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Abstract

Effective fashion image retrieval with text feedback
stands to impact a range of real-world applications, such
as e-commerce. Given a source image and text feedback
that describes the desired modifications to that image, the
goal is to retrieve the target images that resemble the source
yet satisfy the given modifications by composing a multi-
modal (image-text) query. We propose a novel solution
to this problem, Additive Attention Compositional Learn-
ing (AACL), that uses a multi-modal transformer-based ar-
chitecture and effectively models the image-text contexts.
Specifically, we propose a novel image-text composition
module based on additive attention that can be seamlessly
plugged into deep neural networks. We also introduce a
new challenging benchmark derived from the Shopping100k
dataset. AACL is evaluated on three large-scale datasets
(FashionIQ, Fashion200k, and Shopping100k), each with
strong baselines. Extensive experiments show that AACL
achieves new state-of-the-art results on all three datasets.

1. Introduction
Image retrieval is a fundamental task in computer vision

and serves as the cornerstone for a wide range of applica-
tions such as fashion retrieval [41, 53], geolocalization [40,
58], and face recognition [56]. There are several ways to
formulate the search query such as keywords [2, 69], a
query image [64, 62], or even a sketch [21, 34, 67, 8, 9, 51].
However, a core challenge in traditional image retrieval is
that it is difficult for the user to refine the retrieved items
based on their intentions. A range of approaches to in-
corporate user feedback to refine the retrieved images have
been explored. Combining natural language feedback with
a query image is a particularly promising framework since
it provides a natural and flexible way for users to convey the
image modifications that they have in mind.

In this work, we investigate image retrieval with text
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Figure 1: We consider the task of retrieving new images
that resemble the reference image while changing certain
aspects as specified by text. Best viewed in color.

feedback where the goal is to retrieve images that are simi-
lar to a query image but incorporate the modifications de-
scribed by the text. Such multi-modal and complemen-
tary input provides users with a powerful and intuitive vi-
sual search experience. However, as a multi-modal learn-
ing problem, it requires the synergistic understanding of
both visual and linguistic content which can be a challenge.
While image search with text feedback lies at the intersec-
tion of vision and language analysis, it differs from other ex-
tensively studied vision-and-language tasks, such as image-
text matching [38, 36, 70, 28], image captioning [50, 47,
16], and visual question answering [22, 30, 12, 10]. This
difference stems from the significant challenge of learning
a composite representation that jointly captures the visual
content of the query image and the linguistic information in
the accompanying text to match the target image of interest.

A fundamental challenge in image-text compositonal
learning is characterizing global concepts from the query
image and text representation simultaneously. For instance,
when the text describes a modification to the color and
neckline of a dress in a query image, the composition mod-
ule should capture the concept of transforming the color and
neckline, but it should also preserve the other visual con-
cepts such as the trim, and material of the dress (Figure 1).
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Another challenge is how to selectively modify the query
image representation using the captured contextual infor-
mation so that it is close to the target image representation
in the latent space.

We propose a novel transformer-based Additive Atten-
tion Compositional Learning (AACL) model to address
these challenges. The key idea is that we learn a contextual
vector from the joint visiolinguistic representation. AACL
then selectively modifies the query image tokens using the
global context vector such that the composite features pre-
serve the visual content of the image that should not be
changed while transforming the relevant content according
to the accompanying text.

We empirically compare our AACL approach with the
state-of-the-art (SOTA) methods for visual search with
text feedback on three large-scale fashion datasets: Fash-
ionIQ [23], Fashion200k [24], and a new challenging
benchmark derived from Shopping100k [3]. We show that
our proposed compositional learning method outperforms
existing methods on all three datasets.

We make the following fundamental contributions:

• We propose a novel multi-modal additive attention
layer capable of learning a global context vector which
is used to selectively modify the image representation
in an efficient way.

• We develop a fully transformer-based model for the
challenging task of visual search with text feedback
and demonstrate that it achieves state-of-the-art perfor-
mance through extensive experiments on several large-
scale fashion datasets.

• We create a new image-text retrieval dataset derived
from Shopping100k. This new dataset features a wider
range of fashion categories and attributes, resulting in
an additional challenging benchmark for the research
community.

2. Related Work
2.1. Image Retrieval with Text Feedback

Image retrieval with text feedback has been of interest
to the computer vision research community for some time
and a number of efforts (e.g., [5, 45, 60, 7]) have investi-
gated effective ways to combine image and text representa-
tions. The text feedback can be provided in various ways,
including absolute attributes (e.g., “red”) [2, 69, 24], sim-
ple relative attributes (e.g., “more red”) [48, 35, 65], or
full natural language phrases [60, 4, 29, 14, 20, 55, 31].
Natural language is the preferred method of interaction be-
tween humans and computers in contemporary search en-
gines. For image search in particular, it allows a user to
convey detailed and precise specifications or modifications
in a very natural way. We therefore focus on query-based
image search with accompanying natural language phrases.

Previous methods [4, 13, 31, 20, 55] for image retrieval
with text feedback rely heavily on convolution to aggre-
gate features. In contrast, ours is the first approach to effi-
ciently learn features globally via attention. Previous works
have also relied on complicated hierarchical feature aggre-
gation [14, 29], multiple forms of text feedback [14, 4],
or multiple loss functions [14, 29, 4]. The winning so-
lutions [31, 32, 54] for the FashionIQ 2020 challenge—an
interactive image retrieval challenge—employed common
performance boosting techniques such as careful hyperpa-
rameter tuning and model ensembles to improve the results.
In contrast, AACL focuses on the design of the image-text
composition module and achieves state-of-the-art perfor-
mance via feature fusion in one step, which is more efficient
and easier to adapt to other frameworks.
2.2. Image-Text Composition

While there has been much effort and different kinds
of methods proposed to achieve the top scores on bench-
marks involving images and text, relatively few have fo-
cused on the image-text composition module itself. In [33],
the authors propose a multi-modal residual network (MRN)
that learns representations by fusing visual and textual
features through element-wise multiplication and residual
learning. FiLM [49] utilizes a linear modulation compo-
nent in which text information modifies the image repre-
sentation via a feature-wise affine transformation. Vo et al.
proposed TIRG [60], which uses a gating mechanism to de-
termine the channels of the image representation that should
be modified by the conditioning text. In ComposeAE [4], a
complex embedding space that semantically ties the repre-
sentations from text and image modalities is designed. Re-
cently, MAAF [20] improved multi-modal image search via
a Modality-Agnostic Attention Fusion model. This model
uses a dot product attention mechanism as found in the
standard transformer architecture. Additionally, resolution-
wise pooling is proposed to aggregate fine-grained features
from a ResNet [25] CNN. RTIC [55] consists of a residual
text and image composer to encode the errors between the
source and target images in the latent space and includes a
graph convolutional network for regularization. Our work
differs from these composition modules in that we utilize a
novel image and text composition module via additive atten-
tion [6, 46] to model global contexts. Furthermore, we use
an element-wise product to model the interaction between
the global context and each input token, which both greatly
reduces the computational cost and effectively captures the
contextual information [33, 31, 63].
2.3. Attention Mechanism

The concept of attention has gained popularity recently
in neural networks as it allows the models to learn repre-
sentations from different modalities [33, 27, 20, 14, 5, 18].
The two most commonly used attention functions are ad-
ditive [6], and dot-product (multiplicative) attention [59].
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Figure 2: Overview of our Additive Attention Compositional Learning framework. Given a pair of query image and text as
input, our goal is to learn a composite representation that aligns to the target image representation. AACL contains three
major components: an image encoder (Sec. 3.1), a text encoder (Sec. 3.1), and an Additive Attention Composition Module
(Sec 3.2) that can be plugged into different models for feature fusion. “d” represents Hadamard product.

Dot-product attention has a drawback, however, in that it
has to attend to all the tokens on the source side for each
target token, which is expensive and can potentially be im-
practical for longer sequences. Additive attention has been
shown experimentally to achieve higher accuracy than mul-
tiplicative attention in some scenarios [46, 63]. Inspired by
this, we propose an additive attention composition module
for feature fusion.

2.4. Vision-Language (VL) Pre-training
Although image retrieval with text feedback shares some

similarity with VL pre-training [57, 15, 39, 68, 66, 37], the
focus of our work is distinct. The goal of VL pre-training is
to learn cross-modal representations, which can be adapted
to serve various down-stream tasks via fine-tuning [39].
However, our work focuses on the image-text composition
module itself, which performs single stage late feature fu-
sion with image and text embeddings from separate trans-
former encoders.

3. Method
Figure 2 presents the overall architecture of our Addi-

tive Attention Compositional Learning (AACL) framework.
Given a source image x and text feedback t as the input
query, the goal of AACL is to learn a composite representa-
tion oxt that can be used to retrieve relevant images y from a
target database. AACL contains three key components: (1)
an image encoder for visual semantic representation learn-
ing, (2) a text encoder for natural language representation
learning, and (3) an additive attention composition mod-
ule that modifies the source image representation according
to the text representation. In contrast to other approaches
that use multiple stages of feature composition and match-
ing (e.g., [14]), AACL does this in one stage using the final

output of the image and text encoders.
In the following, we first provide an overview of the two

encoders in Section 3.1. We then detail our novel compo-
sition module in Section 3.2 and our model optimization in
Section 3.3.

3.1. Image and text representation
Image Representation: We employ a Swin Trans-
former [44] to derive a discriminative representation of the
visual content of an image. As a transformer inherently
learns visual concepts of increasing abstraction in a com-
positional, hierarchical order, we conjecture that image fea-
tures from the final layer may not fully capture the visual
information of the lower levels. We thus concatenate image
tokens extracted from the final (Stage 4) and penultimate
(Stage 3) layers of the Swin Transformer. Unless otherwise
specified, our model uses these 49 ` 49 “ 98 image tokens
for multi-level image understanding. A learned linear pro-
jection maps each image token to d dimensions so that the
final image representation is ϕx P R98ˆd.
Text Representation: The DistilBERT language represen-
tation model [52] is used to encode the semantics of the ac-
companying text. DistilBERT naturally yields m tokens for
the input words, namely the hidden states of the last layer
of the model. We concatenate these tokens to form the final
text representation ϕt P Rmˆd.
3.2. Additive Attention Composition Module

In order to jointly represent the image and text compo-
nents of the query, we seek to transform the visual fea-
tures conditioned on language semantics. To accomplish
this, we propose an additive attention composition module
for feature fusion. This module consists of multiple com-
position blocks that each employ additive self-attention to
learn a context vector which then selectively modifies the
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joint visiolinguistic representation. The final output of these
blocks yields a modified image representation that is meant
to faithfully capture the input image and text information.
Visiolinguistic Representation: In order to obtain the in-
put representation for our first composition block, the im-
age tokens ϕx and text tokens ϕt are concatenated to obtain
the visiolinguistic representation ϕxt “ rϕx, ϕts. The final
representation is denoted as ϕxt P RNˆd, where N is the
combined count of image and text tokens.
Additive Self-Attention Layer: In order to discover the la-
tent relationships essential for learning the transformation,
we use the additive attention mechanism to learn a context
vector c, then selectively suppress and highlight the repre-
sentations from each token. Similar to [63], we first use a
linear transformation layer to transform the input sequence
into the hidden states: h “ Fhpϕiq, i P N . The context
vector c that is learned to modify each token is generated as
a weighted sum of these tokens hi:

c “

N
ÿ

i“1

αihi. (1)

The weight αi of each token hi is computed by

αi “
exp

´

wT
hhi{

?
d

¯

řN
j“1 exp

´

wT
hhj{

?
d

¯ , (2)

where wh P Rd is learned during the training process, and
wT

hhj scores how much each input token contributes to the
global context.

Next, to selectively suppress and highlight the visual
content in h, a Hadamard product is introduced to reuse the
global contextual information, which is motivated by its ef-
fectiveness in modeling the nonlinear relationship between
two vectors [61, 63, 26]. It is formulated as vi “ c d hi.
Another linear transformation layer Fo is applied to each
token vi to learn its hidden representation. To form the fi-
nal output of the additive attention layer, we add the hidden
states hi that capture relevant source-side information to the
transformed latent features. The final output of the additive
self attention layer is:

oi “ hi ` Fo pc d hiq (3)
Composition Block: Following the standard transformer
architecture [59], the additive attention composition mod-
ule is composed of a stack of L identical blocks with mul-
tiple heads. Different attention heads use the same formu-
lation but different parameters, which allows the model to
jointly attend to information from different representation
subspaces at different positions. Each block has an addi-
tive self-attention layer followed by a linear layer and a
feed-forward neural network. We also employ a residual
connection and layer normalization after these linear and
feed-forward components to get the composited image-text
representation oxt.

3.3. Deep Metric Learning
Our objective during training is to push the “modified”

image representation oxt and the target image represen-
tations ϕy closer, while pulling apart the representations
of dissimilar images. A batch-based classification loss as
in [60] is used to train the model as early experiments
showed that the triplet loss performs worse for the Re-
call@k metric. Each batch is constructed from N pairs of a
query (image and text) and its corresponding target image.

L “
1

B

B
ÿ

i“1

´ log

#

exp tκ pϕy, oxtqu
řB

j“1 exp tκ pϕy, oxtqu

+

(4)

where B is the batch size and κ is a similarity kernel that is
implemented as the dot product in our experiments.

4. Experiments
4.1. Experimental Setup
Datasets: We evaluate our model on three datasets—
FashionIQ, Fashion200k and our modified version of
Shopping100k—in order to validate its ability to general-
ize to a variety of natural language expressions. We provide
details of these datasets in Sections 4.2, 4.3, and 4.4, respec-
tively.
Implementation Details: We use the PyTorch deep learn-
ing framework to conduct all our experiments. The Swin
Transformer [44] is used as the backbone for the image en-
coder. The transformer model is initialized using weights
first pre-trained on ImageNet-22K and then fine-tuned on
ImageNet-1K [17].

We extract sequences of 1024-dimensional tokens from
Stages 3 and 4 of the model and then project the tokens to d
dimensions, which for our experiments is 768. We learn the
text embedding using a pre-trained DistilBERT model [52],
which yields a 768-dimensional token for each input word.
The original BERT model is pre-trained on BooksCorpus
(800M words) and English Wikipedia (2,500M words) [19].
We employ 3 additive attention composition blocks and 8
parallel attention heads for each block. For training, we use
SGD optimization with a learning rate of 0.035. We train all
models using 4 GPUs with a batch size of 32 per GPU. For
FashionIQ, we employ a learning rate decay of 0.1 every 10
epochs for 60 epochs. For Fashion200k and our modified
Shopping100k, we use the same decay value but every 30
epochs with a total of 100 epochs. We report the average
and standard deviation of five trials for all our experiments
to obtain more meaningful results.
Evaluation Metric: Following [60, 55, 20], we adopt Re-
call@K (denoted as R@K for short) for evaluation, a stan-
dard metric in retrieval. The relative margin expresses the
absolute changes as a percentage of the baseline value.
Compared Methods: We compare the results of AACL
with several methods, namely: FiLM, MRN, TIRG, Com-
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Table 1: Comparison of image search with text feedback on FashionIQ. Averaged R@10/50 computed over all three cate-
gories. * denotes results obtained with the same image encoder and text encoder as AACL.

Model Shirt Dress Toptee Average
R@10 R@50 R@10 R@50 R@10 R@50 (R@10 + R@50)/2

MRN [33] 15.88 34.33 12.32 32.18 18.11 36.33 24.86
FiLM [49] 15.04 34.09 14.23 33.34 17.30 37.68 25.28
TIRG [60] 16.12 37.69 19.15 43.01 21.21 47.08 30.71
ComposeAE [4] 9.96 25.14 10.77 28.29 12.74 30.79 19.61
MAAF [20] 21.30 44.20 23.80 48.60 27.90 53.60 36.57
RTIC [55] 22.03 45.29 27.37 52.95 27.33 53.60 38.10
TIRG˚ 21.38±0.54 46.28±0.78 25.82±0.39 53.21±0.33 26.73±0.72 53.17±0.29 37.77±0.21
MAAF˚ 23.55±0.31 46.38±1.34 28.75±0.63 54.48±0.49 29.70±0.45 55.84±0.87 39.78±0.68
RTIC˚ 23.03±0.63 46.68±0.52 26.86±0.74 52.80±0.61 27.21±0.89 53.24±0.66 38.31±0.67
AACL 24.82±0.62 48.85±0.77 29.89±0.65 55.85±0.87 30.88±1.2 56.85±1.16 41.19±0.88

Dress is dark 
purple with 
straps and it 
is longer 

Dress is more 
black designs
and it has a 
paint pattern

Dress is 
brighter blue
and it is 
sleeveless

Figure 3: Qualitative results of AACL on FashionIQ
dataset. Blue/green boxes: query/target images.

poseAE, MAAF and RTIC. We explained them briefly in
Section 2.2.

4.2. FashionIQ
FashionIQ [23] is a natural language based interactive

fashion product retrieval dataset. It contains 77,684 im-
ages crawled from Amazon.com, covering three categories:
Dresses, Tops&Tees and Shirts. Among the 46,609 training
images, there are 18,000 image pairs. Each pair is accom-
panied by on average two natural language sentences that
describe one or multiple visual properties to modify in the
reference image, such as “is shiny” or “is blue in color and
floral, and with white base”. We follow the same evaluation
protocol as [23], using the same training split and evaluat-
ing on the validation set. We report results on individual
categories, as well as the average results over all three.

Table 1 compares the performance of AACL and the
other methods on FashionIQ. We observe that AACL is su-
perior to all reported results by a large margin (top half).
AACL even outperforms methods that include factors other
than the composition module itself, such as the target image
captions, model ensembles, and additional joint loss func-
tions [4]. We further note that AACL is actually comple-
mentary to some of these methods and could, in fact, be
used as their composition modules. For a like-to-like fair

comparison, we also reproduced the best competitors, fo-
cusing on just the composition module itself. That is, we
utilized the same image and text encoders—namely, Swin
Transformer and DistilBERT—and the same optimizer. In
this scenario AACL surpasses TIRG, RTIC, and MAAF by
an overall margin of 3.42%, 2.88% and 1.41% respectively
in average R@10 and R@50 scores. Figure 3 presents
our qualitative results on FashionIQ. We show top-5 re-
trieved images for each query image-text pair. These results
demonstrate that our model can handle complex and real-
istic text descriptions. We also observe that our model can
jointly comprehend global appearance (e.g., colors, mate-
rial), as well as local fine-grained details (e.g., straps and
neckline, length of sleeves), for image search.

4.3. Fashion200k
Fashion200k [24] is a large-scale fashion dataset crawled

from multiple online shopping websites. It contains more
than 200k fashion images collected for attribute-based prod-
uct retrieval covering five categories, namely, Dresses, Jack-
ets, Pants, Skirts, Tops. It also covers a diverse range of
fashion concepts, with a total vocabulary size of 5,590.
Each image is tagged with descriptive text corresponding
to a product description, such as “beige v-neck bell-sleeve
top”. Following [60], we use the training split of 172,049
images for training and the test set of 33,480 test queries for
evaluation. During training, pairwise images with attribute-
like modification texts are generated by comparing their
product descriptions on-the-fly, e.g., “replace black with
blue” or “replace mini with midi”.

Table 2 shows our model achieves compelling results
compared to other methods, most notably for R@1 where
AACL outperforms the best competitor MAAF by a relative
margin of 9.4%. We also observe that token based meth-
ods, namely MAAF and AACL, perform better than resid-
ual based methods. This indicates that the rich information
contained in tokens is beneficial for feature composition.
Figure 4 shows our qualitative results on Fashion200k. Our
model is able to retrieve new images that resemble the ref-
erence image, while changing certain attributes conditioned
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Table 2: Comparison of image search with text feedback on
Fashion200k dataset. * denotes our implementation results
obtained with the same image encoder and text encoder as
AACL.

Model R@1 R@10 R@50

FiLM [49] 12.9 39.5 61.9
MRN [33] 13.4 40.0 61.9
TIRG [60] 14.1 42.5 63.8
ComposeAE [4] 16.5 45.4 63.1
DCNet [31] – 46.9 67.6
MAAF [20] 18.94 – –
TIRG˚ 17.22±0.39 56.52±1.85 75.60±0.09
MAAF˚ 17.79±0.98 57.57±0.98 77.51±0.63
RTIC˚ 17.05±0.96 54.65±0.79 75.54±1.63
AACL 19.64±1.66 58.85±1.01 78.86±0.43

Replace 
embroidered 
with cropped

Replace 
flare-leg with 
wide-leg

Replace gray 
with pink

Figure 4: Qualitative results of AACL on Fashion200k
dataset. Blue/green boxes: query/target images.

Table 3: Number of images in select categories (count ą

2k) in Shopping100k dataset.

Jacket Shirt T-shirt Jumper Shorts Trouser Jean Swim Bottoms1 Skirt Dress
7,528 14,853 22,071 11,797 5,099 4,630 6,229 5,497 3,726 2,528 12,119

on text feedback—e.g., fit, color and length. We also ob-
serve that all retrieved images share the same semantics and
are visually similar to the target image, indicating the quan-
titative performance is potentially underestimated.
4.4. Shopping100k

Shopping100k [3] is a large-scale fashion dataset of indi-
vidual clothing items extracted from different e-commence
providers. It contains 101,021 images of 12 fashion
attributes, covering the following categories: “collar”,
“color”, “fabric”, “fastening”, “fit”, “gender”, “length”,
“neckline”, “pattern”, “pocket”, “sleeve length”, and
“sport”. A total of 151 different labels are generated by
combinations of different attributes and the correspond-
ing attributes values. Compared to FashionIQ and Fash-
ion200k, the Shopping100k dataset is more diverse and only
contains garments in isolation. In addition, FashionIQ and
Fashion200k only contain 3 and 5 apparel categories, re-
spectively.

Each image in Shopping100k is tagged with the at-

1Full name of category “Bottoms” is “Tracksuit Bottoms”.

Attributes: 
Neckline: Backless 

sleeve: 3/4 
color: Navy; Fabric: Jersey; 

Pattern: print; Category: Shirt; 
Fit: large; Gender: Female 

Neckline: Square 
Sleeve: Short 

Caption: "Shirt is Navy color
and Jersey fabric and Large fit

and Backless neckline
and Print pattern and 3/4

sleeve"

Caption: "Shirt is Navy color
and Jersey fabric and Large fit
and Square neckline and Print

pattern and Short sleeve"

Query text: Shirt, replace
Backless neckline with Square

neckline, and replace 3/4 sleeve
with Short sleeve"

Figure 5: Example of image pair and generated text query
from Shopping100k dataset. Gray words indicate shared
attributes.

tributes and attribute values, such as “Neckline: Backless,
Sleeve: 3/4, Color: Navy, Fabric: Jersey, Pattern: Print,
Category: Shirt, Fit: Large, Gender: Female”. There are
15 high-level apparel categories. To generate the dataset for
image retrieval with text feedback, we remove categories
that contain fewer than 2,000 images, namely “coat”, “suit”,
“jumpsuit”, “pyjamas”, and “tracksuit”. The final set of 11
categories is listed in Table 3 along with the number of im-
ages in each category. A training split with 76,867 images
and a validation split with 19,210 images is randomly sam-
pled from these remaining categories.

To generate the training image pairs and modification
text, we first derive a descriptive caption for each image
using its tagged attribute values by concatenating the cat-
egory with “is”, followed by attributes joined by “and”—
e.g., “Shirt is Navy color and Jersey fabric and Large fit
and Backless neckline and Print pattern and 3/4 sleeve”.
Queries are created by selecting image pairs that differ in
two attributes in the description. Note that we constrain the
image pairs to be from the same apparel category and gen-
der. The modification text is created with the apparel cat-
egory plus the attribute modifications following the pattern
“replace xx with xx”—i.e. “Shirt, replace Backless neck-
line with Square neckline, and replace 3/4 sleeve with Short
sleeve.” (Figure 5). During training, the query and target
image pairs are selected on-the-fly based on the number of
attributes we specify. For our experiments, 16,237 fixed test
query pairs are generated from the validation set for perfor-
mance evaluation.

Table 4 compares our approach to other methods on
Shopping100k. Our model is shown to clearly outperform
the SOTA baselines. Figure 6 presents some qualitative ex-
amples. These examples yield three observations. First,
our model is capable of understanding rich image-text rep-
resentations, including global attributes such as color, pat-
tern, and fit, as well as local attributes such as collar, neck-
line, and sleeves. Second, our model is capable of using
the text information to selectively modify the query images.
As an example, for the first query the retrieved images pre-
serve the striped pattern even though it is not requested in
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Table 4: Comparison of image search with text feedback on our modified Shopping100k dataset. Averages are computed
over all categories. * denotes our implementation results obtained with the same image encoder and text encoder as AACL.

Model Dress Jacket Jean Jumper Shirt Shorts Skirt Swimming T-shirt Bottoms Trouser Average

Recall@1
TIRG˚ 6.81±0.58 10.46±0.97 4.83±1.43 11.87±1.26 13.15±1.25 12.38±1.16 10.92±1.22 13.51±1.49 11.87±0.80 8.32±0.60 13.03±1.77 10.65±0.37
MAAF˚ 7.05±0.86 12.43±0.76 5.79±1.34 13.19±0.88 14.44±1.28 13.21±1.68 12.11±0.77 12.41±0.71 12.89±1.16 10.28±1.35 12.89±0.87 11.52±0.39
RTIC˚ 6.80±0.09 11.70±0.90 5.27±0.90 12.08±1.39 13.93±1.33 11.83±0.97 10.96±1.44 13.18±0.99 12.60±0.99 8.49±0.65 11.70±1.70 10.78±0.44
AACL 7.70±0.67 12.63±0.93 7.27±0.96 13.30±0.31 14.21±0.52 14.38±1.14 14.55±1.22 16.22±1.02 13.66±0.28 10.00±0.53 14.14±0.63 12.55±0.32
Recall@10
TIRG˚ 34.22±0.53 49.86±0.47 29.23±0.48 51.08±0.89 50.22±0.72 50.43±0.52 55.85±0.58 51.86±1.49 47.19±1.04 41.69±0.59 51.06±1.28 46.61±0.35
MAAF˚ 35.01±1.85 51.48±1.67 31.78±1.12 51.70±2.45 52.15±1.96 50.64±1.30 54.70±3.36 54.74±2.46 49.31±1.79 44.00±2.87 52.08±0.63 47.96±0.65
RTIC˚ 33.17±1.92 50.51±2.11 29.21±4.36 48.92±3.39 50.90±2.89 50.29±0.74 51.96±2.09 51.62±2.02 46.71±2.41 42.24±1.31 51.46±1.25 46.09±1.03
AACL 35.16±0.54 51.63±1.33 30.80±1.79 52.31±0.89 52.52±1.32 54.63±1.66 57.54±0.95 56.13±2.13 49.18±1.40 46.69±1.06 54.63±1.72 49.20±0.46
Recall@50
TIRG˚ 66.15± 0.80 81.50±0.38 62.47±0.19 80.74±2.40 82.43±0.28 81.36±0.95 85.57±1.66 83.91±1.20 79.32±1.81 77.94±1.18 85.02±1.35 78.76± 0.69
MAAF˚ 68.42±1.42 82.73±2.29 63.24±2.94 82.28±1.36 84.41±1.90 82.06±1.66 88.19±0.78 85.32±2.27 81.07±1.34 81.17±0.67 86.75±0.82 80.51±0.56
RTIC˚ 67.30±2.12 81.92± 2.42 64.30±5.31 80.27±2.37 83.45±1.58 82.22±1.88 84.71±1.57 84.15±2.46 78.87±1.95 79.47±0.88 85.37±1.92 79.27±1.12
AACL 69.21±0.37 83.30±1.77 63.92±3.59 82.30±0.36 84.75±1.21 85.50±1.30 88.94±0.78 85.31±1.52 80.54±1.18 82.83±0.88 87.61±0.76 81.29±1.11

Figure 6: Qualitative results of AACL on Shopping100k
dataset. Blue/green boxes: query/target images.

Table 5: Ablation of using tokens from different Swin
Transformer stages on our modified Shopping100k dataset.

Stage(s) Recall@1 Recall@10 Recall@50

Stage 2 + 3 + 4 11.92 48.78 80.74
Stage 3 + 4 12.26 49.20 81.29
Stage 4 12.01 48.56 81.25

the text feedback. Five of the top-5 retrieved candidates
fulfill the “long sleeves” requirement and four candidates
have “low-v-neck”. Third, the model is capable of captur-
ing minor modifications such as “kent collar” vs. “man-
darin collar”, suggesting it can be successfully utilized in
fine-grained search.

4.5. Ablation Study
Image representation: Table 5 compares the perfor-
mance of AACL when using different image representa-
tions from the Swin Transformer on our modified Shop-
ping100k dataset. The experiments reveal that using image
tokens from Stages 3 and 4 is most effective for this task.
The concatenation of two stages from the encoder consid-
ers richer forms of image representation. Somewhat sur-
prisingly, concatenating representations from Stage 2 does
not seem to benefit the task. This may suggest that at some
point, the lower level information may distract the model
from capturing meaningful global contextual information.
Additive attention: To assess the importance of additive at-
tention, we perform a comparison by substituting with dot-

Table 6: Ablation of self-attention layer on our modified Shop-
ping100k dataset. We separately examine substituting addi-
tive self-attention with standard dot-product and changing the
Hadamard product to addition.

Method Recall@10 Recall@50

AdditiveÑDot-Product 48.37 80.14
ProductÑAddition 48.56 80.45
AACL 49.20 81.29

product attention. Table 6 “AdditiveÑDot-Product” shows
the comparison on our modified Shopping100k dataset.
From these results, we that AACL does benefit consistently
from the additive attention. In addition, dot product atten-
tion is more computationally expensive than additive atten-
tion (Opn2q vs. Opnq) and as such the benefits of additive
attention extend beyond evaluation performance gains.
Interaction function: We study the effect of using differ-
ent functions, namely addition and Hadamard product, to
model the interactions between the context vector and the
individual tokens. We compare the standard AACL and
this variant on Shopping100k. The results are shown in
Table 6 “ProductÑAddition”. The Hadamard product per-
forms consistently better than addition, indicating this form
of non-linear modeling is beneficial.

4.6. Additional Qualitative Results
Figure 7 qualitatively compares our AACL model with

TIRG, RTIC and MAAF on the FashionIQ dataset. Note
that the query text of FashionIQ most closely resembles nat-
ural language as the queries are provided by annotators from
English-speaking countries. Even though for each query
image a single target image is defined, there can be multi-
ple “perceptually acceptable” images. This is because there
may exist multiple items in the database that are similar
to the target image and satisfy the modifying text compo-
nent of the query. In Figure 7a, for example, there is more
than one toptee that is short sleeved with gray and white
stripes among the retrieved items, but only the target im-
age is considered a correct match. Compared to the other
models considered, our AACL model tends to find the best
matching images that satisfy all conditions in the queries. In
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AACL

MAAF

TIRG

RTIC

Query text: 
Toptee is a short sleeve with gray and white 
stripes and it is pale grey and white stripes.

(a) Successful examples

Query text:
Shirt has a brighter color and art and it has logo 
and light yellow color.

AACL

MAAF

TIRG

RTIC

(b) Failed examples
Figure 7: Qualitative comparison on FashionIQ dataset. We present the query image and query text in the first row, followed
by the top-5 retrieved images from the various models in subsequent rows. Blue/green boxes: query/target images.

Shirt has longer sleeves Shirt has different graphic

Dress is longer Dress has longer sleevesQuery image

Figure 8: Attention visualization of AACL model on Fash-
ionIQ dataset. Words with highest attention value in red.

contrast, Figure 7b shows a failure case. Here, our AACL
retrieves several “perceptually acceptable” results, though,
this is treated as a failed case.

To interpret the attention learned by AACL, we visualize
the attended regions in Figure 8. We apply a mask based
on the attention flow to the input query image. The atten-
tion flow is generated as follows: We first multiply the αi

in Equation 2 across all blocks to get the total attention flow
for each token. Subsequently, the minimum word token
flow score is mapped to zero and the maximum to one. Note
that, since we are using the Swin Transformer as the image
encoder, the encoded feature maps are 7 ˆ 7 and the result-
ing visualization resolution appears lower than with other
models. Nevertheless, given the same query image, we do
observe that the spatially attended regions vary with differ-
ent query text. This indicates that the additive self-attention
selects different visual content to transform conditioned on
the text query.

4.7. Limitations
The retrieved images are, to some extent, limited by what

images are present in the target datasets. We note that the

retrieved images may not fully fulfill the desired changes
described by the text modifier while keeping the rest of
the query image the same if there is no such target images.
Another limitation is the attention visualization. As an ac-
tive research topic, current attention visualization methods
mainly focus on dot-product attention [1, 11]. Those widely
adopted methods are not compatible with our additive atten-
tion module, and as such we adopted a simpler—and poten-
tially less precise—visualization approach. How to obtain
accurate labeled data is critical for the success of training
models [42, 43]. However, the template-based relative cap-
tion generation method, although widely used, is not as ac-
curate and diverse as human annotations.

5. Conclusion And Future Work
We present AACL, a novel and general-purpose solution

to the challenging task of image search with text feedback.
This framework features an additive self-attention layer that
selectively preserves and transforms multi-level visual fea-
tures conditioned on text semantics to derive an expres-
sive composite representation. We validate the efficacy of
AACL on three datasets, and demonstrate its consistent su-
periority in handling various text feedback for natural lan-
guage expression. Overall, our work provides a novel ap-
proach along with a comprehensive evaluation, which col-
lectively advance the research in interactive visual search
using text feedback.

In addition to addressing some limitations mentioned
above, there are many possible future research directions.
First of all, we plan to leverage the recent advances in image
generation to create realistic and desired images based on
the query image-text pair. Second, automated relative cap-
tioning can be applied to generate text modifiers that better
resemble natural language and reduce noisy query text.
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