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Figure 1: GarSim is a learned particle-based neural garment simulator, that can simulate garments of arbitrary types, varying
fabric, and topologies on arbitrary body shapes and poses. (left) GarSim takes a canonical body mesh, a template garment
mesh, fabric property, and the target body mesh as input and produces the displacements for the garment vertices to get the
final simulated garment. (right) Sample textured result of GarSim on unseen arbitrary body shapes and poses estimated from
a YouTube video. Note: GarSim trained only on tops and skirts generalizes well on unseen garment types ( trousers, t-shirts,
and dresses). Refer to the supplementary material for the video results.

Abstract

We present a particle-based neural garment simulator
(dubbed as GarSim) that can simulate template garments
on the target arbitrary body poses. Existing learning-based
methods majorly work for specific garment type (e.g. top,
skirt, etc) or garment topology, and needs retraining for
a new type of garment. Similarly, some methods focus
on a particular fabric, body shape, and pose. To circum-
vent these limitations, our method fundamentally learns the
physical dynamics of the garment vertices conditioned on
underlying body shape, motion, and fabric properties to
generalize across garment types, topology, and fabric along
with different body shape and pose. In particular, we rep-
resent the garment as a graph, where the nodes represent
the physical state of the garment vertices, and the edges
represent the relation between the two nodes. The nodes
and edges of the garment graph encode various properties
of garments and the human body to compute the dynamics
of the vertices through a learned message-passing. Learn-
ing of such dynamics of the garment vertices conditioned on
underlying body motion and fabric properties enables our
method to be trained simultaneously for multiple types of
garments (e.g., tops, skirts, etc) with arbitrary mesh resolu-
tions, varying topologies, and fabric properties. Our exper-

imental results show that GarSim with less amount of train-
ing data not only outperforms the SOTA methods on chal-
lenging CLOTH3D dataset both qualitatively and quanti-
tatively, but also works reliably well on the unseen poses
obtained from YouTube videos, and give satisfactory results
on unseen cloth types which were not present during the
training.

1. Introduction

Simulating garments on arbitrary body poses is crucial
for many applications related to 3D content creation, virtual
try-on, etc. Physics-Based Simulation (PBS) has always
been a go-to option to accurately and realistically simulate
garments on a target body pose. However, PBS methods are
computationally expensive and require experts with good
domain knowledge to govern the simulation quality.

To reduce the manual intervention and increase the
speed, several attempts[21, 28, 7, 6, 29, 9, 12], have been
made to learn garment deformations using the ground truth
PBS data. Despite the advantages, learning-based meth-
ods have several limitations such as: fixed garment topolo-
gies: TailorNet[21] and DeepDraper[28] represent garment
of different sizes (e.g., t-shirt) with the same number of ver-
tices which limits their applicability for the loose garments
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Table 1: Comparison of the characteristics of our method
with the prior methods. In GarSim we consider the relative
motion of the target body w.r.t the body in the canonical
pose. *Though DeePSD has shown results on skirts in their
original paper, they have also mentioned in their limitation
section, that since they do not consider motion dynamics in
their formulation they fail to predict correct deformations
for the loose garments.

Body Factors Garment Factors
varying loose

Relative multiple varying garment garment
varying body garments topo- fabric mesh reso- (e.g., long

pose shape motion /outfits logies aware lutions skirts)
TailorNet[21] ✓ ✓
DeepDraper[28] ✓ ✓
GarNet[10] ✓ ✓
LVTON[25] ✓ ✓
PBNS[6] ✓ ✓
SNUG[26] ✓ ✓ ✓
VirtualBones[20] ✓ ✓ ✓ ✓
DeePSD[7] ✓ ✓ ✓ ✓ ✓ ✓*
GarSim (ours) ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

as they require more vertices to represent, garment repre-
sentation: methods like [21, 28] represent garments in the
PCA space are difficult to generalize to other complex gar-
ments during test time. fixed cloth type: several methods
like [21, 9, 28, 6, 25, 26, 20], are trained only for a single
garment type, fixed body shape and/or pose: training for a
single body shape or pose for garment simulation limits the
applicability of the methods like [12, 29, 6, 20]. Moreover,
majority of the existing methods [21, 7, 28] have shown
their limitations for loose garments e.g., long skirts and are
specific to a fabric. A comparison of the characteristics of
the prior methods with ours is shown in Tab. 1.

Recent works like DeePSD [7] and Garnet++ [9] that do
not consider body dynamics and are static in nature, have
shown limitation in their paper about handling loose gar-
ments like long skirts like the one shown in Fig.1. More-
over, Garnet++ [9] is an outfit-specific method and does not
generalize to the varying topology of the garment.
In this paper, we consider garment deformation as a phys-
ical phenomenon conditioned on the fabric property, body
shape, pose, and relative motion of the target body w.r.t the
body in the canonical pose. Since the relative body motion
is also considered for predicting the vertex displacement,
our method can handle the simulation of the loose garments
effectively. Also, a key property of garment mesh deforma-
tion is that the vertices do not move (deform) in isolation,
rather the movement is highly influenced by the force or
motion of its neighboring vertices connected by the mesh
edges and the distance with respect to the body. This rela-
tional inductive bias [4] property has been successfully used
in modeling complex physical phenomena such as fluid dy-
namics, deformable materials, etc. Therefore, we represent
the state of the garment as particles (corresponds to the gar-

ment vertices) and embed it into a latent garment graph. We
encode various factors affecting the garment deformation
on the target body pose into the graph nodes and edges. We
exploit the relational inductive bias property using a learned
message-passing module to update the node and edge fea-
tures of the garment graph in a multi-step process. This al-
lows propagating the relation representation or passing the
forces to the neighboring nodes. Finally, the updated latent
garment graph nodes features are decoded into per-vertex
dynamics i.e., displacement.
Another issue faced by the earlier methods is learning on
high-resolution garment meshes, which increases the over-
all training time. Reducing the resolution degrades the qual-
ity of their results. Since, our method GarSim learns ver-
tex level dynamics, it’s performance doesn’t deteriorate by
training on low resolution garment meshes and outperforms
the state-of-the-art methods such as DeePSD[7], PBNS[6],
TailorNet[21], DeepDraper[28].

Therefore, our main contributions in this paper are:

• A unified garment simulator that can simultaneously
learns deformation of multiple type of garments (e.g.,
tops, skirts etc.) of varying topologies and fabrics con-
ditioned on the underlying body shapes, pose and mo-
tion w.r.t the canonical pose.

• A particle-based approach that exploits the relational
inductive bias[4] in the garment data and helps gener-
alize to unseen body shapes, poses, and garment types.

• GarSim can be trained and tested on the arbitrary res-
olution garment meshes, hence, it can be adaptive to
the limitation of the underlying computation hardware
without any significant change in the accuracy.

2. Related Work
Traditional physically-based simulator [14, 18, 3, 30]

have been successfully used to get a realistic cloth defor-
mations. While these simulators output high-quality cloth
simulations, they are computationally very expensive and
require expert intervention. Recent learning based simula-
tors [15, 28, 7, 6, 10, 5, 21, 26, 20, 22, 24] aim to reduce
the computational time and the expert intervention both. To
this end, Lahner et al. [12] propose a learned Pose Space
Deformation[13] for garments conditioned on temporal fea-
tures; LVTON [25] learned per-garment non-linear map-
ping for Pose Space Deformation. However, this methods
require retraining for new garments, and doesn’t consider
fabric property and relative body motion into account. Tai-
lorNet [21] and DeepDraper[28] use a parametric represen-
tation of the garment and hierarchically learn low-frequency
and garment-specific high-frequency displacement due to
the body pose, shape, and garment style. The representation
of garments in these methods restricts them to be topology
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Figure 2: (a) GarSim takes a template garment draped on the canonical body pose, a target body pose as an input, and
outputs the simulated garment on the target body pose. It operates in a three-step framework, (1). encoding step Sec. 3.2,
(2). processing step Sec. 3.3, and (3). decoding step Sec. 3.4. The green mask on the body corresponds to the garment-aware
body semantic vector q that consists of vertices (subset) of the body that will affect the deformation of the respective garment.
(b). Garment deformation prior estimated using the Linear Blend Skinning (LBS) [17] method as explained in Sec. 3.1.

invariant. Furthermore, both [21] and [28] are specific to a
particular garment type, and hence require retraining for ev-
ery new garment type. CLOTH3D[5], DeePSD[7] require
huge volume of data to train their models. Moreover, these
methods do not work for loose garments (e.g long skirts)
and the same is outlined by the authors as their limitation.
PBNS[6] alleviates the need for huge data in training time
but their model is outfit and body specific. SNUG[26] have
shown improvement over PBNS by making it invariant to
the human body. Both SNUG[26] and PBNS[6] still re-
quire training a new model for every new garment and have
shown their limitation for loose garments e.g., long skirts.
The methods [21, 10], where the primary training loss is
the L2 loss with the GT data are generally biased to pro-
duce smooth results. Methods such as [7, 6] also apply a
few physics-inspired losses with a belief that the underly-
ing network (primarily the MLP’s) will be able to learn the
physics of garment deformation. Such methods ignore to
leverage the fact that during deformation garment vertices
physically interact with each other and induce a local bias
in the deformation. This relational nature of garment data is
largely ignored by these methods.

A recent method [20], uses the concept of virtual bones
to animate loose garments based on the underlying body
sequence. However, this also has limitations in handling a
single garment at a time i.e., a trained model is the garment
and the human body. It cannot handle variable topologies
and resolutions of garment meshes. Hence, for every such
variation, it requires retraining a new model.

3. GarSim Overview
Our method GarSim learns to simulate garments on ar-

bitrary body poses using the concepts from particle-based

modeling (Sec. 3.1). We represent the state of the garment
as particles (corresponds to the garment vertices) which en-
codes various garment and body-specific factors that affect
its dynamics. In our case, the dynamic is the vertices dis-
placements (direction and the magnitude), which is be com-
puted based on the particles’ interaction within their local
neighborhoods. GarSim takes a template garment draped on
the canonical body pose, and the target body pose as inputs
and produces the garment draped on the target body pose. It
is a single-step simulator that takes into account the relative
motion of the target body pose with respect to the canon-
ical body pose (T-pose) as shown in Fig. 1. Fig. 2 shows
that our GarSim operates in a three-step process. During the
first (encoding) step (Sec. 3.2), it embeds the particle-based
state representation of the garment into the latent garment
graph. It encodes the various garment and the body-specific
factors (Sec. 3.2) into the nodes and edges of the garment
graph. The encoded garment graph is then passed to the sec-
ond step called processing step (Sec. 3.3), where a learned
message-passing algorithm is used to update the state (node
features), and their relationships (edge features) (Algorithm
1), and output the final updated latent garment graph. In
other words, each message passing step helps in passing the
forces to the neighboring particles. We use multi-step mes-
sage passing for long-range effect propagation [15, 16]. Fi-
nally, the updated latent garment graph is passed to the third
step called decoding step (Sec. 3.4) that predicts the dynam-
ics i.e., the direction and the magnitude of the displacement
for each garment vertex from the respective nodes of the
final updated latent garment graph.

In what follows, we describe the particle-based modeling
followed by the encoding, processing, and decoding steps in
detail.
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3.1. Particle-based Garment Dynamics Modeling

Let G be the set vertices of a template garment mesh
draped over a 3D canonical human body mesh B. After
time t the body has moved and the new body mesh is de-
noted by B̄. The human body motion will induce a sec-
ondary motion on garment G which results in a new de-
formed garment mesh Ḡ. The vertices of the garment mesh
after time t can be modeled using the following relation
Ḡi = Gi + di, where di is the displacement of the vertex i
after time t. Majority of the recent works [21, 28, 25, 27] do
garment skinning as a final or post-processing step. To do
this, they assume that the garments closely follow the under-
lying body motion and borrow blend shape weights from the
Linear Blend Skinning method [17] for each vertex of the
template garment from the closest body vertex in the canon-
ical pose. While this assumption simplifies the problem and
works well for tight body-hugging garments, it drastically
fails in the case of loose garments such as long skirts and
dresses (See. prior mesh in Fig. 2(b)). Additionally, doing
skinning at the end often leaves the artifacts in the final de-
formed garments. In our method, we use this strategy only
to estimate a garment deformation prior Gprior as it helps
the network to learn corrections on top of it. We henceforth
find the displacement with respect to the Gprior

i instead of
the template garment G (Eq. 1).

Ḡi = Gprior
i + di = Gprior

i + d̂imi (1)

Here, displacement di is divided into the direction of dis-
placement d̂i, and its magnitude mi i.e., di = d̂imi. An ab-
lation study on the choice of splitting di into d̂i and mi pair
is presented in Sec.4.2. In Fig. 2(b) we can observe strong
artifacts in (Gprior

i ) such as a big bulge in the front of the
skirt with unrealistic spread out along with collisions, and
its correction by our method. Both the d̂i and the mi are in-
fluenced by several garment and body specific factors, that
we define in the next section.

3.2. Encoding Step

Garment Specific Factors: Garment Geometry: We map
the template garment vertices to a high-dimensional per-
vertex geometric features using a geometry encoder.
Garment Fitting: Methods like [7, 5] use a 2 dimensional
vector to denote the tightness of a garment. But it is dif-
ficult to obtain such a vector while testing on new unseen
garments. To alleviate this issue, we capture tightness at
the vertex level by measuring the garment vertex’s (Gi) dis-
tance from the closest body (B) vertex which can be com-
puted for any garment during the test time. The relative
position of a garment vertex Gi with respect to the closest
body vertex Bqi can be computed as pi = Gi − Bqi . Simi-
larly we can compute ppriori = Gprior

i − B̄qi . Here qi is the
index of the body vertex closest to the garment vertex Gi.

Throughout this paper, we consider only the subset of the
human body that will affect the deformation of the garment,
we denote this by a set of vertices q = {q1, q2, ..., qi, ..qNn}
(see. Fig. 2). Fabric Type: The garment fabric is encoded
as a one-hot vector denoted by f . We consider four fabrics:
leather, denim, silk and cotton.
Body Specific Factors: Body Geometry: Similar to the
garment geometry, we encode the geometry of the par-
tial body represented by a subset of vertices in q using
the same geometry encoder. Relative Body Motion: We
compute the relative body motion between canonical (B)
and the target body(B̄) pose as a relative motion vec-
tors of the underlying body vertices as δi = B̄qi − Bqi .
Garment Aware Body Semantic: Garment at the different
parts of the body deforms differently. For instance, gar-
ments like a tube top and skirt having similar geometries
deform differently as there are less articulated body parts
under the tube top compared to the skirt. Hence, we con-
dition the garment deformation on the body semantics. We
obtain the latent body semantic vector S for each garment
type, by passing a binary vector (1 indicates that it’s index
is the member of the set q ) of dimension equal to 6890 ( the
number of full-body vertices in SMPL[17] body model) to
a MLP and get the encoded representation S.

3.2.1 Garment Graph

We create a garment graph and encode the above factors as
the node and the edge features.
Node Features: We obtain the garment graph node features
η by fusing the garment aware latent features χ with the
body aware latent features µ using a node feature encoder.
Garment Aware Features (χ): We embed all the garment-
specific information into the latent feature space (χ) by
passing the concatenated per-vertex geometric features
(Xgar), the fabric (f ), the garment fitting (p and pprior)
to the garment aware features encoder. (see Fig. 2).
Body Aware Features (µ): Similar to above, we embed all
the body-specific information into the latent feature space
(µ) by passing the concatenated per-vertex geometric fea-
tures (Xbody), the relative motion (δ), the latent body se-
mantic vector (S) to the body aware features encoder.
Edge Features: Let Gj and Gi be the end vertices of an
edge of the garment graph, we compute the relative posi-
tion as Eij = Gj − Gi. Similarly, we can also compute
Epriorij = Gprior

j − Gprior
i . We pass the concatenation of

Eij and Epriorij to a encoder to get the edge features π.
The garment graph with the learned node features (η) and

edge features (π) is then passed to the processing step. With
both the Eij and Epriorij , the network will learn to correct
the significant artifacts in the deformation prior due to the
elongation of the edges etc. present in the Epriorij .

Our method learns to predict the direction and the mag-
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Algorithm 1: Message Passing

1 for l ∈ {1...L} do
2 for k ∈ {1...Ne} do
3 π′

k ← Ψedge(πk, ηrk , ηsk)
4 end
5 for i ∈ {1...Nn} do
6 λ′

i =
{(π′

k, rk, sk)}rk=i,k=1:Ne

7 π̄′
i = Ωedge→node(λ′

i)
8 η′i = Ψnode(π̄

′
i, ηi)

9 end
10 πk ← π′

k ∀k ∈ {1...Ne}
11 ηi ← η′i ∀i ∈ {1...Nn}
12 end

Node Update

Edge Update

Figure 3: Node
and Edge updates.

nitude of the displacement (d̂i and mi) for each garment
vertex conditioned on the above factors using Eq. 2.

d̂i,mi ← GarSim(B, B̄, q, δ,G, E , Eprior, f, p, pprior)
(2)

3.3. Processing Step

We process the encoded garment graph through a
message-passing network to flow the relational entities re-
sponsible for the garment deformation from one node to an-
other through the edges connecting to them. Our message-
passing network uses the abstract framework of Graph Net-
work block [4], with two update and one aggregation func-
tions. Such message passing is shown to be effective in
[22, 24] for modeling physical systems. Our complete
message-passing algorithm is shown in Alg. 1. The up-
date function Ψedge is applied for each edge (Alg. 1, line
3). It takes the edge feature πk of the kth edge, and
the node features of its connecting nodes (ηrk and ηsk )
as an input and output the updated edge feature π′

k (visu-
ally shown in Fig. 3). We accumulate the updated edge
features along with the indices of the edge end nodes in
λ′
i = {(π′

k, rk, sk)}rk=i,k=1:Ne (Alg. 1, line 6). The ag-
gregation function Ωedge→node is applied to λ′

i to aggregate
the updated edge features for the edges connected to the ith

node into the π̄′
i (Alg. 1, line 7). The update function Ψnode

is applied per-node (Alg. 1, line 8) where it takes the aggre-
gated edge features π̄′

i, it’s own node features and produce
the updated node feature η′k (visually shown in Fig. 3). The
process repeats L (L = 5 in our experiments) times and
then the next message passing takes the updated node and
edge features (Alg. 1, line 10-11). The update functions
Ψedge and Ψnode are implemented using MLP’s. The ag-
gregation function Ωedge→node is an average function.

3.4. Decoding Step

The decoding step take the processed latent garment
graph node features and for each vertex it predicts its dy-

namics i.e., the direction d̂predi and the magnitude mpred
i of

its displacement. The position of the deformed ith garment
vertex is then computed as Ḡpred

i = Gprior
i + d̂predi mpred

i .

3.5. Training Losses

We train the GarSim in an end-to-end fashion using a
combination of supervised and unsupervised losses.
Supervised Losses: We compute the L2 loss between the
predicted (Ḡpred

i ) and the ground-truth garment vertices
(Ḡi) in the target pose. The total L2 loss is the weighted
sum of the L2 loss of non-pinned and pinned vertices as:

LL2 =
(1− β)

N − |I|

N∑
i=1

(1− Ii)||Ḡi − Ḡpred
i ||2

+
β

|I|

N∑
i=1

Ii||Ḡi − Ḡpred
i ||2

(3)

Here, I is a binary index vector of length equals to the to-
tal number of vertices/nodes N . The Ii = 1 indicates the
ith template garment vertex needs to be pinned and should
not move too far from the body. |I| is the total number of
pinned vertices, and β balances the weight between pinned
and non-pinned losses. We empirically fixed β = 0.4.
Unsupervised Losses: Mesh Smoothing Loss: We use uni-
form Laplacian smoothing loss [19] to enforce smoothness
on the surface of the predicted garment mesh Ḡpred. Here,
∆ denote the Laplacian smoothing function

Lsm = ∆(Ḡpred) (4)

Mesh Normal Consistency Loss: We enforce the consis-
tency between the neighboring faces of the predicted gar-
ment mesh to prevent extreme deformations and improve
the quality of the garment mesh surface. Given F1 and
F2 are the two adjacent faces of the garment mesh and
N̂1 and N̂2 are their respective face normals. The nor-
mal consistency loss between these two faces is given by
NC(F1, F2) = 1 − N̂1N̂2

||N̂1||||N̂2||
. The total consistency loss

can be computed as in Eq. 5, where, F is a set containing all
neighboring face pairs and M is the number of such pairs.

LNC =
1

M

∑
∀(Fi,Fj)∈F

NC(Fi, Fj) (5)

Body Garment Collision Penalty Loss: To ensure predicted
garment mesh is free from body garment collision we apply
this penalty loss as shown in Eq. 6. Similar penalty loss has
been found effective in [28, 7, 29, 10]. In our case this re-
duce total collisions from ∼ 11% to ∼ 0% during training.
Here, B̄i is the body vertex closest to the predicted garment
vertex Ḡpred

j , and Ni is its normal.

Lcol =
1

N

N∑
i=1

max(−Ni(B̄i − Ḡpred
j ), ϵ) (6)
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Figure 4: Textured qualitative results of seen (tops and skirts) and unseen (t-shirt and trousers) garment types on unseen body
shapes and poses from a YouTube video. By seen we mean the type of garments available in the training set. Refer Sec. 4.1

The total training loss is the weighted sum of the supervised
and unsupervised losses. Here, α’s denote the weights of
the respective losses.

Ltot = αL2 LL2+αsm Lsm+αNC LNC +αcol Lcol (7)

4. Experiments

In this section, we show the quantitative and qualitative
results of GarSim and compare with the SOTA methods.
Dataset: We evaluate GarSim on a publicly available
CLOTH3D[5] dataset. It has high variability in the garment
styles, topologies, body shapes, poses, and the fabric prop-
erties. Specifically, we use a subset of the official training
and test set of the CLOTH3D[5] dataset. We select the se-
quences with at-least 50 frames where a female is wearing
a skirt and a top of varying fabrics ( leather, denim, cotton
or silk). Our training and test subset consists of a total 38k
and 10k frames respectively.

4.1. Generalization Capability

We demonstrate the generalization capability for
GarSim to (a). unseen body shapes, poses, and garment
types, (b) prediction at arbitrary garment mesh resolution.
Unseen Body Shapes, Poses and Garment Types: To
demonstrate the generalization on unseen body shapes,
poses, and garment types, we select a few frames from a
random YouTube video and estimate the body shape and
pose using PARE[11]. We show the results of GarSim for
the loose skirt and top on the unseen body shapes and poses
in Fig. 4 and 5, and textured result on seen (top and skirt)
and unseen (t-shirt and trousers) garment types in Fig. 4.
The physically plausible satisfactory predictions of both
seen and unseen garment type shows GarSim is accurately
able to learn the vertex level dynamics.
Prediction at arbitrary resolution: In GarSim we follow
particle-based modeling of a garment. It allows flexibility
to test garments at arbitrary resolutions. It is because of
the learned-message passing, that the garment vertices as
nodes in the latent garment graph are able to transfer forces
or propagate long-range effects to neighborhood nodes con-
nected through mesh edges at arbitrary resolutions. We have
reported qualitative evaluation on arbitrary resolutions in
Table. 3 and a sample qualitative results in Fig. 6.

Figure 5: Qualitative results of loose skirts on unseen body
shapes and poses from a YouTube video.

Figure 6: Sample qualitative results of GarSim . Notice the
alignment of the garments on the body due to motion, and
the wrinkles and folds in the skirts around the legs. The X
and Y in [X,Y] denote the number of vertices of top and the
skirt respectively.

Figure 7: Fabric aware predictions (refer Sec. 4.2).

4.2. Analysis and Ablation Study

We analyze GarSim from two perspectives (1) fab-
ric aware predictions, (2) corrections over deformation
prior. We also show an ablation on alternate modeling
choices. Fabric Aware Predictions: To demonstrate that
GarSim learns fabric-aware deformations, we select a sub-
set of 3000 frames of skirts from the test set and simulate
them in three significantly different fabrics types leather,
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Front Side back

Figure 8: Corrections plot over the garment deformation
prior: Note the corrections made by GarSim around the big
bulge. The correction values range from 0 to 152 mm.

denim and silk. To analyze the influence of the different fab-
ric types on garment deformation quantitatively, we com-
pute the mean distance of all the garment vertices to their
respective closest body vertices. Fabrics based on their stiff-
ness can be ordered as leather > denim > silk, and intu-
itively it is expected that the mean garment to body distance
should also follow this order. The chart in Fig. 7 empiri-
cally verifies this order. The prediction of the leather skirt
(green) on top of the silk skirt (orange), visually verifies that
GarSim produces the fabric aware deformations.
Correction Over Garment Deformation Prior: Garment
deformation prior Gprior generally contains multiple arti-
facts, such as the big bulge in the front of the Gprior as
shown in Fig.2(b). We show the magnitude of per-vertex
corrections made by GarSim over the deformation prior in
Fig.8. The Euclidean distance between the corresponding
vertices of Gprior and the Ḡpred are plotted on top of the
Gprior mesh. Notice the high magnitude of the corrections
made by GarSim around the big bulge artifact. The final
predicted garment Ḡpred is also shown in Fig.2(b).
Ablation on Alternate Modeling Choices: While we pre-

dict the magnitude and direction of the displacement for
each vertex separately, there exist two alternate choices.
The first is a direct prediction of the displacements from
the decoder, and the second is the direct prediction of the
vertex positions by applying L2 loss with the ground-truth
data. Table 2 shows the evaluations of these two alternate
choices. We find that predicting magnitude and direction
separately gives better results than the other choices. This
is due to the fact that vertices of two garments with similar
geometry under the same body semantic may have similar
direction of displacements, but their magnitudes may de-
pend on the fabric property. For example, as we can see in
Fig.7 the direction of displacement of vertices of the same
skirt under two different fabric types is similar but the mag-
nitude of displacement of vertices under silk fabric is on
average less than the leather fabric.

4.3. Comparison with DeePSD[7]

The closest SOTA method to ours is DeePSD[7] (Re-
fer table 1). Hence, we show a detailed comparison with

Direction+
Magnitude

Direct
Displacement

Direct Vertex
Positions

Euclidean Error (mm) 40.01 45.695 64.695
Normal Consistency 0.08 0.09565 0.10165
Smoothness 0.01125 0.01225 0.03225
Collision (%) 2.35 4.9 10.9

Table 2: Ablation study on the alternate choices. Values are
average of both tops and skirts for the low resolution.

this method. Its code1 is publicly released without the pre-
trained models. So for a fair comparison, we train it us-
ing the same subset of training data as GarSim . Note: in
their original DeePSD is trained on ∼ 7500 simulated se-
quences with 7 different garment types. Here, our training
subset consists of only 198 simulated sequences with only
two garment types, top and skirt. Both GarSim and DeePSD
are trained jointly for tops and skirts.
Training on Low-Resolution Garment Meshes: As opposed
to methods like DeePSD, PBNS, etc, we train GarSim on
low-resolution garment meshes obtained by simplifying[8]
the original garment meshes by a factor of∼ 4 retaining the
overall garment geometry.
We show the evaluation of GarSim on both the low and
high-resolution garment meshes. DeePSD is evaluated only
on the high-resolution meshes. We have reported the eval-
uation of tops and skirts separately in Table. 3 to show
the improvements in both the body-hugging garments (tops)
and loose garments (skirts).
Evaluation Metrics: We use four quantitative evaluation
metrics. 1. Euclidean error against the ground-truth. 2.
Surface smoothness 3. Normal consistency and 4. Collision
percentage. For smoothness and normal consistency score
we use the Eq. 4 and Eq. 5 respectively.

Low Res (GarSim) High Res (x4) Tops High Res (x4) Skirts
Tops Skirts GarSim DeePSD GarSim DeePSD

Euclidean Error 21.75 58.27 18.29 39.63 56.47 77.41
Normal Consistency 0.073 0.087 0.055 0.1378 0.074 0.1399
Smoothness 0.0112 0.0113 0.0026 0.0032 0.0039 0.0042
Collision (%) 2.1 2.6 1.7 19.77 1.2 10.15

Table 3: Comparison with DeePSD on the test set.

The results in the Table. 3 shows GarSim despite be-
ing trained on low resolutions meshes outperforms DeePSD
(trained on high resolutions) in all metrics. It shows
that GarSim trained with a small amount of data accu-
rately learns the physics of garment deformation. This be-
comes possible mainly due to the conditioning of the gar-
ment deformation on the relative body motion, and learned
message-passing to propagate long-range effect across mul-
tiple neighboring vertices. Such, constraints are missing in
the DeePSD formulation, hence leading to the poor simula-
tion results for both loose and body-hugging garments. Ad-
ditionally, our particle-based vertex level modeling of gar-

1https://github.com/hbertiche/DeePSD

4478



ments deformation makes our method topology and mesh
resolution invariant. This allows GarSim to be trained and
tested on arbitrary garment mesh resolutions and generalize
on unseen garment types like t-shirts, dresses and trousers
as shown in Fig. 1, and Fig. 4). A qualitative comparison
in Fig. 6 further validates that DeePSD is data hungry and
if trained with a small amount of data it leads to unrealis-
tic garment deformations with collision to the underlying
human body.

4.4. Comparisons With the Other Related Works

In this section, we compare GarSim qualitatively with
PBNS[6], TailorNet[21] and DeepDraper[28].
With PBNS [6]: PBNS trains a single model for a spe-
cific human subject and garment pair, while GarSim train a
single model jointly for multiple subjects and multiple gar-
ment types. Due to high variability in CLOTH3D, training
PBNS for every possible subject and garment pair or differ-
ent topology garments is infeasible. Hence, a fair compari-
son would not be possible. The pre-trained models of PBNS
are also not available. However, for a reference qualitative
comparison, we pick one subject and a skirt (loose garment)
from the Cloth3D test set with a random set of 1000 signif-
icantly different poses and train PBNS using their official
code 2. We show the result of two arbitrary selected poses
in Fig.9, where we can observe the cloth quality predicted
by PBNS is not good (irregular mesh surface); the straps
in PBNS are floating in the air, and garments are colliding
with the body, while GarSim produces significantly better
pose aware deformations and straps are resting on the body.
The difference in the result of PBNS reported here and in
their original paper suggests that a significantly large pose
set is required to get better quality results. However, there
is no fixed rule to get a correct set of poses for a given gar-
ment and body pair to train the PBNS.
With TailorNet[21] and DeepDraper[28]: A fair compar-
ison with both TailorNet and DeepDraper is infeasible due
to the following reasons. 1) Both are single garment type
methods, while GarSim learns for multiple garment types
at a time. 2) They assume fixed vertex order and topol-
ogy, while we assume arbitrary vertex order and topologies.
Also, adapting their methods for the CLOTH3D dataset is
infeasible due to their design choices (e.g., fixed 20 shape-
style aware predictors in TailorNet). And it is also not possi-
ble to train GarSim on their TailorNet dataset, as crucial in-
formation such as fabric property, and ground-truth canon-
ical pose (T-pose) simulations are not available. We still
show a reference qualitative comparison with TailorNet and
the DeepDraper as follows: We train the TailorNet3 and
DeepDraper using the training split of the TailorNet Skirt
dataset[2]. While training DeepDraper we follow the skirt

2https://github.com/hbertiche/PBNS
3https://github.com/chaitanya100100/TailorNet

GarSim PBNS DeePSD DeepDraper TailorNet

Figure 9: Qualitative Comparison with PBNS[6],
DeePSD[7], DeepDraper[28] and TailorNet[21]. No-
tice the non-smooth surface, floating straps and collisions
in the PBNS and DeePSD. Note: for a fair comparison the
results of the TailorNet are shown before post-processing,
hence it differs from their original paper. See Sec. 4.4.

modeling strategy as suggested by the TailorNet. At test
time, we find Skirts from the TailorNet test set which are
similar to the Skirts used for the GarSim , and evaluate on
the same using the test poses. For a fair comparison, we
show the results of both the TailorNet and the DeepDraper
before post-processing in Fig.9.

5. Implementation Details

We implement GarSim using PyTorch[1]. We em-
pirically fix αL2 and αcol equals to 1, αsm=0.01 and
αNC=0.0001, and apply Lcol only after other losses con-
verge. Geometry encoders are inspired by PointNet++[23]
and other encoders are implemented using MLP’s. Please
refer to the supplementary material for a detailed
GarSim architecture. The inference time of GarSim for the
garments with total vertices ∼ 600 and ∼2400 is 0.1 and
1.0 seconds respectively, which can further be reduced by
optimizing the code and paralleling the encoding process.

6. Conclusion

We have presented a novel particle-based garment simu-
lator that can simultaneously learn deformations of multiple
garment types conditioned on underlying body shape, pose,
motion w.r.t the canonical pose, and fabric properties. We
overcome several limitations of the SOTA methods such as
joint training for multiple garments of varying topologies,
varying fabrics, loose garments, and arbitrary resolution
training and testing. We show the benefit of leveraging the
relational nature of garment data that significantly improved
results compared to the other SOTA methods. We also show
GarSim learns the fabric and pose-aware deformation of the
garments. While we are able to largely handle the body-
garment collisions, we observe a few cases of cloth-cloth
collisions in the extra long full-length Skirts. This is a limi-
tation that we share along with all SOTA methods.
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