguous since the com-
posite instance also contains the “vase” fraction. Observing
the second and third columns, AM correctly describes the
object outlines of the corresponding neurons in the model
without any confusion. For validation, we also generate ex-
planations for these instances employing the point cloud-
applicable LIME [39] (the last column). The conclusions of
the two explanations are approximately analogous, and the
explanation given by the model is consistent with its pre-
dicted label in human perception.

5. Conclusion
This work proposes three generative model-based AM

approaches which significantly enhance the perceptibility
of the generated examples while also maintaining their
diversity. A composite evaluation metric, balancing acti-
vation value, diversity and perceptibility is proposed. The
results show that our generative AM methods outperform
the regularization-based ones in both qualitative and
quantitative aspects. For future work, we look forward
to more efficient AM generation methods as well as
visualizations of low-level neurons to further explore the
working mechanism of point cloud neural networks.
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