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Abstract

This paper proposes an efficient iris localization method
without using iris segmentation and circle fitting. Conven-
tional iris localization methods first extract iris regions by
using semantic segmentation methods such as U-Net. Af-
terward, the inner and outer iris circles are localized using
the traditional circle fitting algorithm. However, this ap-
proach requires high-resolution encoder-decoder networks
for iris segmentation, so it causes computational costs to be
high. In addition, traditional circle fitting tends to be sensi-
tive to noise in input images and fitting parameters, causing
the iris recognition performance to be poor. To solve these
problems, we propose an iris localization network (ILN),
that can directly localize pupil and iris circles with eyelid
points from a low-resolution iris image. We also introduce
a pupil refinement network (PRN) to improve the accuracy
of pupil localization. Experimental results show that the
combination of ILN and PRN works in 34.5 ms for one
iris image on a CPU, and its localization performance out-
performs conventional iris segmentation methods. In addi-
tion, generalized evaluation results show that the proposed
method has higher robustness for datasets in different do-
main than other segmentation methods. Furthermore, we
also confirm that the proposed ILN and PRN improve the
iris recognition accuracy.

1. Introduction
Iris recognition is one of the most accurate and reliable

technologies for biometrics. It is applied to various fields in-
cluding forensic science, border control, biometric payment
systems, and biometric unlock on cell phones. To promote
such applications, iris recognition systems require not only
environmental robustness but also high-speed operation.

Although a lot of image processing tasks have been re-
placed with deep learning methods, iris recognition systems
have kept their traditional frameworks. The process of iris
recognition can be divided into imaging, segmentation, lo-
calization, normalization, feature extraction, and matching.
Iris segmentation extracts a map of the iris area from a sin-
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Figure 1. Difference between proposed and conventional iris local-
ization methods. Proposed method directly extracts pupil and iris
circles with eight eyelid points using regression network without
iris segmentation. It localizes iris regions within 34.5 ms compu-
tational time on CPU while maintaining higher detection perfor-
mance than conventional method.

gle eye input image. Afterward, iris localization calculates
the center and radius of the pupil and iris from the iris seg-
mentation map. The extracted pupil and iris circles are used
for the normalization and feature extraction. Iris segmen-
tation in particular is easily affected by the iris imaging
environment, such as the lighting conditions. Thus, many
CNN-based semantic segmentation methods robust to en-
vironmental variations or non-cooperative situations have
been proposed [15, 17, 20, 22, 38]. In an iris localization
challenge held at IJCB 2021, all methods used segmenta-
tion models [39]. Iris segmentation and localization meth-
ods tend to be focused on improving robustness.

Iris localization methods based on iris segmentation have
room for improvement in three areas: processing speed,
annotation, and robustness. In terms of processing speed
and annotation, semantic segmentation methods generally
have higher computational complexity and higher annota-
tion cost than other tasks such as regression or classifica-
tion. The computational complexity increases noticeably
when extracting high-resolution iris segmentation maps,
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usually with a size of 640 × 480, without a GPU. The pro-
cessing time is one of the most important issue on iris on
the move (IOTM) [24]. IOTM requires faster processing so
that subjects can keep walking in the recognition gate. The
annotation cost also increases when introducing new dataset
or re-designed iris segmentation maps. In terms of robust-
ness, post-processing of iris segmentation results may also
contribute to limiting the robustness of the overall iris local-
ization. Although iris segmentation focuses on improving
robustness, iris localization still relies on the traditional bi-
narization and circle fitting algorithm. This traditional algo-
rithm can cause the iris localization and recognition perfor-
mance to be poor, especially when iris segmentation maps
are ambiguous because of noisy images. In addition, the
performance of the traditional iris localization is sensitive
to its parameters.

To achieve higher speed, robustness and annotation effi-
ciency, we newly designs the iris landmarks for iris local-
ization and recognition. Unlike general facial landmarks,
our proposed iris landmarks include both circles and points
to skip the circle fitting processing. In addition to the land-
mark design, we propose an iris localization network (ILN)
to directly detect pupil and iris outer circles using a deep re-
gression network to achieve segmentation-free iris localiza-
tion. ILN directly outputs pupil and iris circles and eyelid
points from a down-sampled low-resolution image as shown
in Figure 1. It localizes iris circles without high-resolution
iris segmentation maps, so the iris localization is even faster
than the conventional segmentation-based methods. In ad-
dition, we apply a pupil refinement network (PRN) to im-
prove the accuracy of pupil circle localization using cropped
iris images. Our configuration can largely reduce the anno-
tation cost because it needs only two circles and eight points
as a ground truth. Eyelid, eyelash, and specular masks are
generated by using the eight points and pixel values for the
iris region instead of the segmentation results. Experimen-
tal results show that the combination of ILN and PRN works
faster and more accurately than the conventional iris seg-
mentation methods. Furthermore, we also confirm that the
proposed method can improve the iris recognition accuracy
compared with the conventional methods.

2. Related work
Several iris recognition methods have been proposed be-

fore and after the CNN development [2, 5, 10, 11, 12, 14,
18, 25, 30, 32, 41, 45, 46]. In these methods, the iris im-
age is normalized by Daugman’s rubber sheet model [6]
using localization results. Iris features are extracted from
the normalized images [2, 10, 25, 41, 45]. Some studies
have extracted recognizable features from detected iris or
periocular bounding boxes instead of the segmentation and
normalized images [5, 11, 12, 14, 18, 27, 30, 46]. In gen-
eral, the normalized image leads to better performance than

the bounding boxes because Daugman’s model is indepen-
dent of pupil size. The iris feature extractor also uses non-
iris region masks generated by segmentation maps. Lozej et
al. [23] investigated the influence of normalization and eye-
lid region masking, and they confirmed that these processes
improve the iris recognition performance.

Iris recognition requires determining iris regions and its
coordinates by iris segmentation and localization. For iris
segmentation, several methods have been proposed includ-
ing feature-based methods [26, 37, 44] and CNN-based
methods [3, 8, 13, 15, 17, 20, 22, 38, 43]. While feature-
based methods are fast, their performance is reduced by en-
vironmental variations such as glasses reflections or off-axis
eyes. CNN-based methods are robust to environmental vari-
ations, but they tend to be slower due to their architectures
such as U-Net [31]. Some methods attempt to reduce the
computational cost by using light weight CNN [8] or small
input images [43]. However, the localization performance
of these methods are yet limited by the post processing of
localization.

CNN-based object detection is a faster task than segmen-
tation [21, 27, 28, 29]. The object detection task extracts
bounding boxes of target objects from an input image. Li et
al. [19] proposed an efficient iris localization using a light
weight Faster RCNN [29] to improve the computational ef-
ficiency. Since their process can be split into bounding box
detection and circle localization, further simplification can
be expected. Instead of bounding box detection, CircleNet
[40] detects bounding circles in an object detection frame-
work. It estimates a likelihood map to detect coarse posi-
tions of target objects, and it finely detects the centers and
radii of bounding circles using regression.

In the research field of face recognition, direct or few-
level regression using CNNs has been proposed for facial
landmark detection [9, 36, 42, 47]. These methods di-
rectly detect facial landmarks under the assumption that the
landmarks are always included in input images. This as-
sumption allows facial landmark detection to skip gener-
ating high-resolution segmentation maps. In addition, fa-
cial landmark detection methods use refinement processes
to improve their performance, and it achieves few pixel-
level accuracies.

In this paper, the proposed ILN creates no iris segmen-
tation maps, and directly localizes the pupil and iris circles
based on the landmark detection scheme under the assump-
tion that the input iris image always contains one iris. Be-
cause this paper is the first attempt to apply landmark de-
tection for iris recognition, we select pupil and iris circles
as the target. It can avoid traditional noise sensitive circle
fitting. In addition to the circles, ILN detects eyelid points
simultaneously. The eyelid points are used to create eyelid
masks for iris recognition. Moreover, the accuracy in local-
izing pupil circles is sensitive to the iris recognition perfor-

992



Iris & pupil circles

with eyelid pointsInput image

Iris localization

network (ILN)

Down

sampling

Down-sampled

image

R

ROI

image

R
Iris region

cropping

ILN outputs &

refined pupil circle

Pupil refinement 

network (PRN)

Figure 2. Our proposed iris localization method. Method has iris localization network (ILN) and pupil refinement network (PRN).

mance because misalignment between the ILN output and
ground truth changes normalized rubber sheet images dras-
tically. Thus, we introduce PRN for the fine localization of
pupil circles. Although we mainly select circles and points
in this paper, our method can easily be extended to ellipse
[33] or any shape [7, 34] localization.

The contributions of this paper are as follows.

• We newly design iris landmarks for iris recognition.
The proposed landmarks are two circles and eight eye-
lid points, which are different from points or circle
only detectors [36, 40]. This configuration achieves
accurate iris localization with lower annotation cost.

• The proposed iris localization method is fast and ro-
bust. The proposed ILN localizes circles directly from
down-sampled images without circle fitting. The pro-
posed PRN further improves the pupil localization ac-
curacy, which is important for iris recognition.

3. Iris localization and pupil refinement
We explain the proposed iris localization networks in this

section. The proposed method utilizes down-sampled input,
a regression model, the region of interest (ROI) and refine-
ment regression to achieve fast and accurate localization.

Figure 2 shows our proposed iris localization method.
The method uses an iris localization network (ILN) and
pupil refinement network (PRN). To avoid noise and param-
eter sensitive circle fitting processing, ILN directly localizes
circles and eyelid points from a down-sampled input image.
In addition, to boost iris recognition performance, PRN re-
localizes a pupil circle with few-pixel accuracy from a ROI
image. The ROI image is cropped from an original image
using the iris circle localized by ILN. Note that the ROI im-
age is only used for the pupil refinement, and the iris rubber
sheet is extracted from the original input image with local-
ized circles for iris recognition. Thus, the ROI is not directly
affected to the iris rubber sheet extraction.

Figure 3 shows configurations of target circles and
points. The proposed method is designed to treat the cir-
cles and points as having the same location configurations
in left and right iris images. The position of P1 is the left
side corner in both images for each eye. It does not refer to
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Figure 3. Proposed location for circles and points in left and right
eye images. Position of P1 is on left side in images for both eyes.

the inner or outer eyelid corner. These circles and points are
summarized to a target vector k. The circle is represented as
a vector with x and y coordinates and the radius r. A point
is represented as a vector with x and y coordinates. Thus,
the target vector k has 22 dimensions including 6 dimen-
sions for the pupil and iris circles and 16 dimensions for the
8 eyelid points.

The architectures of ILN and PRN are constructed on the
basis of the VGG network structure [35]. For ILN, we de-
fine the input image scale and the channel width by s and
m, respectively. The down-sampled image size is defined
as 640s × 480s when the original size is 640 × 480. The
network width is reduced in the channel direction by multi-
plying the channel width m. The last layer is replaced by a
linear layer with output vector length d. The output vector
has a length of d = 22 for ILN.

PRN uses an ROI image as an input. The ROI image
is cropped from the original input image using the detected
iris center and radius in the ILN output. The ROI image is
resized to a size of 128×128 pixels and fed into the network.
PRN has no resize parameter, and the network width m is
shared with ILN. The output vector of PRN has a length of
d = 3, which includes the pupil circle elements.

Unlike iris segmentation models, our regression model
can emphasize the importance of output elements by using a
weighted loss function. Weights are given for each element
in the output vector. In ILN, the pupil and iris elements are
given higher weights than the eyelid elements because the
accuracy of iris localization is important for iris recognition.
PRN uses equal weights for all three elements of the output
vector fPRN (I). The loss functions LILN and LPRN of
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Figure 4. Mask generation for iris recognition. Iris and eyelid
masks are generated by localized circles and points.

the two proposed networks are written as:

LILN =

d=22∑
i

wi||fILN (I)i − ki||1, (1)

LPRN =

d=3∑
i

wi||fPRN (I)i − ki||1, (2)

where I is the input image. f(I)i, ki, and wi denote the
i-th element of the output vector, target ground truth vector
and weight, respectively. d is the length of the output vector
f(I). We use L1-norm for the loss function.

For iris recognition, it is necessary to exclude eyelid re-
gions from the detected iris circles. Our method creates
an eyelid mask from the eight detected eyelid points. As
shown in Figure 4, the eyelid mask is created by connecting
the eight localized eyelid points. The reason for the eight
points is to maintain the trade-off between having a suffi-
cient number of points for creating the mask and a minimum
number of points for reducing the annotation cost. Note that
our method does not directly remove the specular region on
the iris surface or eyelash occlusion. Thus, we adapt simple
anomaly detection by interquartile for pixel values in the lo-
calized iris region to mask the specular and eyelash regions.
The results of masking are shown in Figure 5. The specular
and eyelash regions can be masked by this simple anomaly
detection without segmentation and its annotation.

4. Experiments
We evaluated the proposed method in five types of ex-

periments. In an ablation study, we evaluated the parameter
dependency of the proposed method. Afterward, dataset de-
pendency and generalization performance were evaluated.
We also show the extension to ellipse localization. Finally,
we demonstrate the effectiveness of the proposed method
for iris recognition using a feature extractor.

Table 1 shows details on the datasets used for the eval-
uations. The datasets ware CASIA v4-thousand, CASIA
v4-distance, IITD, MMU1, MMU2 and CASIA v4-twins
[1, 4, 16]. For CASIA v4-distance, we extracted eye re-
gions from the dataset images using manually annotated eye
points. The dataset included only NIR images, no RGB im-
ages. This is because we assume that the proposed iris lo-
calization model will be used for iris recognition in the NIR

Figure 5. Eyelid, eyelash and specular mask results with proposed
method and simple anomaly detection.

band. The images in all datasets were resized to 640 × 480
with the aspect ratio kept the same before being fed into the
proposed model. For images without a 4:3 aspect ratio, we
replicated the lower aspect borders and aligned the aspect
ratio to 4:3 before resizing. We split CASIA v4-thousand,
CASIA v4-distance and IITD datasets into about 80% for
training and 20% for test data. The number of subjects and
images are shown in Table 1. For MMU1 and MMU2, we
used all datasets for testing in a generalization evaluation.
For only CASIA v4-twins, we used only the last 20% for
testing this evaluation. We manually annotated the ground
truth location for all datasets. Note that to guarantee the
accuracy of our annotation, we additionally evaluated the
recognition performance in section 4.5, and confirmed that
it was approximately consistent to localization results.

For evaluation, we selected five conventional methods
and compared their performance with that of the proposed
method. We used IrisParseNet [38], OSIRIS [26], CC-Net
[8], IrisDenseNet [3] and BiSeU-Net [43]. IrisParseNet
was selected as the state-of-the-art method for iris local-
ization. OSIRIS was selected as the most commonly used
non-training method. Because OSIRIS works without a
training dataset, its performance has less dependency on
the dataset domain than training-based methods. CC-Net
was selected as the most efficient iris segmentation method.
IrisDenseNet and BiSeU-Net were selected as the state-of-
the-art methods for iris segmentation. The segmentation
performances of these methods outperform IrisParseNet on
some datasets. However, the localization performance was
not evaluated for these methods. Thus, we evaluated these
methods on localization metrics.

ILN and PRN were trained independently. For training
ILN, each input image I was normalized to a range of [0.0,
1.0] and resized with a scale parameter s. The ground truth
vector k was normalized on the basis of the mean and stan-
dard deviation as k′ = (k − µ)/σ. The mean values µ were
(320, 240) for each (x, y) coordinate including circle cen-
ters and eyelid points, and (50, 120) for the pupil and iris
radius. The standard deviation values σ were set to 1/6 of
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Table 1. Evaluation datasets and train-test split.
Dataset Subjects Images

train / test train / test
CASIA v4-thousand [4] 800 / 200 16,000 / 4,000
CASIA v4-distance [4] 110 / 32 4,034 / 1,100
IITD [16] 180 / 44 1,800 / 440
MMU1 [1] – / 45 – / 450
MMU2 [1] – / 100 – / 995
CASIA v4-twins [4] – / 40 – / 688

the mean values. Note that k is invariant to the scale pa-
rameter s. We trained the model with a batch size of 128
and 100,000 iterations. We used stochastic gradient descent
(SGD) as the optimizer with a learning rate of 0.001 and
weight decay of 0.00001. The learning rate was switched
to 0.0001 after 90,000 iterations. The loss weights were set
to 3.0 for the six elements of the pupil and iris circles and
1.0 for all others. For training PRN, each ROI image was
cropped with 1.2 times the size of the iris outer circle us-
ing the ground truth. The ROI images were resized to 128
× 128 pixels, and the pixel values were normalized to the
[0.0, 1.0] range. The ground truth vector was transformed
into a vector on the ROI image coordinates and normalized
using the means (64, 64, 20) and standard deviations (10,
10, 10) of the ROI image coordinates. The loss weights
were set to 1.0 for the x, y, and r of the output pupil cir-
cle. All other parameters were the same as ILN. In the test
phase, a predicted vector was inversely transformed to the
original coordinates and the pupil elements were replaced
with the transformed vector.

We applied data augmentation in the training using
Gaussian blur, brightness-contrast, vertical and horizontal
shifts, scaling, and rotation with a probability of 50% for
each. For Gaussian blur, the value of σ was applied in a
uniform distribution in the range of [1.0, 25.0] pixels for
the original sizes of the images. The brightness and con-
trast were applied in uniform distributions of ± 20% for
each. Vertical and horizontal shifts were applied uniformly
in a range that included the iris circle in the images. Scaling
was applied in the range of [0.3, 2.0]. Rotation was applied
in the range of ± 20 degrees. If an image contained out-of-
frame areas due to shifting or scaling, the border pixels were
replicated. In the training of PRN, we applied the same pa-
rameters for data augmentation without shifting. To shift
a cropped image, the iris center was sampled by using the
standard deviation of ILN’s results from the ground truth.

To evaluate the iris localization, we used the normalized
Hausdorff distance [38] between the estimated circle C and
the ground truth circle G as an evaluation metric. The Haus-
dorff distance is defined as:

H(G,C) = max{sup
g∈G

inf
c∈C

||g − c||, sup
c∈C

inf
g∈G

||c− g||},

(3)
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Figure 6. Results of ablation study for pupil localization using CA-
SIA v4-thousand dataset. All points of proposed method (ILN)
were faster than conventional ones while maintaining localization
accuracies.

where c and g are arbitrary points on the predicted circle C
and the ground truth circle G, respectively. In addition, the
Hausdorff distance was normalized by the ground truth eye
width (distance between P1 and P2 in Figure 3) to remove
the influence of the different scales and iris sizes. A smaller
normalized Hausdorff distance means a higher shape simi-
larity and a higher localization accuracy.

4.1. Ablation study

We evaluated the effect of the hyperparameters and the
pupil refinement defined in the proposed method. We used
CASIA v4-thousand for an ablation study. The two hyper-
parameters s and m were selected from (0.1, 0.2, 0.5) for
s and (1.0, 0.5, 0.25, 0.125) for m. The combinations of s
and m were selected so that the calculation time was less
than 150 ms on a CPU (Intel Xeon CPU E3-1280 v5) with
a single thread. To evaluate the pupil refinement (ILN +
PRN), we used (s, m) = (0.2, 0.25) for the ILN model. We
also generated an ensemble model using two models trained
with the same parameters (s, m) = (0.2, 0.25) and different
initialization for comparison.

Figure 6 shows the results of the ablation study. The
vertical axis is the mean normalized Hausdorff distance of
the pupil circle, and the horizontal axis is the computational
time for one image on the CPU. For comparison, we plotted
the localization results of OSIRIS v4.1 [26] (yellow star),
IrisParseNet with attention [38] (pink circle), IrisDenseNet
[3] (black plus sign), and BiSeU-Net [43] (gray diamond)
for the same dataset. The blue, orange, and green lines are
the results of ILN with the s parameter set to (0.1, 0.2, 0.5),
respectively. The case of s = 0.2 had the best performance
in terms of both speed and accuracy. The ILN model with
(s, m) = (0.2, 0.25) achieved performance comparable with
other CNN-based methods with a calculation time of 14.8
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Figure 7. CED curves of pupil (upper) and iris (lower) circle local-
ization for CASIA v4-thousand dataset.

ms. The ensemble model showed a further accuracy im-
provement (brown square). The proposed PRN (purple dia-
mond) achieved the best performance in terms of the pupil
localization accuracy.

Figure 7 shows the cumulative error distribution (CED)
curves of the detection rate for the pupil and iris circles.
CED curves are the result of using the CASIA v4-thousand
dataset. The horizontal axis is the normalized Hausdorff
distance and the vertical axis is the cumulative detection
rate. The closer the horizontal curve is to 0, the better the
detection accuracy, and the faster the vertical axis converges
to 1.0, the higher the robustness. We selected IrisParseNet
and OSIRIS as the learning and non-learning based con-
ventional methods. IrisParseNet had stable performance on
both pupil and iris localization. In pupil detection, the per-
formance of ILN was better than OSIRIS localization, and
it was comparable to IrisParseNet. IrisParseNet had bet-
ter performance than ILN at low detection rates, and ILN
performed better at high detection rates. This means that
the proposed method had better robustness than the conven-
tional ones. The pupil circle refinement (ILN + PRN) had
the best performance among all methods in terms of both
detection accuracy and robustness. Regarding iris detection,
the performance of the proposed method was comparable to
that of IrisParseNet for the CED curves. Note that the iris
localization result for the outer iris circle with ILN + PRN
was the same as ILN because PRN re-localizes the pupil
circle only. The outer iris circle is not refined by PRN.

To evaluate the localization accuracy for all output
points, we investigated the distance between the localiza-
tion results and the ground truth for each point. For the
pupil and the iris, we used the center coordinate for compar-
ison with other eyelid points. We calculated the Euclidean
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Figure 8. L2-distance errors of circle centers and eyelid points for
CASIA v4-thousand dataset. PRN represents error of refined pupil
center. Other errors are results of ILN.

(L2) distance for all points, and we extracted the mean for
each point. We used the test dataset of CASIA v4-thousand
including images and their ground truth for this evaluation.

Figure 8 shows errors for all detected circle centers and
eyelid points. The eyelid points (from P1 to P8) had dif-
ferent error values from each other due to the difference in
the annotation accuracy. In particular, the eye corner points
(P1 and P2) tended to be annotated at different positions by
different annotators because these points were difficult to
determine for each iris image. On the other hand, pupil and
iris errors were smaller than those of the other eyelid points
because of the weight of the loss function. The pupil error
for PRN was further improved by the refinement. Although
the localization accuracy of all circle centers and points can
be controlled by the weight of the loss function or the re-
finement, we focused on the pupil circle accuracy because
it strongly affects the iris recognition performance.

4.2. Dataset dependency

We evaluated the dataset dependency of the proposed
method using three of the above datasets: CASIA v4-
thousand, CASIA v4-distance, and IITD [4, 16]. For each
dataset, each model was trained and evaluated on the ba-
sis of the splits in Table 1. The evaluation index was the
mean normalized Hausdorff distance of the pupil and iris
circles. The same as in the ablation study, OSIRIS v4.1
[26], IrisParseNet with attention [38], IrisDenseNet [3] and
BiSeU-Net [43] were used as the conventional methods for
comparison. To train these conventional networks, we used
the same data augmentation as our method, and the number
of iteration was set to 50,000. For IrisDenseNet and BiSeU-
Net, we set iris and pupil regions as output channels. The
other parameters were the same as those used by Wang et
al. [38]. The ground truths of the segmentation masks were
created by using our annotated circles and points. We fixed
the parameters of the proposed ILN at (s, m) = (0.2, 0.25).

Table 2 shows the pupil and iris localization results for
dataset dependency. Each value is the mean Hausdorff dis-
tance between the localized circle and ground truth circle.
Calculation time is measured for a single image using Intel
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Table 2. Dataset domain specific evaluation results for pupil and iris circle localizations. Each test dataset has same domain as corresponding
training dataset. Methods were compared by processing time and mean normalized Hausdorff distance.

Time [ms] CASIA thousand CASIA distance IITD
Methods CPU GPU Pupil Iris Pupil Iris Pupil Iris
OSIRIS [26] 159.4 – 0.0142 0.0272 0.0285 0.0821 0.0067 0.0221
CC-Net [8] 48.9 4.4 0.1546 0.1979 0.1012 0.0926 0.0410 0.0385
IrisParseNet [38] 3494.8 15.7 0.0069 0.0171 0.0118 0.0234 0.0052 0.0149
IrisDenseNet [3] 3295.8 11.9 0.0068 0.0422 0.0061 0.0267 0.0041 0.0233
BiSeU-Net [43] 210.0 6.9 0.0067 0.0497 0.0139 0.0423 0.0045 0.0309
ILN (ours) 14.8 3.2 0.0063 0.0132 0.0082 0.0184 0.0049 0.0129
ILN+PRN (ours) 34.5 5.6 0.0044 – 0.0053 – 0.0043 –

Table 3. Generalization performance for pupil and iris localizations. CNN-based methods (IrisParseNet, IrisDenseNet, BiSeU-Net, ILN
and ILN-PRN) were trained by CASIA-thousand dataset only, and other five test datasets are not included in training. For only CC-Net,
we used public pre-trained model. Methods were compared by mean normalized Hausdorff distance for pupil and iris circles.

Training & test Test only
CASIA-thousand CASIA-distance IITD MMU1 MMU2 CASIA-twins

Methods Pupil Iris Pupil Iris Pupil Iris Pupil Iris Pupil Iris Pupil Iris
OSIRIS [26] 0.0142 0.0272 0.0285 0.0821 0.0067 0.0221 0.0113 0.0168 0.0138 0.0271 0.0110 0.0203
CC-Net [8] 0.1546 0.1979 0.1012 0.0926 0.0410 0.0385 0.0228 0.0201 0.0654 0.0634 0.0515 0.0567
IrisParseNet [38] 0.0069 0.0171 0.0705 0.0471 0.0156 0.1365 0.0400 0.0256 0.1126 0.0657 0.0467 0.0164
IrisDenseNet [3] 0.0068 0.0422 0.0464 0.0377 0.0135 0.0557 0.0158 0.0168 0.0286 0.0551 0.0351 0.0272
BiSeU-Net [43] 0.0067 0.0497 0.0383 0.0721 0.0051 0.0444 0.0118 0.0310 0.0208 0.0628 0.0232 0.0453
ILN (ours) 0.0063 0.0132 0.0189 0.0364 0.0077 0.0142 0.0093 0.0156 0.0113 0.0244 0.0118 0.0133
ILN+PRN (ours) 0.0044 – 0.0107 – 0.0050 – 0.0064 – 0.0069 – 0.0085 –

Xeon CPU E3-1280 v5 (CPU) or NVIDIA GeForce RTX
3080 (GPU). For pupil localization, the proposed method
with pupil refinement (ILN + PRN) had the best perfor-
mance for two of the datasets and worked within a com-
putational time of 34.5 ms on CPU, which was faster than
the conventional methods. For IITD, ILN + PRN was sec-
ond in terms of performance. These results confirm that
the proposed method had better performance than the other
methods with the fastest computational time for all three
datasets. Note that the pupil error of the IrisParseNet result
for CASIA v4-distance was larger than the 0.0069 reported
by Wang et al. [38] due to the different dataset splits and an-
notation. The iris localization performance of the proposed
ILN outperformed the other methods for all three datasets.
Note that ILN + PRN is not included in the iris results be-
cause PRN refines only pupil circle. Thus, the iris localiza-
tion result of ILN + PRN was the same as that of ILN.

4.3. Generalization performance

The performance of CNN-based methods tends to de-
pend on the domain of the training data, and their gener-
alization performance to other domains than the training
domain is often not guaranteed. Therefore, to investigate
the generalization performance of the proposed method, we
evaluated the performance of models trained only on CA-
SIA v4-thousand using other datasets. We used CASIA

(d) Pupil disorder(a) Glasses (e) Off-axis eye(b) Different race (c) Pupil ratio

Figure 9. Results for complex iris images. Proposed method ro-
bustly localizes pupil and iris circles for each condition.

v4-distance, IITD, MMU1, MMU2 and CASIA v4-twins as
evaluation datasets. OSIRIS and CC-Net were applied di-
rectly to the publicly available models, while IrisParseNet,
IrisDenseNet, BiSeU-Net and the proposed method were
applied to models trained using CASIA-thousand.

Table 3 shows the localization results of the generaliz-
ability evaluation. The methods were compared on the basis
of the mean normalized Hausdorff distance. We confirmed
that the proposed method had better generalization perfor-
mance than the segmentation methods for all datasets. The
non-training method, OSIRIS, had a higher generalization
performance, while the learning-based method caused the
generalization performance to degrade in domains that dif-
fered from the training data. The reason that the proposed
landmark detection was less affected by the domain is con-
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Circle Ellipses

Figure 10. Results of ellipse localization. Proposed method can be
extended to ellipse fitting with the additional of target parameters.

sidered to be that it uses only edges and avoids using light-
sensitive areas compared with the segmentation methods.

Figure 9 shows the detection results for complex condi-
tions: glasses, different race from training dataset, different
pupil ratio, pupil disorder and off-axis eye for the case of
using a generalized model. The proposed method worked
robustly for glasses, different race and different pupil ratio.
For pupil disorder, it localized circle-like shapes as pupil,
and the difference in the results between the two images
was not large. For off-axis eye, the proposed method ap-
proximated ellipse eyes by circles. These results confirm
that our model stably localizes iris circles for complex im-
ages.

4.4. Extension to ellipse localization

Our proposed method can easily be extended to el-
lipse localization. For circles, we define parameters as
(x, y, r). In the case of ellipses, parameters are extended
to (x, y, a, b, θ), where (x, y) is the center coordinate, (a, b)
is the length of the main and sub axes, and θ is the ellipse
rotation angle. Figure 10 shows ellipse localization results.
Since we had no ground truth for the ellipses, we trained an
ellipse localization model using ellipses generated by data
augmentation with affine transformation for annotated cir-
cles. As shown in Figure 10, the ellipse localization worked
correctly for ellipses. However, we had no evaluation data
for ellipses, so ground truth annotation for ellipses and nu-
merical evaluation are needed as future work.

4.5. Iris recognition

We evaluated the performance of iris recognition with
the proposed iris localization method. To reduce the recog-
nition performance dependency on the dataset domain, we
used no CNN-based recognition methods but OSIRIS v4.1
[26] as the recognition engine. We split the processing of
OSIRIS into localization, segmentation, and recognition.
We replaced the localization and segmentation processing
of OSIRIS with the proposed method. For input images,
we first localized the pupil and iris circles with the pro-
posed method. After the localization, we made segmen-
tation maps using the eyelid points and pixel values of the
iris regions. Finally, the localization and segmentation re-
sults were used for the recognition processing of OSIRIS.
CASIA v4-distance was used for training and evaluation.
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Figure 11. Detection error tradeoff curves for iris recognition.
These curves were calculated using CASIA v4-distance dataset.

We evaluated the recognition performance using the detec-
tion error tradeoff (DET) curve for five localization settings:
OSIRIS localization, IrisDenseNet, ILN, ILN + PRN with
an eyelid mask, and ILN + PRN with all masks. The all
masks included eyelid, eyelash, and specular regions. The
reason of selecting IrisDenseNet is that it is the most accu-
rate method for pupil localization in the conventional CNN-
based methods.

Figure 11 shows DET curves for iris recognition. The
horizontal axis is the false acceptance rate, and the vertical
axis is the false rejection rate. Since both axes express er-
ror rates, the closer the line is to the lower left, the better
the performance. The black curve represents the equal er-
ror rate (EER). EERs were improved to 0.072 for ILN and
to 0.062 for PRN, compared with 0.169 for OSIRIS and
0.098 for IrisDenseNet. EER improvement by the pupil re-
finement was comparable to that of the eyelash and spec-
ular region masks. These results confirmed that the local-
ization accuracy was most important for recognition, and it
improved the recognition performance significantly.

5. Conclusion

We have proposed a segmentation-free efficient iris lo-
calization method using an iris circle detector based on a
deep regression network. To achieve more efficient iris lo-
calization than the conventional iris segmentation methods,
the proposed ILN has directly localized pupil and iris circles
with eyelid points from down-sampled iris images. We have
also introduced PRN to improve the pupil localization ac-
curacy. Experimental results have shown that the proposed
method extracted iris regions in 34.5 ms on a CPU while
achieving better localization performance than the conven-
tional iris segmentation-based methods. We have also con-
firmed that our method improves iris recognition accuracies
compared with the conventional method.
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