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Abstract

Unsupervised approaches for video anomaly detection
may not perform as good as supervised approaches. How-
ever, learning unknown types of anomalies using an unsuper-
vised approach is more practical than a supervised approach
as annotation is an extra burden. In this paper, we use iso-
lation tree-based unsupervised clustering to partition the
deep feature space of the video segments. The RGB- stream
generates a pseudo anomaly score and the flow stream gen-
erates a pseudo dynamicity score of a video segment. These
scores are then fused using a majority voting scheme to gen-
erate preliminary bags of positive and negative segments.
However, these bags may not be accurate as the scores are
generated only using the current segment which does not
represent the global behavior of a typical anomalous event.
We then use a refinement strategy based on a cross-branch
feed-forward network designed using a popular I3D network
to refine both scores. The bags are then refined through a
segment re-mapping strategy. The intuition of adding the
dynamicity score of a segment with the anomaly score is
to enhance the quality of the evidence. The method has
been evaluated on three popular video anomaly datasets, i.e.,
UCF-Crime, CCTV-Fights, and UBI-Fights. Experimental
results reveal that the proposed framework achieves com-
petitive accuracy as compared to the state-of-the-art video
anomaly detection methods.

1. Introduction

Video Anomaly Detection (VAD) imposes a critical re-
quirement in visual surveillance. Generally, video anomaly
detection task covers a large spectrum including road traffic
monitoring [33, 37], violence detection [21, 24, 31], human
behaviour [14, 23, 25], crowd monitoring [3, 43], etc. Visual
surveillance is primarily done by public and private agencies
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Figure 1. Overview. In the first stage, we obtain low-confidence
pseudo labels. In the second stage, we incorporate iterative learning
to train regressor networks using these labels. After successful
training, we replace older labels with more confident labels in
the third stage and retrain the regressors. After a few passes, an
optimized version of regressors is used to predict the anomaly
score.

on a large scale. Hence researchers easily get humongous
data analytic task while analyzing and annotating large video
data. Moreover, recent existing video anomaly detection
methods [9, 23, 25, 33, 38, 48, 49] heavily depend on full or
weak supervision. However, generating annotations for such
huge datasets is labor-intensive and time-consuming.

In recent years, unsupervised approaches for video
anomaly detection are being outnumbered by supervised
or semi-supervised methods. Ravanbaksh et al. [36] have
trained Generative Adversarial Nets (GANs) for video
anomaly detection. Nguyen et al. [27] have concatenated
appearance and motion encoders and decoders for accom-
plishing the job. Gong et al. [10] have proposed Memory-
augmented Autoencoders (MemAEs) to detect video anoma-
lies. The main advantage of using GANs or AEs is their
capability to capture high-level video features. Recently,
Doshi et al. [8] have proposed a continual learning frame-
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work in which the model incrementally trains as the data
arrives without forgetting the learnt (past) information. This
type of framework can be feasible in visual surveillance as
video data keep coming into the monitoring systems. How-
ever, all these approaches suffer a few limitations as follows:
(1) in continual learning, a separate mechanism needs to be
designed to avoid catastrophic forgetting [8], (2) GANs and
AEs are highly vulnerable to unstable training, i.e., a subtle
change in data imposes large changes in the labels, thus af-
fecting the normal distribution, (3) most of the state-of-art
VAD methods heavily depend on labeled normal/abnormal
data, and (4) VAD approaches either utilize appearance-
based features or deep features.

To address these limitations, we adopt an iterative learn-
ing [44] mechanism in which models are repeatedly tuned
with more refined data during each pass. Moreover, we
aim to combine the technical advantages of continual and
AEs learning. Our proposed framework combines the power
of DNNs with well-justified handcrafted motion features.
These spatio-temporal features equipped with low-level mo-
tion features help to detect wide range of anomalies. The
framework can also be retrained in an end-to-end fashion as
input data arrives. The overview of the proposed framework
is depicted in Fig. 1. It is divided into three stages: i) pseudo
label assignment, ii) regressors training, and iii) refinement
of labels using optimized regressors. For enabling the re-
gressors to understand subtle anomalies, we have obtained
motion features, namely dynamicity score using optical flow.
In the first stage, we do not know the actual labels; hence we
have obtained intermediate low confidence anomaly labels
using OneClassSVM and iForest [19]. We also obtain the
dynamicity labels using dynamicity scores. We have trained
two regressor networks in the second stage by using the la-
bels generated in the first stage. This is an iterative process to
improve the confidence scores. In this way, both regressors
are trained over refined labels and they learn discriminating
features. The iterative learning approach also ensures that
both the regressors learn new distinguish patterns without
losing the past information. We have experimentally found
that for first few iterations, both regressors gradually learn
internal patterns and stabilizes after some iterations. Both
regressors are trained independently in parallel. Precisely,
in iterative learning, the model is retrained using refined
data in each iteration. In this way, the proposed approach
do not need any level of supervision. However, some form
of supervision is mandatory for continual learning [8] or
weakly-supervised methods [27, 38, 48]. These methods
consider a video anomalous even if a small segment contains
anomaly. In contrast, we identify anomalous segments using
dynamicity and anomaly scores estimated using unsuper-
vised ways, thus eliminating the requirement of supervision.
To achieve this, we have made the following contributions:

• design an unsupervised end-to-end video anomaly de-

tection framework that uses iterative learning to tune
the model using refined labels in each iteration;

• propose a novel technique to assign intermediate labels
in unsupervised scenarios by combining deep features
with well-justified motion features and;

• conduct extensive experiments to understand the ef-
fectiveness of the proposed framework with respect to
other state-of-the-art methods.

The rest of the paper is organized as follows. In the next
section, we present the related work. In Sec. 3, we present the
proposed framework. Experiments and results are presented
in Sec. 4. The conclusions and future works are presented in
Sec. 5.

2. Related Work

Existing work in the Video Anomaly Detection (VAD)
domain largely draw motivation from activity recognition
and scene understanding [38]. These methods utilize various
types of video features, training procedures or both. In
this section, we briefly discuss the main categories that are
extensively followed in very recent VAD approaches.

2.1. Reconstruction-based Approaches

Several VAD approaches [1, 10, 22, 27, 29, 30, 39, 46]
employ Autoencoders (AEs), Generative Adversarial Nets
(GANs) and their variants under the assumption that the
models that are explicitly trained on normal data may not
be successful to reconstruct abnormal event as such samples
are usually absent in the training set. Park et al. [29] have
used AE to generate cuboids within normal frames using
spatial and temporal transformation. Zaheer et al. [46] have
generated good quality reconstructions using the current gen-
erator and used the previous state generator to obtain bad
quality examples. This way, the new discriminator learns
to detect even small distortions in abnormal input. Gong et
al. [10] have introduced a memory module to AE and con-
structed MemAE. This is an improved version of existing
AE. Szymanowicz et al. [39] have trained an AE to obtain
saliency maps using five consecutive frames and per-pixel
prediction error. Ravanbakhsh et al. [36] have imposed clas-
sic adversarial training using GANs to detect anomalous
activity. However, the effectiveness of these approaches
is highly dependent on the reconstruction capabilities of
the model. Failing which, it may significantly degrade the
model’s performance.

2.2. Features-based Approaches

Primarily, features-based VAD approaches can be cate-
gorized by anomaly detection using either handcrafted or
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Figure 2. DyAnNet. Architecture of the proposed framework. The whole framework is divided into three stages: (1) Pseudo label assignment,
(2) Score learning, and (3) segment re-mapping using refined labels. We have employed iterative learning mechanism to train the regressors
Ω and ψ, and redefined the input bag A and N at the end of each pass. We construct a set of optimized regressors obtained through each
pass and used it to predict anomaly and dynamicity score of each segment. (Thinner arrows represent the label passing and the thicker
arrows are video features, i.e., the blue arrows are raw RGB frames, whereas the red arrows are representing optical flow of the segment.)

deep features. Early attempts have used handcrafted fea-
tures such as object trajectories [26, 47], gradients of his-
tograms (HOGs) [18], Hidden Markov Model (HMM) [16],
and appearance-based features [11]. However, very recent
deep learning approaches [9, 38, 48, 49] have achieved ro-
bust results for video anomaly detection. Feng et al. [9]
have introduced Self-guided attention during the feature en-
coding process, Zhu et al. [49] have injected motion-aware
features that increases the recognition capabilities of the
classifier. Sultani et al. [38] addresses anomaly detection
problem using weak supervision and following this, [48]
has used Graph Convolutions Network (GCN). In addition
to this, different training mechanisms have been employed
such as continual learning [8], adversarial training [36], Self-
trained [9, 28], and active learning [41] to obtained robust
video anomaly detection results.

Even though the aforementioned techniques have
achieved decent performance, they still suffer from a few
avoidable limitations: (1) they heavily depend on manually
labelled normal/abnormal data. However, generating annota-
tions for huge data is time consuming and error prone, (2)
due to the absence of universal definition the anomaly events,
a few anomalous events that are normal in one context may
be regarded abnormal in another context, e.g. marathon run
vs. criminal run. These scenarios often lead to unstable
training of the AEs and GANs. We have addressed these
limitations using iterative learning combined with low and
high-level features.

3. Proposed Method

We first provides a detailed description of the proposed
video anomaly detection framework. Our framework en-

compasses with the following three stages: (1) pseudo label
assignment, (2) anomaly score learning, and (3) segment
re-mapping.

3.1. Overall Architecture

A high-level architecture of the proposed framework is
depicted in Fig. 2. The problem formulation is follows:
Assume an input video (V ) is divided into a n number of
segments such that V = {S1, S2, . . . , Sn}. The goal is
to design a function as given in Eq. 1 that generates an
anomaly score ys and a dynamicity score yd to predict the
label y ∈ {0, 1} for each video segment.

Θ : V → y ∈ {0, 1} (1)

A positive segment contains anomalous activity and ide-
ally has a higher anomaly and dynamicity score than the
normal segments such that Θ(Si) > Θ(Sj), where Si is an
anomalous and Sj is a normal segment. Note that, no labeled
data is available during this training. To tackle this scenario,
we have employed iterative learning [44] and bag forma-
tion [38]. First, we have assigned pseudo anomaly scores ŷs
and pseudo dynamicity scores ŷd to the video segments Si.
These intermediate labels help to form two separate bags A
and N . Here, A ⊂ V is bag of positive segments, where
S ∈ A if y = 1 for S, which generally has higher ŷs and ŷd
values. Similarly, N ⊂ V is the bag of negative segments,
where S ∈ N if y = 0 for normal segment S and we expect
a lower value for both ŷs and ŷd. Note that, A ∩N = ϕ. In
the second stage, two separate regressors, e.g. Ω and ψ have
been trained using these pseudo labels. In the third stage, we
have used these trained regressors to refine the contents of
the bags. A training pass redefines the membership of each
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segment of a bag. In the next pass, Ω and ψ are tuned using
A and N . In the subsequent sections, we provide detailed
descriptions of the stages.

3.2. Pseudo Label Assignment

The training procedure begins with unlabeled data. Hence
we don’t know A and N in the first place. To handle
this problem, we initialize A and N via generating pseudo
anomaly score ŷs and pseudo dynamicity score ŷd. To ob-
tain ŷs, we have employed OneClassSVM and iForest [19]
in combination. Note that, both algorithms run on fea-
ture vectors of the video segment. We have extracted seg-
ment features using I3D pretrained on Kinetic dataset [5].
OneClassSVM is similar to the SVM algorithm. But, it
uses hypersphere to cover all data instances. This algorithm
tries to construct the smallest possible hypersphere using the
support vectors. All the data instances that lie outside the
hypersphere are likely to be anomalies. Let F = f(S) be
the feature extraction function of segment S. The anomaly
score can be defined using Eq. 2,

d(F ) = max
F∈V

δ(c, F ) (2)

where F is the feature point, c is the center of the smallest
hypersphere constructed by the SVM, and δ is the distance
function. iForest isolates data instances by randomly select-
ing any feature and a split value. A tree structure can depict
this recursive partitioning; hence the number of partitions is
equal to the path length of the data instance up to the root
node. The inverse of the path from the root to leaf is the
anomaly score of F . It is estimated using Eq. 3,

d(F ) = 2[
−E(l(F ))

g(|F |) ] (3)

where l(F ) is the path length of F , E(.) denotes the aver-
age path length of F on n isolation trees, and g(.) is the
expected path length for a given sub-sample. We normalize
the anomaly scores of each feature point within [0,1] interval
and take the average score over n isolation trees to obtain
the pseudo anomaly score ŷs of a video segment.

In addition to the anomaly score, we have also obtained
the dynamicity score of each segment. The dynamicity of the
segment refers to the rate of change in displacement of the
pixel over time which is obtained using motion information.
It is expected that for a rapidly changing video scene, the
dynamicity score is expected to be higher. Let Pk represents
the coordinate of the kth pixel of the immediate preceding
frame andMk be the estimated position of the pixel obtained
using optical flow in the next frame. The displacement of
the pixel (Sk) can be calculated using Eq. 4,

Sk = SAD(Pk,Mk) (4)

where SAD is the sum of absolute difference. We have
used absolute displacement to consider movement in any

direction to estimate the dynamicity score. Now, the frame-
level dynamicity score Di of the ith frame is estimated using
Eq. 5,

Di =
1

m× n

m×n∑
k=1

Sk (5)

where m and n represent height and width of the frame. We
then obtain the dynamicity scores of all the frames within a
segment. It is represented by [Di, Di+1, . . . , Dp−1] assum-
ing there are p number of frames in a segment. We average
all frame-level dynamicity scores to obtain a pseudo dynam-
icity score ŷd of the segment. The score is then normalized
within [0,1]. We now assign an intermediate label ŷ to a
segment using the heuristic presented in Eq. 6.

ŷ = f(ŷs, ŷd) =

{
1 if ŷs, ŷd > τ

0 otherwise
(6)

Eq. 6 ensures that the segment with a higher anomaly and
dynamicity scores than a predefined threshold τ should be
placed in A with the intermediate label ŷ = 1.

3.3. Learning of Anomaly and Dynamicity Scores

Ideally, when a score learner feeds with an anomalous
segment, it should generate a high anomaly score as com-
pared to a normal segment. However, in the present scenario,
the labels are inaccurate due to the absence of ground truths.
Moreover, the label of each segment has been decided using
anomaly and dynamicity scores. Hence we have carefully
designed a function Θ as given in Eq. 7 using two different
score learner functions, namely Ω and ψ,

Θ(S) = f(Ω(ZR), ψ(ZF )), (7)

where ZR represents the RGB frame, ZF denotes the optical
flow of the segment S, ŷs = (Ω(ZR)), ŷd = (ψ(ZF )), ei-
ther S ∈ A or S ∈ N and f(.) is the label mapping function
defined in Eq. 6. Typical 3D CNNs can be incorporated
here to implement Ω and ψ. We have employed RGB and
flow modalities of I3D [5] network followed by a 3-layer
FCN to implement score learners Ω and ψ, respectively. We
train the anomaly score learner Ω(ZR,WΩ) and dynamicity
score learner ψ(ZR,Wψ) using Mean-squared error (MSE)
loss, where WΩ and Wψ are trainable weights of Ω and ψ,
respectively.

3.4. Segment Re-mapping via Iterative Learning

The training procedure begins with the pseudo labels
assigned to the segments in the first stage. However, labels
are not as correct as the ground truth. In this stage, we aim
to fine-tune Ω and ψ with more accurate labels to achieve
stable performance. To achieve this, we have incorporated
an iterative learning mechanism. Let Pi be the ith pass
in which A and N have been initialized based on pseudo
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anomaly and dynamicity scores. We then train Ω and ψ via
MSE loss using these pseudo labels. We have obtained sub-
optimized version ΩPi

and ψPi
of both regressors. Lastly,

we re-estimate both scores using Eq. 8 via these optimized
versions of the regressors,

ŷPi+1
s = ΩPi(ZR) and ŷ

Pi+1

d = ψPi(ZF ) (8)

where ŷPi+1
s and ŷPi+1

d are new scores obtained through sub-
optimized regressors. Now, we use these new scores to refine
A and N using Eq. 6 and retrained ΩPi and ψPi in the next
pass Pi+1 using a new input batch. In particular, for each
pass in iterative learning, we utilize a completely new set
of A and N and retrain the regressors. We only utilize new
scores instead of combining them with older scores because
such a mixing without any supervision usually generates er-
roneous scores. We have empirically found that the proposed
approach performs better on popular video anomaly datasets.
Finally, each pass generates an optimized version of Ω and
ψ and hence the proposed iterative learning approach results
in a set of optimized regressor models.

3.5. Training and Inference

We have employed iterative learning to achieve stable
performance of the regressors. During the first pass, we
have obtained pseudo anomaly and dynamicity scores to
initialize A and N . However, the actual training takes place
in the second stage, where two regressor models Ω and ψ
are trained using the pseudo labels. Note that, Ω and ψ
are I3D [5] networks followed by a 3-layer FCN with a
single neuron at the end to produce respective scores. Hence
we have incorporated MSE loss for network the training as
the formulation is recognized as regression rather than a
binary classification. In each pass, both regressor networks
have been trained using a fixed number of training iterations
depending on the number of samples available in the training
set. Finally, the sub-optimized version of Ω and ψ are used
to rearrange the content of A and N for the next pass.

Each pass in iterative learning outputs an optimized ver-
sion of A and N . In the inference stage, we use a set of
sub-optimized models to generate optimized anomaly and
dynamicity scores. The final score generation can be sum-
marized using Eq. 9,

ys =

k∑
i=1

Ωi(ZR) and yd =

k∑
i=1

ψi(ZF ) (9)

where k is the number of passes. Ωi and ψi represent the
optimized models obtained after the ith pass. ys and yd are
anomaly and dynamicity scores obtained using Ωi and ψi,
respectively. The output neuron from both the regressors use
softmax, hence anomaly and dynamicity scores always fall
between [0,1] for an input video segment.

4. Experiments
In this section, we present implementation details,

datasets, evaluation metrics, comparisons of the proposed
method with recent state-of-the-art VAD methods, qualita-
tive results, ablation experiments, and the effect of training
and testing iterations on performance.

4.1. Implementation Details

Following [38, 49, 48], we divide each video into 32 non-
overlapping temporal segments. We then extract features
from mixed-5C layer of the I3D [5] network resulting in
1024D feature components, and feed them to PCA to reduce
dimensionality to 100 components. These components have
been used to train the OneClassSVM and iForest [19] clas-
sifiers to generate pseudo anomaly scores. We have used
default parameters of OneClassSVM and iForest [19] given
in the scikit-learn during experiments.

We have used SelFlow [20] and Farneback algorithm for
optical flow estimation to calculate the dynamicity score
of the segment. We have implemented the regressors Ω
and ψ using I3D [5] as a backbone network pre-trained on
the Kinetic dataset as recommended in I3D original work.
We have replaced FCN layers of I3D with a 3-layer FCN.
The first layer contains 512 units, followed by 32 units,
and 1 unit at the end to generate the scores. We have also
experimented with deeper networks. However, we have not
observed significant performance deviation. We have trained
the regressors with initial learning rate of 0.005 and AdaGrad
optimizer. Following [12, 38, 48, 49], we set τ = 0.50
for comparisons. We have experimented with even lower
values of (τ). Such analysis can be found in supplementary
document. The experiments reveal that both regressors get
substantially improved only in the first few passes while
achieving a stable performance. We have discussed results
by varying the number of training iterations and passes in
the subsequent sections.

4.2. Datasets

We have used three real-world video anomaly datasets for
experiments, namely UCF-Crime [38], CCTV-Fights [31],
and UBI-Fights [6].

UCF-Crime [38]: It is a video anomaly dataset contain-
ing 13 real-world anomalies recorded using CCTV cameras.
It contains 1900 real-world videos of normal and criminal
activities such as robbery, vandalism, burglary, shooting,
abuse, etc.

CCTV-Fights [31]: This dataset offers 1000 fighting
videos recorded in real-world scenarios. The total duration
of these videos is 17.68 hours and collected using search key-
words like kicking, punching, physical violence, mugging,
etc.

UBI-Fights [6]: It holds 1000 real-world videos, where
784 are normal and 216 are real-life fighting scenarios. It
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contains videos recorded in indoor and outdoor environment
with no administrative control or supervision, high occlusion,
and varying illumination conditions.

4.3. Performance Evaluation Metrics

All test video frames from the above-aforementioned
datasets are marked as either normal or abnormal. Hence
following the previous works [9, 27, 28, 29, 31, 38, 39, 45,
48, 49] on anomaly detection, we compute frame-level re-
ceiver operating characteristics (ROC) curve and area under
the curve (AUC) as evaluation metrics.

4.4. Comparisons with State-of-the-art

We compare our method with recent state-of-the-art video
anomaly detection methods [7, 8, 9, 11, 12, 13, 15, 17, 27,
28, 29, 34, 35, 38, 49] on three aforementioned datasets.
Tab. 1 shows the performance of all methods. It can be ob-
served that the proposed unsupervised method outperforms
other weakly-supervised methods [9, 38, 49] by a substantial
margin across all three datasets. Zhu [49], Pang et al. [28],
and Leroux et al. [17] have achieved decent performance
on all datasets by introducing attention-based deep features,
ordinal regression, and multi-branch deep autoencoders, re-
spectively. However, incorporating multiple deep networks
and adding attention-based features into the network are
insufficient to detect multiple anomalous events. It can be
observed that the multi-branch framework introduced by
Leroux et al. [17] performs well on CCTV-Fights [31] and
UBI-Fights [6] as these datasets focus on fighting events only.
However, it performs moderately on UCF-Crime [38] as the
dataset addresses multiple anomalous activities. Doshi et
al. [8] have employed continual learning in which the model
learns new patterns as the input data arrives without forget-
ting the learnt information. However, such type of learning
requires constant flow of incoming data. Moreover, such
continual learning approach can efficiently utilize the tem-
poral information of single fixed location [8, 34]. However,
the chosen VAD datasets [6, 31, 38] for the experiments
are multi-scene and provide complex temporal richness. To
tackle this problem, Doshi et al. [8] have constructed NOLA
video anomaly dataset using fixed location camera. How-
ever, to the best of our knowledge, this dataset is yet to be
published. Perez et al. [31] have introduced CCTV-Fights
dataset and computed the performance of C3D [40], I3D [5],
and other popular backbone architectures. However, the pop-
ular 3D-CNN-based backbone architecture such as C3D [40]
and I3D [5] have already been incorporated in the proposed
framework as well as with other methods [9, 38]. Hence we
have not explicitly included the method used in [31] for com-
parisons. However, we have studied the effectiveness of the
backbone architectures in the proposed framework. Tab. 2
shows AUC (in %) for four popular architectures, namely
Pseudo-ResNet 3D [32], Temporal Segments Network [42],

C3D [40], and Inception V3 [5].

Table 1. Frame-level AUC scores (in %) of the state-of-the-art
methods on three video anomaly datasets, D1: CCTV-Fights [31],
D2: UBI-Fights [6], and D3: UCF-Crime [38]. The top two results
are shown in red and blue.

Year Method D1 D2 D3 Superv.
2016 Hasan et al. [11] 52.43 64.87 50.6 Semi.
2017 Hinami et al. [12] 56.70 67.12 57.10 Semi.
2018 Ravanbaksh et al. [35] 60.37 69.45 61.61 Unsuper.
2018 Sultani et al. [38] 72.55 78.70 75.41 Weak.
2019 Ionescu et al. [13] 73.86 78.49 76.20 Unsuper.
2019 Nguyen et al. [27] 76.43 77.18 75.65 Semi.
2019 Zhu et al. [49] 75.20 81.02 79.0 Weak.
2020 Degardin et al. [6] 77.14 84.60 76.90 Weak.
2020 Ramachandra et al. [34] 73.81 82.45 75.46 Semi.
2020 Pang et al. [28] 76.78 84.65 78.50 Unsuper.
2021 Feng et al. [9] 81.43 85.19 82.30 Weak.
2021 Kopuklu et al. [15] 74.90 79.63 75.12 Weak.
2022 Doshi et al. [8] 75.86 80.71 79.46 Semi.
2022 Park et al. [29] 73.28 77.23 75.40 Unsuper.
2022 Leroux et al. [17] 76.20 78.06 76.78 Unsuper.

Ours (Farneback Flow) 79.31 84.12 81.40 Unsuper.
Ours (SelFlow [20]) 81.01 86.31 84.50 Unsuper.

Following the limitations imposed by Zhong et al. [48],
Pang et al. [28] have formulated anomaly detection as un-
supervised ordinal regression and performed image-level
anomaly detection. However, focusing only on spatial-
features and ignoring temporal aspect of the video is not
advisable in the context of anomalous event. Our framework
utilizes both spatial and temporal information and hence
outperforms the method proposed by Pang et al. [28] by a
notable margin.

Table 2. Performance of the proposed method in terms of AUC (%)
with different backbone architectures used for implementation of
Ω and ψ regressors.

Backbone CCTV-Fight [31] UBI-Fight [6] UCF-Crime [38]
P3D [32] 78.42 84.20 84.78
TSN [42] 77.10 83.08 81.22
C3D [40] 76.56 81.91 79.96
I3D [5] 81.01 86.31 84.50

Based on the performance results discussed so far, it
is important to note the proposed framework i) addresses
the feature selection problem faced by [9, 29, 49] using
low-level motion features and spatio-temporal features, ii)
employs an iterative training rather than depending on the
weak labels [38, 48, 49]. Thus, our method has achieved a
reasonable gain in terms of AUC (%) score.

4.5. Qualitative Analysis

We present a few qualitative results obtained using the
proposed method on a few test videos taken from the CCTV-
Fight [31], UBI-Fights [6], and UCF-Crime [38] datasets.
Such results are presented in Figs. 3, 4, and 5, respectively.
Note that, the trained regressors Ω and ψ generate corre-
sponding segment-level anomaly and dynamicity scores.
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Hence we have interpolated these scores using Cubic In-
terpolation to achieve smooth curves. It can be seen that
the method successfully detects anomalous segments and
generates higher anomaly and dynamicity scores as per the
ground truths.

Figure 3. Results Visualization: Qualitative results on test videos
taken from the CCTV-Fight [31] dataset. Each image represents
a frame in a temporal segment. The shaded portions are ground
truths and the horizontal line represents the threshold.

From Figs. 3 and 5, it can be seen that both regressors ac-
curately detect anomalous patterns and abrupt change in the
scene a few frames earlier. This indicates a quick response
to sensitive contents. Moreover, the proposed framework is
able to detect multiple occurrences of anomalous events in a
video. From Figs. 3 and 4, it can be seen that in the absence
of any anomalous activity, both regressors generate very low
scores yielding lower false alarms toward the later part of
the videos.

Figure 4. Results Visualization: Qualitative results on test videos
taken from the UBI-Fight [6] dataset.

In Fig. 5, the first illustration depicting an explosion event
from the UCF-Crime [38] dataset is very interesting. The
explosion usually fills the whole field of view of the camera
with a thick smoke that moves slowly or rapidly depending
on the intensity of the explosion event. In this example, af-
ter successfully detecting the first explosion, due to faster

Figure 5. Results Visualization: Qualitative results on the test
videos from the UCF-Crime [38] dataset.

moving smoke, the ψ regressor has generated a high dynam-
icity score. However, detecting smoke is not necessarily an
anomalous event. Hence Ω has predicted a very low anomaly
score for the same segment avoiding false positives. How-
ever, during the second mild-level explosion, both regressors
agree to generate a relatively higher score. More qualita-
tive results on anomaly detection have been provided in the
supplementary material.

4.6. Number of Passes and Training Iterations

To understand the iterative training mechanism, we
present the AUC (in %) results of the proposed framework
at each pass during the training on CCTV-Fight [31], UBI-
Fights [6], and UCF-Crime [38] in Figs. 6, 7, and 8. For
CCTV-Fights [31], our method achieves stable performance
at the 9th and 10th pass. However, for UBI-Fights [6]
and UCF-Crime [38], the framework’s performance has im-
proved significantly in the first few passes across all datasets.
It achieves a stable performance after the 7th or 8th pass.
Note that, during each pass, the sub-optimized version of
Ω and ψ is retrained with the refined pseudo labels. Hence
it is necessary to restricts this training to avoid over-fitting.
We have observed that the number of training iterations can
be decided by the input batch size and the total number of
samples in the training set. For example, CCTV-Fight [31],
UBI-Fights [6], and UCF-Crime [38] datasets contain a few
thousands of video samples in the training set. Hence 30
training iterations/pass with a batch size 32 is sufficient to
train the model. However, we have experimentally found
that the number of iterations/pass do not matter much as long
as large number of iterations are done within a pass. This en-
sures that the models are retrained iteratively. Hence we can
achieve same performance with fewer number of training
iterations and a large number of passes and vise-versa. Since
all datasets offer a few thousands of samples in the training
set, we have found that 10 passes and 30 training iterations
are sufficient to train both the regressors. All experiments
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in this paper have thus been conducted under this uniform
setting.

31

Figure 6. Pass Vs. AUC: The AUC (in %) performance of the
proposed method for the CCTV-Fights [31] dataset videos against
each pass, where x-axis is the number of passes and y-axis presents
AUC.

6

Figure 7. Pass Vs. AUC: The AUC (in %) performance of the
proposed method for the UBI-Fights [6] dataset videos against each
pass.

38

Figure 8. Pass Vs. AUC: The AUC (in %) performance of the
proposed method for the UCF-Crime [38] dataset videos against
each pass.

4.7. Ablation Study

The proposed method has three main modules: i) pseudo
label assignment, ii) backbone architecture, and iii) dynamic-
ity score to efficiently detect anomalies. In the first stage, we
have employed OneClassSVM and iForest [19] to obtained
pseudo anomaly score for each temporal segment. We have
replaced these two unsupervised anomaly detection algo-
rithms with Robust Covariance [2] and Local Outlier Factor
(LOF) [4]. However, a significant degradation in the AUC
performance has been observed (3% - 5%). In the second
stage, we have employed two-stream I3D [5] followed by a
3-layer FCN to generate the scores. To check the efficiency
of this backbone, we have re-conducted the experiments with
same setting. The overall AUC performance with respect to

the backbone is represented in Tab. 2. We have also repre-
sented the effect of considering low-level motion features to
decide the abnormality of the scene. From Tab. 3 and qual-
itative results, it can be safely concluded that, inclusion of
motion features helps to achieve good detection performance
as well as lower False Alarms Rate (FAR). We have explored
various unsupervised algorithms to generate pseudo anomaly
scores. Tab. 4 presents the AUC performance of these ex-
periments. It reveals that when OCSVM is combined with
iForest, we get best performance.

Table 3. AUC (in %) and False Alarms Rate (FAR) of the proposed
method with and without the dynamicity score. An improved
AUC and corresponding FAR are shown in red and blue colors,
respectively.

Dynamicity CCTV-Fight [31] UBI-Fights [6] UCF-Crime [38]
No 75.21 (5.8) 81.64 (4.7) 79.76 (1.8)
Yes 81.01 (1.7) 86.31 (1.4) 84.50 (0.5)

Table 4. Performance of the proposed method in terms of AUC (%)
with different unsupervised algorithms combined with iForest [19]
to generate pseudo-anomaly scores.

Algorithm CCTV-Fights [31] UBI-Fights [6] UCF-Crime [38]
MCD 77.24 84.07 81.11
PCA 79.94 85.13 83.58
LOF 77.60 84.86 82.02
OCSVM 81.01 86.31 84.50

5. Conclusion and Future Work
It has been discussed in this paper that large-scale video

anomaly detection using iterative learning is a viable ap-
proach to avoid annotation dependency. We have shown
that by employing iterative training, the model can learn
discriminating features. Moreover, we have shown that by
employing pseudo-label generation, one can avoid any type
of supervision and still achieve very good performance. Two
key insights are: i) low-level features are equally impor-
tant for anomaly detection, and ii) iterative training helps
to reduce FAR and it is possible to detect anomalous event
a few frames earlier. We can explore more advance tech-
nique to utilize both low-level and deep features in future.
However, it is not wise to assume that any AI assisted visual
surveillance framework can be a complete replacement of
manual surveillance. Essentially, the amount of training data
and quality of the underlying model play important role in
decision making.
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