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Abstract

Semantic segmentation in large-scale aerial images is
an extremely challenging task. On one hand, the limited
ground truth, as compared to the vast area the images cover,
greatly hinders the development of supervised representa-
tion learning. On the other hand, the large footprint from
remote sensing raises new challenges for semantic segmen-
tation. In addition, the complex and ever changing im-
age acquisition conditions further complicate the problem
where domain shifting commonly occurs. In this paper, we
exploit self-supervised contrastive learning (CL) method-
ologies for semantic segmentation in aerial imagery. In ad-
dition to performing CL at the feature level as most prac-
tices do, we add another level of contrastive learning, at
the semantic level, taking advantage of the segmentation
output from the downstream task. Further, we embed lo-
cal mutual information in the semantic-level CL to enforce
local consistency. This has largely enhanced the represen-
tation power at each pixel and improved the generalization
capacity of the trained model. We refer to the proposed ap-
proach as multi-level contrastive learning with local con-
sistency (mCL-LC). The experimental results on different
benchmarks indicate that the proposed mCL-LC exhibits su-
perior performance as compared to other state-of-the-art
contrastive learning frameworks for the semantic segmen-
tation task. mCL-LC also carries better generalization ca-
pacity especially when domain shifting exists.

1. Introduction

Remote collection of high-resolution imagery data along
both temporal and spatial dimensions has allowed for large
areas of the planet to be monitored regularly, thus enabling
a wide variety of tasks such as disaster monitoring, urban
planning, agricultural planning [35, 39], etc. However, due
to the large footprint of aerial images and limited sensor
bandwidth, there is considerable interest and investigation

into the classification of object types at the pixel level. The
extraction of this information is the basis of semantic seg-
mentation in aerial images [42].

Figure 1. Comparison of semantic segmentation results on an
aerial image using different frameworks. (a) Raw image. (b)
Ground truth. Segmentation results using (c) DeepLab v3+ [9]
(supervised), (d) MoCo v2 [12] (feature-level self-supervised), (e)
GLCNet (global/local-level self-supervised) [26], and (f) the pro-
posed mCL-LC method.

With the success of deep learning techniques in high-
level and abstract feature learning, e.g., VGG [36],
ResNet [20], and MobileNet [22, 33, 21], various semantic
segmentation models based on these backbones have been
proposed to yield accurate and reproducible results, such as
SegNet [2], PSPNet [44], Mask-RCNN [19], DenseASPP
[43], DeepLab [7, 8, 9], Fast-SCNN [30], etc. However,
these methods need to rely on large amounts of data with
high-quality labels [14, 27], which might not be feasible
in many scenarios of aerial imagery where the volume of
created data is extremely large while the inherent speed of
human annotators is extremely limited. When only limited
data is available for training, these semantic models tend to
over-fit and result in poor performance.

To address the issue of the lack of high-fidelity labeled
data, several options are available, including 1) modifying
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existing data through augmentations such as cropping, flip-
ping, etc. [16], 2) generating synthetic data through gener-
ative adversarial networks [31] or physics-based models, 3)
using pre-trained models and fine-tune with the target data
[15], and 4) applying transfer learning methodologies to re-
duce dependency on the labeled data [1]. A major limitation
of all these techniques is that they are still very much reliant
on a relatively significant amount of labeled data. To this
end, self-supervised learning strategies [29, 4, 25, 28, 24]
have been gaining more and more attention.

As one of the most effective self-supervised learning
techniques developed recently, contrastive learning [10] has
achieved significant breakthrough in extracting powerful
representations without the need of any annotations. It uti-
lizes augmentations of the image to extract representations
of similar and dissimilar images and construct highly dis-
criminant models. Contrastive learning has shown strength
in image segmentation [45, 38, 41], but only for natural im-
ages.

In contrast to the natural image, where most segmenta-
tion tasks are instance based, the large footprint of remote
sensing imagery demands the models to be more represen-
tative of the local semantic information [26]. Hence, in
addition to the commonly-adopted feature-level contrastive
learning (CL) based on high-level features extracted from
the encoder, we also apply CL at the semantic level tak-
ing advantage of the semantic segmentation output from the
decoder. We further enforce the local consistency by maxi-
mizing the local mutual information, thus boosting the rep-
resentation power at local pixels.

We refer to the proposed framework as multi-level con-
trastive learning with local consistency (mCL-LC). Figure
1 illustrates the effectiveness of mCL-LC in semantic seg-
mentation as compared to supervised and state-of-the-art
self-supervised approaches. The main contribution is three-
fold:

(1) We propose a multi-level CL framework where CL is
conducted at both the feature level and the semantic
level taking advantage of the semantic segmentation
results, in order to boost the representative and dis-
criminative power at local details.

(2) We introduce the mutual information as a physical con-
straint for local consistency to the semantic-level CL
such that smoothness can be preserved while revealing
local details. By maximizing the mutual information,
we can further enhance the model’s representation ca-
pacity at local pixels.

(3) We identify an effective augmentation scheme,
pseudo-cloud noise generation, tailored to the aerial
image analysis, showing the importance of augmenta-
tion in improving model robustness and generalization
capacity.

The remainder of this paper is organized as follows.
Sec. 2 reviews recent developments in contrastive-based
learning frameworks. Sec. 3 elaborates on the proposed
mCL-LC model design. Sec. 4 presents details about exper-
iments and results. Sec. 5 concludes the paper and provides
general directions for further improvements.

2. Contrastive-based Learning Frameworks
Contrastive learning is a self-supervised learning frame-

work, aiming to make the network learn significant repre-
sentations for the downstream task in an unsupervised fash-
ion. The gist of the contrastive learning mechanism is that
unlabeled images are used to create data pairs, i.e., pix-
els that contain “information” from the same image. This
pixel information is augmented using various methods to
preserve the underlying information but can be viewed as
from visually distinct sources. The training process then
encodes these pairs of images, typically through a CNN,
and generates a compact feature set. The final vectorized
representations of similar images are compared and if the
vectors agree then the model is re-enforced. Similarly, neg-
ative examples (image pairs from different sources) are used
to further enforce the model accuracy by providing a repel-
lent force during training. The result of this approach is a
model that readily discriminate similar and dissimilar fea-
tures in the unlabeled training set but do not encode infor-
mation about the underlying class.

Once the feature extractor is trained to represent highly
dense information, a fine-tuning model is trained to reduce
these higher dimensional representations into a class la-
bel [23] using a smaller dataset with labels. The features
learned by this supervised classifier are extendable to the
unsupervised dataset due to the deep feature representations
learned by the initial model. This paradigm is known as the
“unsupervised pre-train, supervised fine-tune, and knowl-
edge distillation” [11].

There have been a couple of contrastive learning-based
networks developed. Specifically, the SimCLR method [11]
is based on the idea of instance-wise contrastive learning,
which learns by forcing positive samples augmented from
the same sample to be similar and negative samples aug-
mented from different samples in a mini-batch to be dis-
similar. MoCo v2 [18, 12] is also based on the idea of
instance-wise contrastive learning but with a focus on ob-
taining negative samples far beyond the batch size, such that
a dynamic queue with the features of negative samples is
maintained and the consistency problem alleviated using a
momentum update encoder. BYOL [17] and SimSiam [13]
are also instance-wise but only focus on the representation
learning of positive pairs.

Although effective, all the above mentioned contrastive
learning frameworks perform learning based on features ob-
tained from the encoder, which we refer to as feature-level
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Figure 2. Illustration of the proposed mCL-LC architecture.

CL. Feature-level CL tends to perform well overall for seg-
mentation tasks but not attend to local details, which is
specifically important in aerial images. GLCNet [26] al-
leviates from this issue by adding a local feature contrastive
learning module. However, since GLCNet does not provide
an effective mechanism for handling local consistency in lo-
cal features, the segmentation results tend to be noisy within
local regions. These can be observed from Fig. 1.

The proposed mCL-LC enforces local consistency on
positive pairs within the semantic-level contrastive learning,
in addition to the commonly used feature-level learning,
striking a good balance between local details and smooth-
ness while preserving global structure.

3. Method

As discussed in Sec. 1, the large footprint of aerial im-
agery demands a more powerful representation at the lo-
cal pixel level but the ever-changing acquisition conditions
only complicate the problem - making it more difficult to
extract invariant features. The proposed mCL-LC is de-
signed to solve these issues. Its architecture is shown in
Fig. 2. Generally speaking, a contrastive learning-based
framework consists of three components: 1) data augmen-
tation, 2) representation learning, and 3) contrastive loss.
In the following, we first elaborate on the multi-level CL
(mCL) (Sec. 3.1) at both the feature and semantic levels. We
then describe the local consistency module constrained by
mutual information that is embedded in the semantic-level
CL (Sec. 3.2). In the end, we detail the data augmentation
component (Sec. 3.3), especially the pseudo-cloud noise
generation, tailored toward segmentation tasks in aerial im-

agery.

3.1. Multi-level Contrastive Learning (mCL)

Besides the commonly used feature-level contrastive
learning, for the semantic segmentation task, we also pro-
pose to apply contrastive learning at the semantic level, such
that “contrasts” are learned using not only the high-level
features, but also the local semantics, in order to boost the
representation and discrimination capacity at the local pixel.

Feature-level CL. The feature-level contrastive learning
module, E, as shown in Fig. 2, uses the encoder of DeepLab
v3+ with ResNet50 as backbone. Upon feeding an input
image patch p to E, a high-level representation, E(p), can
be obtained. These representations are then used to gener-
ate the style feature [46], including both the channel-wise
mean, µ(·), and the variance, σ(·), as following,

f(p) = concat(µ(E(p)), σ(E(p))) (1)

Before computing the contrastive loss, a nonlinear projec-
tion head gf (·) is needed, which has been proven to be ef-
fective [11]. So, after the encoder and projection head, we
obtain the representation, z = gf (f (p)). The feature-level
contrastive loss is thus defined as:

Lfl =
1

2N

N∑
k=1

(ℓNTX (p̃k, p̂k) + ℓNTX (p̂k, p̃k)) (2)

where p̂k and p̃k are a positive patch pair generated from
augmentations of the same patch pk, and the NT-Xent con-
trastive loss function ℓNTX is the same as in SimCLR [10],
which is defined as following:
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ℓNTX (p̃k, p̂k) = − log
exp (sim (z̃k, ẑk) /τ)∑

p∈Λ− exp
(

sim(z̃k,gf (f(p)))
τ

)
(3)

where Λ− is the rest of the patch sets in the batch and
z̃k = gf (f (p̃k)), ẑk = gf (f (p̂k)). Via minimizing
the contrastive loss, it learns by forcing the representations
from positive view pairs to be similar but those from nega-
tive pairs to be dissimilar.

Semantic-level CL. For segmentation tasks, a decoder
structure is needed that learns by forcing the semantic fea-
ture to be similar in positive pair and dissimilar in negative
pair. Here, we use the decoder of DeepLab v3+ as the se-
mantic module, denoted as D (Fig. 2). Given the patch
pk, D receives the output of E and generates a semantic
representation of the same size as that of pk, which is de-
noted as qk = D(E(pk)). Integrating the channel infor-
mation, we thus produce a pseudo semantic map sk, and
sk = gs(µ(qk)), where µ(·) is the channel-wise average op-
erator and gs(·) is the projection head. Following the same
procedure as in the feature-level contrastive loss, we ap-
ply the NT-Xent to calculate the semantic contrastive loss,
which is defined as,

Lsl =
1

2N

N∑
k=1

(ℓNTX (s̃k, ŝk) + ℓNTX (ŝk, s̃k)) (4)

ℓNTX (s̃k, ŝk) = − log
exp (sim (s̃k, ŝk) /τ)∑

p∈Λ−
S
exp

(
sim(s̃k,gs(µ(D(E(p)))))

τ

)
(5)

where N denotes the number of patch pairs from a mini-
batch of N samples, Λ−

S is a set of pseudo maps correspond-
ing to all patches except for the positive pair, and gs(·) is a
projection head similar to gf (·).

3.2. Local Consistency Learning (LC)

So far, we have constructed a multi-level contrastive
learning framework. However, the complex acquisition
conditions of remote sensing imagery demand more robust
representation schemes that would reveal the rich details
hidden under the surface of the large footprint. In other
words, a module that can understand the local semantic de-
tails is needed.

In [5], the contrastive loss in the local region is used to
improve the model’s performance in learning representation
of natural images, which forces similarity of local region of
interests (ROIs) in positive pair, but dissimilarity in nega-
tive pair. However, this strategy is not adequate for aerial
imagery because of its unique characteristics, i.e., spatial

auto-correlation, that can cause two ROIs in different im-
ages to be similar. This is illustrated in Fig. 3, where two
different images form a negative pair, but the three ROI
pairs, matched by their geo-location, can be either similar
(e.g., the red and yellow ROI pairs) or dissimilar (e.g., the
blue ROI pair). However, the contrastive loss would have
forced representations of the similar patches to be dissim-
ilar, which is not desirable. Hence we introduce the local
consistency loss, to ensure the network only preserves the
consistency of the local semantic information in the match-
ing position of positive pairs.

Figure 3. ROIs in negative pair. The red, yellow, blue boxes are
the matching ROIs in a negative image pair, but the matching ROIs
bounded by the red and yellow boxes are actually similar.

Specifically, to obtain the matching ROIs in the positive
pair, we first randomly select an ROI from p̃, then determine
the location of the same size matching ROI in p̂ according
to the position of the ROI in p̃ to ensure the center of the
two matching local regions point to the same position in the
original image. By repeating these steps, we can select mul-
tiple different ROIs. We pass the locations of these ROIs to
the last layer of D and select the corresponding ROIs in
the pseudo semantic map. Although these matching local
regions are from different augmentation, they should share
the same content. We thus implement the consistency loss
between the matching positive ROI pair, r̃j and r̂j , by cal-
culating the mutual information and maximizing it.

Mutual information (MI) has been widely used for prob-
lems like multi-modality registration [47, 40]. It is a
Shannon-entropy based measurement of mutual indepen-
dence between two random variables, e.g., r̃j and r̂j . The
mutual information I (r̃j ; r̂j) measures how much uncer-
tainty of one variable (r̃j or r̂j) is reduced given the other
variable (r̂j or r̃j). Based on the mutual information, the
local consistency loss is defined as follows:

Llc = − 1

NR

NR∑
j=1

(I (r̃j ; r̂j)) (6)

with

I (r̃j ; r̂j) = H (r̃j)−H (r̃j | r̂j) (7)

=

∫
r̃j×r̂j

log
Pr̃j r̂j

Pr̃j ⊗ Pr̂j

dPr̃j r̂j , (8)
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where H indicates the Shannon entropy and H (r̃j | r̂j) is
the conditional entropy of r̃j given r̂j . NR is the number of
ROIs in one patch, and r̃j is the corresponding ROI in the
pseudo semantic map. The exact value of the mutual infor-
mation is difficult to calculate, so we resort to an estimate
based on the MINE algorithm [3], which is implemented by
back propagation in a two-layer fully connected network.

To summarize, the final loss function of mCL-LC con-
sists of three parts: 1) feature-level contrastive loss, Lfl

(Eq. 2); 2) semantic-level contrastive loss, Lsl (Eq. 4); and
3) local consistency loss, Llc (Eq. 6). The final loss function
is defined as follows:

L = Lfl + Lsl + Llc, (9)

The whole processing pipeline is shown in Algorithm 1.

Algorithm 1 mCL-LC Training
Require: hyper parameters τ , batch size N , ROI Number
NR

Input: Training Set I

Output: Pretrained E and D

1: for each patch pk in batch P = {pk}Nk=1 do
2: Build ROI position label O = {ok}Nk=1

3: for all samples in the batch do
4: Get augmented sample and position: p̂k, p̃k,

r̂k, r̃k
5: end for
6: Extract structure feature: z̃k and ẑk
7: Extract semantic feature: s̃k and ŝk
8: Get local feature: r̃k and r̂k by the position õk, ôk
9: Compute the loss Lfl (Eq. 2), Lsl (Eq. 4), and Llc

(Eq. 6)
10: Compute the total loss L by Eq. 9
11: Update network weights
12: end for =0

3.3. Data Augmentation for Aerial Imagery

Generally speaking, contrastive learning encourages the
model to learn spatiotemporal-invariant features, where
data augmentation plays an important role. As with com-
mon augmentation operations adopted in remote sensing
images [26], we perform spatial transformations such as
random cropping, resizing, flipping, and rotation for the
learning of spatially-invariant features and simulate tempo-
ral transformations such as color distortion, Gaussian blur,
and random noise for the learning of temporally-invariant
features.

More importantly, considering the intrinsic characteris-
tics of aerial imagery where cloud cover is often the major
limiting factor that affects the success of downstream tasks
[37], we propose a new augmentation method, referred to as

the “pseudo-cloud noise generation”, to simulate the poten-
tial disturbance caused by cloud, such that the model can
also learn cloud-invariant features. In this method, some
point clouds are randomly created and the associated RGB
pixel values are randomly increased by 50 to 100 percent to
mimic the variable increase in reflectance caused by cloud
formations. The benefit of this approach is its stochastic na-
ture of cloud formation, realized by changing multiple pa-
rameters, such as center of cloud, standard deviation of the
cloud cluster, and size of cloud coverage, in a random fash-
ion, mimicking the physical appearance and properties of
the natural cloud (e.g., formed in clusters and diffuses at the
edges). Fig. 4 shows one example of the pseudo-cloud noise

Figure 4. Illustration of the effect of generated pseudo-cloud noise:
(a) original image, (b) original image with the cloud mask added.

generation algorithm. Experiments are conducted (Sec. 4)
to show the benefit of including the pseudo-cloud noise ad-
dition as a key augmentation method in aerial image pro-
cessing.

4. Experimental Evaluation
4.1. Experimental Design

The proposed mCL-LC is evaluated from two aspects:
multi-category semantic segmentation accuracy and the
generalization capacity.

We evaluate the proposed mCL-LC and other self-
supervised methods on different benchmarks including
ISPRS Potsdam [32], ISPRS Vaihungen [32], Nice in
MiniFrance, and Nantes Saint in MiniFrance [6]. For each
dataset, we randomly divide the data to 90%, 2%, 8%, for
training, fine-tuning, and testing, respectively. Specifically,
the training is in a contrastive learning mode without the
label, but fine-tuning is in a supervised manner with associ-
ated labels. In the testing phase, the label is used to evaluate
the performance quantitatively. More details of the bench-
marks used are shown in Table 1. It is worth mentioning
that the MiniFrance dataset covers 16 land-use categories,
significantly more than other benchmarks, which results in
land-use categories being unbalanced and sparse in differ-
ent regions. In addition, rather than categorizing at the ob-
ject level (e.g., cars, buildings, trees, etc.), the Nice and
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Nantes Saint datasets require the model to be able to un-
derstand spatial correlation. For example, if seeing groups
of houses and buildings, the site should be identified as an
“urban area”, which is typical in aerial image analysis [34].
All these characteristics present additional challenge to the
segmentation model.

Table 1. DESCRIPTION OF THE FOUR DATASETS. NOTE
THAT ALL IMAGES ARE WITH 3 CHANNELS (RGB)

Datasets Potsdam Vaihingen Nice Nantes Saint
Resolution 0.05 m 0.09 m 0.5 m 0.5 m
Categories 6 6 16 16
Training 13916 12525 14686 19589
Fine-tuning 310 278 330 435
Testing 1237 1113 1405 1741

We compare the semantic segmentation performance of
pre-trained mCL-LC with five state-of-the-art CL networks
including SimCLR [11], MoCo v2 [18, 12], GLCNet [26],
BYOL [17], and SimSiam [13]. During the training process,
the backbone for all the methods is set to DeepLab v3+.
The patch size is fixed at 256 × 256. For all the models,
we use the Adam optimizer and train for 200 epochs, with
a batch size of 64. The initial learning rate is set to 0.001
with a cosine decay schedule. For the proposed mCL-LC,
we choose 12 ROIs with a size of 8×8 from a patch. During
the fine-tuning, the number of epochs is set to 20 and the
initial learning rate is set as 0.0001.

For the evaluation metrics, we select the overall accuracy
(OA) and Kappa coefficient (Kappa), the metric indicating
the degree of correctness and reliability of a classifier, to
measure the overall pixel-level classification accuracy. In
addition, the F1-score is used to measure the class-wise
classification accuracy. Note that three categories are miss-
ing in the Nice and Nantes Saint datasets. They are “culti-
vation patterns” (class 8), “orchards at the fringe of urban
classes” (class 9), and “clouds and shadows” (class 15). In
addition, since the first category is “no-information”, we ig-
nore it when calculating the F1-score.

4.2. Comparison with State-of-the-Art

In this set of experiments, we evaluate the performance
of the proposed mCL-LC from OA, Kappa, and F1-score
perspectives, in comparison with the five state-of-the-art
contrastive learning frameworks. We also show the effec-
tiveness of the pseudo-cloud noise generation augmentation
method. The results are shown in Table 2, where “mCL-
LC” means no pseudo cloud in the data augmentation, and
“mCL-LC+” is with the pseudo cloud augmentation. From
these results, we observe that the proposed mCL-LC outper-
forms all other contrastive learning frameworks in terms of
both OA and Kappa. The addition of pseudo cloud augmen-
tation further improves the performance by roughly 2%.

Besides the OA and Kappa metrics, we also calculate
the F1-score for each category. These results are shown in
Fig. 5. From the F1-score, we again observe that the pro-
posed mCL-LC achieves the best performance for majority
of the categories.

We further study the effect of the number and size of
the ROIs when calculating the local consistency loss. The
results are shown in Fig. 6. The base setting is three 2 × 2
ROIs in a patch. From the top row of Fig. 6, we can see that
8× 8 and 16× 16 ROIs achieve better performance. When
the size of ROIs goes beyond 16×16, the performance starts
decreasing. Similarly, from the bottom row of Fig. 6, we
observe that 12 and 15 ROIs present better performance.

4.3. Ablation Study

The ablation study is two-fold. First, we investigate the
important role played by each of the three loss functions.
Second, we study the effect of using pseudo cloud aug-
mentation in state-of-the-art contrast learning frameworks.
Although we have shown the performance improvement
by adding the pseudo cloud augmentation on the proposed
mCL-LC, here, we extend the investigation to see if the con-
clusion can be generalized to other contrast learning frame-
works.

The weight update of the encoder and decoder networks
is mainly controlled by the loss function in Eq. 9 that con-
sists of three modules, the feature-level contrastive loss,
Lfl, the semantic-level contrastive loss, Lsl, and the lo-
cal consistency loss, Llc. Table 3 thoroughly compares
the segmentation accuracy using different combinations of
these three modules, from which we make some interest-
ing observations. First of all, the first three rows of the re-
sults, where only one loss module is applied, show that the
self-supervised contrastive learning mechanism (using ei-
ther Lfl or Lsl) is very effective in representation learning
as compared to using only the local consistency loss (Llc),
although the effectiveness of the feature-level or semantic-
level contrastive learning is roughly the same according to
the OA and Kappa metrics. Second, the multi-level con-
trastive learning (mCL) using both Lfl and Lsl largely in-
creases the performance (about 4%) as compared to either
single-level learning approaches. Third, the addition of the
local consistency loss (Llc) to either level of the contrastive
learning (i.e., Lfl+Llc and Lsl+Llc) also effectively im-
proves the performance by around 4% on the Nice dataset
and a much large margin on the Nantes Saint dataset. And
finally, using all three losses drastically improves the overall
performance, showing the important roles played by each of
the three loss modules.

The second part of the ablation analysis studies the ef-
fect of the proposed pseudo cloud augmentation. In Ta-
ble 2, we have reported how this new augmentation tech-
nique improves the proposed mCL-LC by roughly 2% in
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Table 2. COMPARISON WITH STATE-OF-THE-ART CONTRASTIVE LEARNING FRAMEWORKS IN TERMS OF PIXEL-BASED
SEMANTIC SEGMENTATION ACCURACY. NOTE THAT SUPERVISED BASELINE REFERS TO DEEPLAB V3+

Nice Nantes Saint Potsdam Vaihungen

OA Kappa OA Kappa OA Kappa OA Kappa

Supervised Baseline 0.6712 0.5410 0.6628 0.5312 0.7518 0.6812 0.7603 0.7037
SimCLR 0.6127 0.5013 0.6025 0.4413 0.7327 0.6472 0.7286 0.6304
MoCo v2 0.6277 0.5082 0.6201 0.4513 0.7371 0.6735 0.7309 0.6213

BYOL 0.6366 0.5230 0.6311 0.4850 0.7509 0.6715 0.7546 0.6407
SimSiam 0.6305 0.5022 0.6036 0.4735 0.7439 0.6903 0.7492 0.6333
GLCNet 0.6494 0.5302 0.6407 0.5291 0.7811 0.7179 0.7855 0.6807

mCL-LC 0.6944 0.5379 0.6793 0.5343 0.8053 0.7301 0.8281 0.7377
mCL-LC + 0.7120 0.5520 0.7008 0.5689 0.8217 0.7440 0.8453 0.7506

Figure 5. Comparison of class-wise F1-score on Nice and Nantes Saint.

Figure 6. Effect of the size and number of ROIs in a patch when
calculating the local consistency.

terms of OA on all four datasets. Here, we extend the inves-
tigation and exploit the potential of deploying pseudo cloud
generation as a standard augmentation approach for other
contrastive learning frameworks in aerial image processing.
The results shown in Fig. 7 demonstrate a consistent 1% -
3% OA increment across all the six frameworks, providing
convincing evidence of pseudo cloud generation as a stan-
dard augmentation approach benefiting aerial image analy-

Table 3. ABLATION STUDY OF THE EFFECT OF EACH OF
THE THREE LOSSES IN EQ. 9

Modules Nice Nantes Saint
OA Kappa OA Kappa

Lfl 0.6133 0.5107 0.5933 0.4395
Lsl 0.6027 0.5283 0.5756 0.4510
Llc 0.4033 0.3212 0.4308 0.2977

Lfl + Lsl 0.6409 0.5539 0.6307 0.5371
Lfl + Llc 0.6517 0.5324 0.6463 0.5133
Lsl + Llc 0.6320 0.5681 0.6215 0.5482

Lfl + Lsl + Llc 0.6944 0.5623 0.6793 0.5543

sis.

4.4. Generalization Analysis

In this set of experiments, we evaluate the generalization
capacity of mCL-LC using the zero-shot domain testing.
Specifically, the training and fine-tuning are performed in
one city and testing is conducted in the other city. The OA
and Kappa for the different contrastive learning frameworks
are shown in Table 4, where the city to the left of the arrow
indicates the training and fine-tuning city, and that to the
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Table 4. ZERO-SHOT GENERALIZATION COMPARISON IN SITES TRANSFER (OA)

OA SimCLR MoCo v2 GLCNet BYOL SimSiam mCL-LC

Nice → Nantes Saint 0.4402 0.4684 0.4744 0.4325 0.3926 0.6108

Nantes Saint → Nice 0.0816 0.1762 0.3018 0.2004 0.2131 0.4719

Figure 7. Results of an ablation experiment exploring the effec-
tiveness of the pseudo cloud augmentation.

right is the testing city. From this table, we can observe that
mCL-LC outperforms all other contrastive learning frame-
works by more than 15%.

Figure 8. Comparison of generalization capacity of different
frameworks with and without domain-shift.

Fig. 8 shows a more thorough comparison on the model’s
robustness to domain shift. In the figure, “no-domain shift”
means the training, fine-tuning, and testing are conducted
using the same city dataset, and “domain-shift” refers to the

training and fine-tuning conducted on one city (e.g., Nice)
and testing on the other city (e.g., Nantes Saint). We ob-
serve performance drop in all frameworks when domain-
shift is present. However, the proposed mCL-LC drops
the least as compared to other frameworks. For example,
MoCo v2 decreases close to 90% in Nice data and 86.8% in
Nantes Saint data with domain shift, but the proposed mCL-
LC only drops less than 30% in Nice and 24.8% in Nantes
Saint. This shows the superior performance of mCL-LC in
generalization.

5. Conclusion

In this paper, we proposed a multi-level contrastive
learning (CL) framework taking advantage not only the
popular feature-level CL from the encoder output, but also
the semantic-level CL from the decoder output, in order to
boost the representation power at the local pixel level. This
is essential especially for aerial image analysis where pix-
els tend to cover a large footprint. To further balance the
tradeoff between local detail and local smoothness, we in-
troduced mutual information as a physical constraint to en-
force local consistency while preserving details. We further
showed the great potential of pseudo-cloud generation as a
standard augmentation technique for aerial imageries. The
proposed mCL-LC framework has shown superior perfor-
mance as compare to other single-level or multi-level CL
frameworks, demonstrating strong generalization capacity
especially when domain shift is present.

In the future, we plan to extend this work mainly in two
aspects. The first is to investigate pixel-level representation
framework and its contribution to the segmentation problem
in aerial and natural imagery. The second is to explore the
potential of CL in multi-modality representation in remote
sensing.
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Ferran Gascon, Luis Gómez-Chova, Olivier Hagolle, Dan
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