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Abstract

On the Internet, images are no longer static; they have
become dynamic content. Thanks to the availability of
smartphones with cameras and easy-to-use editing soft-
ware, images can be remixed (i.e., redacted, edited, and re-
combined with other content) on-the-fly, allowing a world-
wide audience to repeat the process many times. From dig-
ital art to memes, the evolution of images through time is
now an important topic of study for digital humanists, so-
cial scientists, and media forensics specialists. However,
because typical data sets in computer vision are composed
of static content, there has been limited development of au-
tomated algorithms for analyzing remixed content. In this
paper, we propose the idea of Motif Mining: the process
of finding and summarizing remixed image content in large
collections of unlabeled and unsorted data. For the first
time, this idea is formalized and a reference implementation
grounded in that formalism is introduced. We conduct ex-
periments on three meme-style data sets, including a newly
collected set associated with the Russo-Ukrainian conflict.
The proposed motif mining approach is able to identify re-
lated remixed content that, when compared to similar ap-
proaches, more closely aligns with the preferences and ex-
pectations of human observers.

1. Introduction
As the number of images posted online has grown, it

has become increasingly intractable for humans to manu-
ally discover trends in online information. Although some
computer vision algorithms have been proposed for this
problem [31, 36], the financial, labor, and time costs as-
sociated with labelling ground truth present a tremendous
hurdle. This is particularly evident when analyzing social
trends, which often move so quickly that well-labelled data
becomes obsolete by the time it is prepared. Moreover, the
prevalence of remixed image content like memes—images
often edited to remove information or incorporate other
content—has raised questions about how associate related

images. In this paper, we describe the process of automat-
ically discovering trends in a large collection of remixed
images, known as Motif Mining (Fig. 1). Several different
communities are interested in this concept, including digital
humanists studying new participatory art movements [25],
computational social scientists studying the role of visual
communication in conflicts [32], and media forensics spe-
cialists attempting to detect disinformation [16].

There are several challenges that must be overcome to
achieve robust and accurate motif mining. To date, this
concept has been applied informally in the literature [35, 3,
6, 29], leaving questions about optimization strategies that
can be applied to the problem and the structure of the out-
put. With respect to a viable algorithm that expresses image
similarity via a graph, no image feature exists that works
with both globally similar images and images that are simi-
lar only in small local regions—what is commonly observed
in remixed content. Additionally, there has yet to be a large
study of how different combinations of image features and
graph building algorithms affect the human perception of
mined motifs. As the purpose of motif mining is to aid hu-
man observers, this is an important question to answer.

This paper makes the following contributions:
1. A formal description of the problem of motif mining,

providing a roadmap on how to more-easily discover
salient trends in large, unsorted data sets, accompanied
by a solution to this problem in the form of an end-to-
end processing pipeline.1

2. A new method for generating motif graphs leveraging
vector retrieval systems that shows increased accuracy
and speed over prior work.

3. A new image feature strategy for this problem combin-
ing both local and global image features to increase the
context available during graph generation.

4. A new data set of over half of a million posts contain-
ing remixed and static images collected from Telegram
over the past six years, including the beginning of the
2022 invasion of Ukraine by the Russian Federation.

5. An empirical study of the proposed pipeline, including
1This system will be open-sourced pending publication of this work.
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a new method for this by appending a small piece of global
context to each local feature for an image. (2) Theisen et
al. made no guarantee that the produced graph contained
no isolated vertices, and the exclusive use of Spectral Clus-
tering [17] required that a number of clusters be specified
beforehand. (3) Compared to the work of Theisen et al., our
approach is an order of magnitude faster in processing time,
making it more suitable for analyzing large galleries. This
was achieved by moving both the feature extraction and in-
dex operations onto a GPU.

3. Formalization of Motif Mining
Traditionally, computer vision problems have been

framed as an optimization over some metric calculated in
reference to ground truth data for a task. Although this pro-
vides high-quality baselines for comparison, there is often
little effort expended on demonstrating that higher metric
scores actually result in more useful output for human ob-
servers for tasks like image retrieval. As an alternative, the
methods and procedures of visual psychophysics from psy-
chology have been recommended as a way to use human
behavioral responses to evaluate algorithms [23, 24]. Tak-
ing insight from that work, we formalize motif mining.

The Motif Mining Problem. The purpose of motif min-
ing is to allow human observers to quickly gain insights
about visual trends in a large collection of unsorted and un-
labeled data. A common method for finding multiple trends
in a given data set is via graph building. However, as the
purpose of motif mining is to aid people, the graphs must
be optimized around some human feedback mechanism. We
structure our experiments around this idea.

For an example of a useful graph, the right-hand side
of Fig. 1 shows a number of different airplanes, several
of which are fighter jets. This example is drawn from the
current Russo-Ukrainian conflict. An increase in the num-
ber of militaristic images being posted online might prefig-
ure an event in a conflict [32] and could also potentially
leak useful and/or damaging intelligence to third parties.
The Ukrainian government recently addressed this con-
cern, specifically, with “Ukraine’s defense minister, Olek-
sii Reznikov, [...] calling on viewers to share images of
Russia’s assault” and “a local Telegram channel urged its
400,000 subscribers to ‘carefully film’ and share video of
passing Russian troops so Ukrainian fighters could hunt
them down” [9]. These examples were taken from 851
motifs mined from a subset of 16,433 images from the
Ukrainian data set collected from Telegram [28]. The ideal
number of graphs and the distribution of the images across
them is best formalized as an optimization problem with
task accuracy being derived from human feedback.

Optimization for Human Observers. Given a large,
unlabelled data set of images, our goal is to automatically
discover trends in it by classifying those images that can be

thought of as being “conceptually similar” or “derived from
the same picture” in some intuitive sense. Because our task
is both inherently subjective and difficult to formally spec-
ify, and because the quantity of data far exceeds any human
annotators’ ability to manually label, we develop an unsu-
pervised system for grouping these images together and ver-
ify them a posteriori with human aid.

Our formal framework specifies a data set of images as
a weighted graph G = (V, E , w : E ! R+), where V is
the vertex set for the graph G and E is its edge set. Here,
w : E ! R+ denotes a function that assigns positive, real-
valued weights to each of the edges of G. The vertices in this
graph represent images from the data set, and the weighted
edges capture the strength of the similarity between two ad-
jacent images. Within this framework, the task becomes
computing an unsupervised clustering of V that disagrees as
little as possible with what human observers expect. We test
this using the Imposter-Host Task [30]. This means finding
some partition C of the vertex set V such that, for a given
pair of distinct clusters c, c̃ 2 C, if a human were presented
with k images from c and one imposter image from c̃, the
human would be able to pick the imposter (i.e., the odd im-
age out). We define this formally as follows:

min
C2P(V)
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(1)
where (i) k 2 N+, (ii) G is our weighted graph, (iii) P(V)
is the set of partitions of V , (iv) C is a set of vertex clusters,
(v) v1, . . . vk all belong to the same cluster c, (vi) ṽ belongs
to a different cluster c̃, (vii) H : Vk+1 ! {0, 1} returns 1
iff ṽ is correctly identified by a human, and (viii) �(·, ·) is a
normalizing factor (see Supp. Mat. Sec. I).

In order to specify this graph G, a mapping process M,
with some corresponding parameters, is needed to map the
image corpus onto a weighted graph. With this in mind,
the problem can be further thought of as an optimization
task like Eq. (1) for each weighted graph realizing the given
data set. Thus, Eq. 1 will be minimized for a given clus-
tering C of G only when human observers agree with the
quality of the clustering. Simpley enumerating all possible
clusterings is obviously computationally infeasible; instead,
it would be more principled to parameterize a clustering al-
gorithm A and perform this optimization task over A’s set
of parameters. However, this would require an enormous
number of human observers to check each clustering.

In this paper, we employ a variety of effective graph
clustering algorithms and check their performance directly
against the human observers for a few different realizations
of the graph produced by M. Every time M produces a
weighted graph, we apply one of the clustering algorithms
Ai to the graph and evaluate the quality of those clusters.
This heuristic approach is a step in the direction of finding
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indices are built at the local feature-level, the indexed fea-
tures have a many-to-one relationship with their respective
source images. As a consequence, retrieved features need
to be “mapped” back to the image from which they were
extracted, since we are interested in image-level similar-
ity. Considering the querying of the features of a selected
starting-point image, each result r 2 R is a tuple (f, i, d),
where f is a feature corresponding to an image i, and d is
the distance between f and the queried feature as computed
by the index. If we focus on the subset Ri of the retrieved
features that belong to image i, we can compute the simi-
larity si between that image and the selected starting-point
image as follows:

si =
X

(f,i,d)2Ri

1� tanh (d). (2)

We elect to use the nonlinear operator tanh (·) as it is nicely
bounded within the interval [0, 1) for all non-negative d. In-
tuitively, the nonlinear weighting rewards smaller distances
and penalizes distances more harshly as they become larger.

Each feature vector difference, after applying Eq. 2, is
then added to an image-level score for the image that gen-
erated the retrieved feature vector. We can then take the N

highest-scoring images, with N being a free parameter (set
to 50 in our experiments below), and return a ranked list of
the most similar images to any given query image. We call
this the “voting” step because images receive “votes” in the
form of individual vector distances.

The similarity computation is a loop only for the local
features (including the ones combined with global features).
For the use of purely global features, since their relationship
is one-to-one with the source image, we simply take the sin-
gle distance value d returned by the index and compute the
similarity score 1� tanh(d) directly instead of using Eq. 2.

To realize a graph out of image similarity computations,
we create an N ⇥ N adjacency matrix where each of the
N images in the data set determines one row and column.
We then fill entry (i, j) of this matrix with the computed
similarity score between those corresponding images. The
entries in this matrix will then correspond to weighted edges
in our final graph between the vertices representing those
images in the data set.

Several strategies have been explored for selecting the
starting-point images and filling in the scores in this matrix.
Prior work [29] has simply taken a smaller subset of the im-
ages in the set and hoped that the resulting connections are
diverse enough to form a representative graph. In this work,
we instead continue selecting a random subset of isolated
images in the graph (i.e., images whose columns and rows
within the adjacency matrix sum up to zero), until all the im-
ages are visited. This method is cheaper than querying all
N images while still eliminating any isolated vertices, un-
like prior work. Note that this does not ensure one singular

connected component, though some features (e.g., SURF)
do still lead to fully-connected graphs on smaller data sets.

Addition of Image Connections. Querying the index
to generate the graph ensures that there are no isolated
vertices but does not ensure that the graph is fully con-
nected. Many clustering algorithms, such as Spectral Clus-
tering [17], work best on graphs with one connected compo-
nent. Therefore, after the query step, three heuristic-based
methods were tested for connecting the graph by addition of
extra edges. However, these methods were costly in terms
of compute-time and delivered only minor increases in ac-
curacy, seemingly at random, when compared to simply
clustering on the unconnected graph. For this reason we
believe that fully connecting the graph is not worth the time
required to do so. Details of the three different connection
methods are available in Sec. A of the Supp. Mat.

Clustering of Images. Three clustering techniques,
well-suited to finding communities in weighted graphs,
were tested. Louvain clustering, Markov clustering, and
Spectral clustering. Spectral clustering was chosen so that
results can be compared to the prior literature [29].

The Louvain [4] method for community detection max-
imizes the modularity of the graph—a measure compar-
ing the density within and across clusters—using a two-
stage iterative optimization. Markov clustering [5], on the
other hand, is a random-walk based clustering algorithm
that computes transition probabilities between the vertices
of a weighted graph by modeling random walks over the
graph as Markov chains. Finally, Spectral clustering refers
to a very popular approach to clustering data according to
the eigenvalues of a Laplacian defined over the data. In the
context of clustering for graphs, the Spectral approach in-
volves applying k-means clustering to the vertices of the
graph using the k largest eigenvalues of the graph’s Lapla-
cian matrix L = D � A as features, where A is the graph’s
(weighted) adjacency matrix, and D is its diagonal.

These clustering algorithms provide an unsupervised
way of exposing underlying trends in data—the way in
which remixed and static images would naturally be ag-
glomerated by a human. However, which of these, if any,
most closely matches human intuition can be revealed only
by incorporating human feedback into the evaluation.

5. Experiments and Results
In total, 252 different configurations of the Motif Mining

pipeline described in Sec. 4 were tested in order to identify
the most effective ones. Fig. 4 provides a summary of all of
these results, while Sec. C of the Supp. Mat. presents them
individually in a more detailed tabular form. Of primary
interest is each particular combination’s accuracy on the
Imposter-Host test, which serves as a proxy for whether or
not the produced motifs are visually recognizable to human
observers. To describe the configurations, we use the format
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Figure 4. The accuracy scores of the Imposter-Host test across the three data sets. Each of the three clustering methods is noted with a
different shape. The results noted as prior work are from Theisen et al. [29] using Spectral clustering on an unconnected graph in different
feature configurations. For further details on the connection algorithm used in our work, see Sec. C of the Supp. Mat.

taken as a proxy for classes, implies that 186 mined mo-
tifs would be the perfect answer). However, as the data sets
grow larger, the available number of clusters stays at 256.
This is in contrast to the combined global-local features,
which continue to grow in the number of clusters (though
not strictly proportionally). In this work, increasing accu-
racy scores are seen amongst the global-local features as
the number of images increases. Should the number of im-
ages continue to increase, it seems likely that the accuracy
of the global features would begin to decrease as more in-
creasingly visually diverse images will have to be binned in
a maximum of 256 clusters, while the global-local features
allow for more clusters as the data grows.

With respect to the Imposter-Host task accuracy scores,
we achieved state-of-the-art performance. As seen in Ta-
ble 1, prior literature on the Reddit data set achieved only
a 16.15% accuracy, worse than random chance, claiming
that “due to the visual complexity of the data set, they [the
Turk Workers] were able to find connections that weren’t
intended to link images” [29]. To show that a more prin-
cipled method of graph generation alone can greatly im-
prove results, we ran an ablation study, the results of which
can be seen in columns 1 & 2 of Table 1. In this com-
parison, the only difference between the two methods was
how the graph was generated. For 5 out of the 6 compar-
isons, the new graph generation method greatly increased
the accuracy scores. The accuracy can be increased fur-
ther, even when using the same features, by using a dif-
ferent clustering algorithm (i.e., Louvain or Markov clus-
tering) better suited to the problem at hand. In addition to
these two improvements to the accuracy when compared to
prior work, using the newly-proposed combined feature ap-
proach from the present work yet again leads to increases in
accuracy. The surf mobile features result in the highest
accuracy scores seen in this study. By combining all three
of these improvements, accuracy scores can be increased
by upwards of 50 percentage points when compared to the
previous state-of-the-art (48.96).

On the new ‘Ukraine’ data set, the accuracy scores are
similarly high (Fig. 4, middle plot). A top score of 79.91%
is achieved by the surf mobile-er-markov method.
In this case, combined features show high accuracy even
for larger data sets.

There is an important caveat to this result. Much as
Theisen et al. [29] found that Spectral clustering produced
a singular “mega-cluster” that contained the vast majority
of the images and thus made the method undesirable, the
Markov clustering method had a similar issue that inadver-
tently skewed the results towards the higher side: instead
of placing all of the outlier images into a single massive
cluster, it placed outliers into their own individual clusters.
With the Imposter-Host test requiring at least 4 images in
a host cluster, these individual-image outlier clusters were
ignored. This left a number of clusters containing only near
duplicates, which would thus improve the Imposter-Host
accuracy scores. Due to this quirk, unless one is only inter-
ested in small near-duplicate clustering, we would recom-
mend using the Louvain clustering method in a real-world
implementation of motif mining as it results in a much more
even and practical distribution of images and cluster sizes
while maintaining state-of-the-art accuracy on the Imposter-
Host task (a plot showing this distribution may be seen in
Sec. D.2 of the Supp. Mat.).

Underlying Graph and Cluster Structures. Although
the new graph creation method ensures that there are no iso-
lated vertices in the graph, it is not guaranteed to produce
a single connected component. Instead, the graph contains
several interesting patterns emerging from the type of fea-
ture used in the creation of the index, and from choices re-
lating to the initialization of the index.

To explore this further, an experiment was run in which
each index was recreated on the Reddit data set with a dif-
ferent number of centroids (128, 256, 512, 1024). The
global feature types always resulted in graphs with a num-
ber of components equal to the number of centroids the in-
dex was initialized with. The global features resulting in
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[29] (Top) Ours (Top - Spectral) Ours (Top)

Reddit - PHASH N/A 23.53% 38.73%
Reddit - VGG N/A 24.79% 64.25%
Reddit - SURF 16.15% 39.62% 39.62%
Indonesia - PHASH 21.83% 31.81% 32.53%
Indonesia - VGG 26.79% 50.07% 77.05%
Indonesia - SURF 57.25% 44.66% 60.94%

Table 1. The top accuracy scores on the Imposter-Host task compared against Theisen et al. [29]. Shown are the top scores from the
proposed pipeline using the Spectral clustering method to allow for a fair comparison to how the clustering takes place in previous work,
followed by the top score for any other combination of features and clustering approach. This shows that building the graph in a more
principled manner while still using Spectral clustering can improve the accuracy compared to prior work, but switching from Spectral
clustering to a different clustering method can almost always improve scores even further (Reddit-SURF combination aside).

connected components equal to the number of centroids im-
plies that all the querying step of the pipeline is doing is ex-
posing the latent centroid-space that FAISS has already pre-
pared and therefore could be done-away-with entirely (see
Sec. E.1 in the Supp. Mat. for details).

Although SURF features by themselves resulted in a
highly connected graph, and global features resulted in sim-
ply mirroring the underlying cluster space FAISS had al-
ready computed, the combined global + local features re-
sulted in a higher number of components than the number
of centroids, implying that further sub-structures of similar
images were discovered within the centroids. Those com-
bined features producing more components percolate down
the pipeline to the clustering step, where the clusters using
these features give a better image-cluster spread.

Qualitative Results. During the processing of the
Ukrainian data, an initial test of the pipeline was run with a
surf mobile-reg-louvain configuration, which we
recommend as the best option when running in-the-wild due
to its combination of speed, accuracy, and image distribu-
tion. The results were interesting enough that we proceeded
to run it on all three data sets, producing the results seen
in Fig. 1 and Fig. 3. In Fig. 3, the leftmost cluster in the
top row shows five images of a cat drinking out of a bird-
bath and a spurious match on a squirrel with a briefcase.
The middle motif is of a man chasing a child out of the
ocean. Here, we see much stronger examples of remixing,
with laser beams, sharks, and a bear all being added. The
final motif is of a cat sitting at a door. This grouping high-
lights the usefulness of the local matching as one of the im-
ages has a stark global contrast from all of the others, but the
local features allow the matching on the shared cat’s head.

The second row illustrates three motifs from the Indone-
sian data set. Again, we can see a strong cluster of remixed
content in the middle. On the left can be seen images of
voting tallies, which the Prabowo campaign used as alleged
evidence of fraud in a failed attempt to contest the 2019
election [20]. The third cluster again demonstrates why lo-
cal features are extremely useful in motif mining: many dif-
ferent images of Indonesians at ballot boxes were present in
this motif but only shared the locally similar ‘KPU’ logo on

the boxes.

Finally the bottom row of Fig. 3 shows results from the
Ukrainian data set. A cartoon bear head used as a logo by
one of the extremist meme channels is found in the left-most
panel. Note that this imagery is often superimposed over
a Sonnenrad, which is a co-opted Nazi rune [27]. In the
middle are several variations of a Ukrainian version of the
Yes-Chad meme [33]. On the right is a cluster of Ukrainian
coloured flags. Of particular interest is the photoshopped
image top-center, showing school children bearing a num-
ber of flags. See Supp. Mat. Sec. F for additional examples.

6. Conclusions

The newly proposed pipeline, combined with a novel
graph generation technique and combination of image fea-
tures, achieves state-of-the-art results on the motif mining
problem. With increases reaching nearly 50 percentage
points improvement over previous work, it demonstrates a
path forward for aiding human responses to emerging trends
in online social media. In addition, a new data set has been
collected from Telegram to allow further benchmarking in
this space. Its timely release will allow researchers to gain
unparalleled views into the increasing tensions online be-
tween Ukrainian and Russian actors, mirroring the growing
tensions happening on the ground.

Limitations and Future Work. The proposed work still
has several areas for improvement. First, calculating the ac-
curacy of visual motif mining pipelines is costly and time
consuming, requiring large amounts of human input. A
computational model of the human-feedback metric, pos-
sibly making use of modeling work in visual psychophysics
from psychology, could decrease testing time and mone-
tary costs. Second, the current pipeline makes no use of
non-visual data collected alongside the images (e.g., time-
of-post and text collected with the image). Multi-modal ap-
proaches to motif mining will surely yield more accurate
results. We believe that using all available context is of the
utmost importance for future studies in this area.
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