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Abstract

We propose a novel transformer, capable of segment-
ing medical images of varying modalities. Challenges
posed by the fine-grained nature of medical image anal-
ysis mean that the adaptation of the transformer for
their analysis is still at nascent stages. The overwhelm-
ing success of the UNet lay in its ability to appreciate
the fine-grained nature of the segmentation task, an
ability which existing transformer based models do not
currently posses. To address this shortcoming, we pro-
pose The Fully Convolutional Transformer (FCT), which
builds on the proven ability of Convolutional Neural
Networks to learn effective image representations, and
combines them with the ability of Transformers to ef-
fectively capture long-term dependencies in its inputs.
The FCT is the first fully convolutional Transformer
model in medical imaging literature. It processes its
input in two stages, where first, it learns to extract
long range semantic dependencies from the input im-
age, and then learns to capture hierarchical global at-
tributes from the features. FCT is compact, accu-
rate and robust. Our results show that it outperforms
all existing transformer architectures by large margins
across multiple medical image segmentation datasets of
varying data modalities without the need for any pre-
training. FCT outperforms its immediate competitor
on the ACDC dataset by 1.3%, on the Synapse dataset
by 4.4%, on the Spleen dataset by 1.2% and on ISIC
2017 dataset by 1.1% on the dice metric, with up to
five times fewer parameters. On the ACDC Post-2017-
MICCAI-Challenge online test set, our model sets a
new state-of-the-art on unseen MRI test cases out-
performing large ensemble models as well as nnUNet
with considerably fewer parameters. Our code, envi-
ronments and models will be available via GitHub†.

*Equal Contribution
†https://github.com/Thanos-DB/

FullyConvolutionalTransformer

1. Introduction
Medical image segmentation is a key tool in com-

puter aided diagnosis. It helps detect and localise
boundaries of lesions in images that can help iden-
tify potential presence of tumors and cancerous regions
quickly. This has the potential to speed up diagnoses,
improving the likelihood of detecting tumours and al-
lowing clinicians to use their time more effectively,
with benefits to patient outcomes [15]. Conventionally,
modern medical image segmentation algorithms are
built as symmetric top-down encoder-decoder struc-
tures that first compress (encode) an input image into
a latent space, and then learn to decode the locations
of regions of interest within images. Adding a horizon-
tal propagation of the intermediate signal (skip con-
nection) to this vertical information flow gives us the
UNet architecture, which has arguably been the most
influential leap forward in segmentation algorithms in
the recent past. Most modern segmentation systems
today either include the UNet or one of its variants in
their pipeline. A key essence of the UNet’s success is
its fully convolutional nature. The UNet does not es-
timate any non-convolutional trainable parameters in
its structure.

Convolutional Neural Network (CNN) based UNet
models have found great success in medical image seg-
mentation tasks in terms of accuracy and performance.
However, they still require additional improvements in
order to truly help clinicians in early disease diagnosis.
The inherently local nature of the convolutional opera-
tor is a key issue with CNNs, as it prevents them from
exploiting long range semantic dependencies from the
input images. Various methods have been proposed
to add global context to CNNs, most notably, the in-
troduction of attention mechanisms, and dilating the
convolution kernel in order to increase the kernel’s re-
ceptive field. These methods however come with their
own sets of drawbacks. Transformers have been hugely
successful in language learning tasks [31] due to their
ability to handle very long range sequence dependen-
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cies efficiently. This has led to their recent adapta-
tion to various vision tasks [7, 18, 21, 22]. Recently
proposed architectures such as ViT [7] have surpassed
the performance of CNNs on benchmark imaging tasks,
and many recent improvements to ViT such as CvT
[36], CCT [10] and Swin Transformer [25] have shown
how transformers do not need to be bulky, data hungry
models, and can even work with small amounts of data
to surpass the performance of CNNs. Conventionally,
ViT style models first extract discrete non-overlapping
patches (called tokens in NLP) from images. They then
inject spatial positioning to these patches through a po-
sition encoding and pass this representation through
standard transformer layers to model long rage seman-
tic dependencies in the data.

Given the obvious merits of both CNNs and Trans-
formers, we believe the next step forward in medical
image segmentation is a fully convolutional encoder-
decoder deep learning model with the ability to exploit
long range semantic dependencies in medical images ef-
ficiently. Towards this goal, we propose the first Fully
Convolutional Transformer for medical image segmenta-
tion. Our novel Fully Convolutional Transformer layer
forms the main building block of our model. It contains
two key components, a Convolutional Attention mod-
ule and a fully convolutional Wide-Focus module (See
Section 3). We formalize our contributions as follows:

• We propose the first Fully Convolutional Trans-
former for medical image segmentation, which
surpasses the performance of all existing convo-
lutional and transformer based architectures for
medical image segmentation on multiple binary
and semantic segmentation datasets.

• We propose a novel Fully Convolutional Trans-
former layer which employs a Convolutional Atten-
tion module to learn long range semantic context,
and then creates hierarchical local-to-global con-
text using multi-resolution dilated convolutions
via the Wide-Focus module.

• We show, through extensive ablation studies, the
effects of the various building blocks of our model
in the context of their impact on model perfor-
mance.

2. Literature review
Early CNNs and Attention models: The UNet

[29] was the first CNN model proposed for medical im-
age segmentation. One of the first works that intro-
duced attention models to medical image segmentation,
did it through applying a gating function to the prop-
agation of features from the encoder to decoder of a

UNet [26]. Methods such as FocusNet [17] employ a
dual encoder-decoder structure where attention gating
learns to propagate the relevant features from the de-
coder of one UNet to the encoder of the next. One of
the first works that incorporates attention mechanisms
inside various filter groups in grouped convolutions is
FocusNet++ [19]. Many variants of UNets also exist
that employ different residual blocks to enhance feature
extraction [32, 28, 33, 20, 16]. UNet++ [43] creates
nested hierarchical dense skip connection pathways be-
tween the encoder and decoder to reduce the semantic
gap between their learnt features. Of the most influ-
ential UNet variants of recent times, the nnUNet [14]
automatically adapts itself to pre-process the data and
select the optimal network architecture that would be
best suited to the task without the need for manual
intervention.

Transformer models: The original Transformer
architecture [31] revolutionized natural language pro-
cessing tasks and has quickly become the de-facto
model for visual understanding tasks as well [7]. Trans-
formers work well for vision due to their ability to cre-
ate long range visual context but suffer from the in-
herent drawback of not leveraging spatial context in
images like CNNs. Recent works move towards pos-
sible solutions to overcome this drawback. CvT [36],
CCT [10] and Swin Transformers [25] are all attempts
at integrating sufficient spatial context to transformers.
In medical image segmentation, most existing research
looks at creating hybrid Transformer-CNN models for
feature processing. Similar to the Attention UNet [26],
UNet Transformer [27] enhanced CNNs with multi-
head attention inside skip connections. One of the first
Transformer-CNN hybrid models proposed for medical
image segmentation, TransUNet [5] used a transformer
encoder feeding into a cascaded convolutional decoder.
Similar to TransUNet, UNETR [12] and Swin UNETR
[11] use Transformers on the encoder and a convolu-
tional decoder to construct segmentation maps. Trans-
fuse [40] runs dual branch encoders, one with convolu-
tional layers and the other with transformer layers and
combines their features with a novel BiFusion module.
The decoder for this model however, is convolutional.

Concurrent Works There is a recent shift from
creating hybrid Transformer-CNN models, to refining
the transformer block itself, to handle the nuances of
medical images. Swin UNet [3] is the first architec-
ture to propose a pure transformer to process medical
images. Pure here refers to the image features being
extracted and processed solely by transformer layers
without the need for a pre-trained backbone architec-
ture. DS-TransUNet [24] introduces the Transformer
Interactive Fusion module to get better representations
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Fully Convolutional Transformer Block
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Figure 1: The Fully Convolutional Transformer for Medical Image Segmentation. The network (bottom) follows a
standard UNet shape with the notable difference that it is purely Convolutional-Transformer based. The first
component of the FCT layer (top) is Convolutional Attention. Here, Depthwise-Convolutions in the projection
layer remove the need for positional encoding, leading to a simpler model. We create overlapping patches where
the degree of patch overlap is controlled via the stride of the convolutional projection layer. To leverage spatial
context from images, our MHSA block replaces linear projections with Depthwise-Convolutions. The Wide-Focus
module applies dilated convolutions at linearly increasing receptive fields to the MHSA output.

of global dependencies. Both these models have the
Swin Transformer block at the heart of their computa-
tion. Concurrent works such as nnFormer [42] and D-
Former [37] attempt to leverage both local and global
context inside medical images through specially crafted
multi-head self attention blocks to cater to this task.
The main drawback with these models is their inher-
ent linear nature of attention projection and feature
processing, which FCT aims to alleviate.

Existing segmentation models in medical imaging
currently suffer from at least one of three limitations.
They are either based on a CNN backbone or created
using convolutional layers, hence restricting their abil-
ity to look beyond their receptive fields to gain bet-

ter semantic context of the images (early CNN ap-
proaches). They attempt to integrate transformers
into their feature processing pipeline to leverage their
ability to create long range semantic context, but in
turn, make the models bulky and computationally com-
plex (Transformer-CNN hybrids). They attempt to
reduce this computational burden by creating pure
transformer models for segmentation without trying to
model local spatial context at a low-level feature ex-
traction stage (concurrent works). Different from exist-
ing methods, Our Fully Convolutional Transformer does
not suffer from these drawbacks, while still remaining a
pure Transformer-based architecture for medical image
segmentation. Table 4 in the supplementary material
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additionally summarizes the key differences of the FCT
in comparison with existing works.

3. The Fully Convolutional Transformer
Given a dataset {X, Y}, where, X are the input

images for our model, and Y are the corresponding se-
mantic or binary segmentation maps. For each image
xi ∈ RH×W ×C , where H and W are the spatial resolu-
tions of the images, and C = {3, ..., N} are the number
of input channels, our model produces an output seg-
mentation map yi ∈ RH×W ×K where, K ∈ {1, ...D}.
The input to the FCT is a 2D patch sampled from
each slice of the input 3D image. Our model follows
the familiar UNet shape, with the FCT layer as its fun-
damental building block. Unlike existing approaches,
our model is neither a CNN-Transformer hybrid, or a
Transformer-UNet structure that employs off-the-shelf
transformer layers to encode or refine input features. It
builds feature representations by first extracting over-
lapping patches from images, followed by creating a
patch-based embedding of the scans and then applying
multi-head self attention on those patches. The output
projection of the given image is then processed via our
Wide-Focus module to extract fine-grained information
from the projections. Figure 1 shows an overview of our
network architecture.

3.1. The FCT Layer

Each FCT layer begins with
LayerNormalization-Conv- Conv-MaxPool oper-
ations. We empirically noted that applying these
consecutive convolutions sequentially on the patches
with a small 3×3 kernel size helps better encode image
information in comparison with directly creating
patch-wise projections of the image first. Each convo-
lution layer is followed by a Gelu activation function.
The first instance where our FCT block differs from
other proposed blocks is through its application of
Convolutional Attention for medical imaging.

The output of MaxPool is fed into a transformation
function T(·) that converts it into a new token map.
Our T(·) of choice is the Depthwise-Convolution op-
erator. We choose a small kernel size of 3×3, stride
s×s and a valid padding to ensure that, (1) the
extracted patches, unlike most existing works, are
overlapping, and (2) the convolution operation does
not change the output size throughout. This is fol-
lowed by the LayerNormalization operation. The
obtained token map, pi+1 ∈ RWt×Ht×Ct is flattened
into WtHt × Ct, creating our patch embedded input.
The next instance where our FCT layer is different
from existing transformer based approaches for med-
ical imaging applications, is through its attention pro-

jection. All existing models employ a linear position-
wise projection for multi-head self attention (MHSA)
computation. This results in transformer models los-
ing spatial context, which is very important for imag-
ing applications. Existing approaches try to allevi-
ate this problem with convolutional enhancements to
adapt them for imaging tasks. However, this adds
additional computational costs to the proposed mod-
els. Inspired by the approach proposed in [36], we re-
place the linear projection in the MHSA block with
Depthwise-Convolutions to reduce computational
costs and leverage better spatial context from images.
The patch embedding and Convolutional Attention
projection form the components of our Convolutional
Attention. Different from [36], we note that replac-
ing BatchNormalization with LayerNormalization,
helps improve performance. Furthermore, removing
Point-wise Convolutions leads to a simpler model
without losing any performance. The spatial context
provided by the Depthwise-Convolutions further re-
moves the need for having positional encoding, which
are used to insert spatial information in the input and
sequentially keep track of the position of each patch,
leading to further simplifying the architecture design.

Generic transformer layers follow the MHSA block
by linear layers, hence losing all spatial context in im-
ages. Directly replacing these linear layers with con-
volutions is a relatively straightforward approach that
alleviates this problem and boosts performance. How-
ever, medical images require fine-grained information
processing. Keeping this in mind, we adapt a multi-
branch Convolutional layer, where one layer applies a
spatial convolution to the MHSA output while the oth-
ers apply dilated convolutions with increasing recep-
tive fields to gain better spatial context. We then fuse
these features via a summation and pass them through
a feature aggregation layer. This feature aggregation
is done through another spatial convolution operator.
We call this module Wide-Focus. Residual connections
are used to enhance feature propagation throughout
the layer. The final feature is re-shaped and propa-
gated further to the next FCT layer. Figure 1 (top)
shows the FCT layer.

3.2. Encoder

The encoder of our model contains four FCT
layers responsible for feature extraction and prop-
agation. For the lth transformer layer, the out-
put of the Convolutional Attention module is given
as, z′

l = MHSA(zl−1) + zq/k/v
l−1 where, zq/k/v

l−1 =
Flatten(DepthConv(Reshape(zl−1))). The multi-head
self attention (MHSA) is denoted by, MHSA(zl−1) =
softmax( QKT

√
d
)V. z′

l is then processed by the Wide-
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Focus (WF) module as, zl = WF(zl)+z′
l. We further in-

ject the encoder with a pyramid style image input with
the goal of highlighting different classes and smaller
ROI features at different scales. It is useful to note
that even without this multi-scale image pyramid in-
put, our model is able to achieve state-of-the-art re-
sults. The (bottleneck) latent encoding of the data is
created using another FCT layer.

3.3. Decoder

The decoder takes the bottleneck representation as
its input and learns to re-sample the binary or seman-
tic segmentation maps from this information. To cre-
ate better contextual relevance in the decoder layers,
skip connections from the encoder to decoder are also
used where feature maps from the encoder layer at
the same resolution are concatenated with the decoder
layer. The decoder’s shape is symmetric to the encoder.
The layers in the decoder corresponding to the image
pyramid layers in the encoder, output intermediate seg-
mentation maps which provide additional supervision
and boost the model’s prediction ability. Contextual
relevance is created by first up-sampling the feature
volume and then passing it through the FCT layer to
learn its best possible representation. We do not em-
ploy deep supervision at the lowest scale of FCT, and
hence our model isn’t ’fully deeply supervised’. This is
because we observed that regions of interest (ROIs) in
the input image scans were sometimes too small to seg-
ment at the lowest scale (28 × 28) which resulted in a
worse model performance. This low scale output added
a strong bias in the model to predict some output ROIs
as the background class.

4. Experiments
We demonstrate the effectiveness of our model

through its ability to achieve state-of-the-art results
across four different datasets of varying modalities. We
use data from the (MRI) Automatic Cardiac Diagno-
sis Challenge (ACDC) [2], (CT) Synapse Multi-organ
Segmentation Challenge1, (CT) Spleen Segmentation
Dataset [1] and (Dermoscopy) ISIC 2017 [6] Skin Can-
cer Segmentation Challenge.
The ACDC dataset contains 100 MRI scans with
ground truths for the left ventricle (LV), right ven-
tricle (RV) and myocardium (MYO). We create a
train-val- test split of 70-10-20. Synapse contains
CT scans from 30 patients. Our experiment setup and
pre-processing for Synapse is similar to TransUNet [5].
The Spleen segmentation dataset contains 41 CT vol-
umes. Our train-val-test splits for this dataset are
80-10-10. For the ISIC 2017 dataset, we create train-
val-test splits of 70-10-20 from the 2000 images in

the training dataset. We measure the performance of
our models using the Dice coefficient. All the input im-
ages to our model are resized to two shapes: 224 × 224
and 384 × 384.

Implementation Details We run all our exper-
iments using TensorFlow 2.0. We use one NVIDIA
A6000 GPU for all our experiments. Our loss func-
tion is a equally weighted combination of the cross en-
tropy and the dice loss. We used Adam with a learn-
ing rate of 1e − 3 which was reduced on a plateau
through monitoring the validation loss. We perform
warm up training for 50 epochs before training our
model for a further 250 epochs. Our data augmen-
tation is as follows: rotation (0◦ to 360◦), zoom range
(max 0.2), shear range (max 0.1), horizontal/vertical
shift (max 0.3), horizontal and vertical flip. The de-
fault settings for FCT are – number of filters per stage
16, 32, 64, 128, 384, 128, 64, 32, 16, number of attention
heads per stage 2, 4, 8, 12, 16, 12, 8, 4, 2. We use a batch
size of 10 for ACDC, and 4 for Synapse, Spleen segmen-
tation and ISIC 2017 segmentation. We train all our
models from a randomly initialized set of weights.

5. Results
Our model achieves the state-of-the-art results

across all reported baselines with fewer parameters and
GFLOPs. FCT contains 31.7 million parameters and
7.87 GFLOPs. On the ACDC dataset, we outperform
all existing works with a model size five times smaller
than our closest competitor, nnFormer (158.92 million,
157.88 GFLOPs). We train our model on two different
image sizes to see its impact on performance. As ex-
pected, FCT with a 384×384 image size achieves better
results than the model with input image size 224×224,
as the increased spatial resolution allows the model to
see fine-grained details in the images more clearly. We
also test the effect of having deep supervision across ev-
ery scale vs not using deep supervision in comparison
with our model. Table 2 summarizes our results on the
ACDC dataset. It also shows that the deep supervision
setting employed by us is the best setting for our model.
To demonstrate the statistical significance of our re-
sults, we also conduct a 5-Fold Cross Validation (CV)
with the ACDC dataset and compute p-values to show
our results are significantly better than the nnFormer.
We use FCT224 for these experiments. Using 5-Fold
CV, we get an average dice score of 92.43 ± 0.38. We
then run our experiments on the ACDC dataset 5 times
and average them to get a dice score of 92.88 ± 0.09.
Both results are state-of-the-art for the dataset. Com-
paring with nnFormer (91.78±0.18), we get p < 0.0001

1https://www.synapse.org/#!Synapse:syn3193805/wiki/
217789
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Figure 2: Qualitative results on the different segmentation datasets. From the top - ACDC Segmentation Dataset
[Colours - Maroon (LV), Blue (RV), Green (MYO)], Spleen Segmentation Dataset [Colours - Blue (Spleen)], Synapse
Segmentation Dataset [Colours - Blue (Aorta), Purple (Gallbladder), Navy (Left Kidney), Aquatic (Right Kidney),
Green (Liver), Yellow (Pancreas), Red (Spleen), Maroon (Stomach)] and ISIC 2017 Skin Cancer Segmentation
Dataset [Colours - Blue (Skin Cancer)]. The images alternate between the ground truth and the segmentation
map predicted by FCT. Best viewed in colour.

in both cases, which shows the statistical significance
of our results.

We compare our results on the Synapse dataset
mainly with TransUNet [5], LeViT-UNet [39] and Swin
UNet [3] as we use the same splits and pre-processing
as those models, which suggests that any increase in
performance is due to the superiority of the proposed
model. We outperform all three models by consider-
able margins demonstrating the ability of our model to
serve as a superior backbone for multi-atlas semantic
segmentation tasks. TransUNet and LeVit-UNet both
have ViT−12 backbones in their architecture and hence
contain around 100 million parameters (and around 49
GFLOPs). Our results are summarized in Table 3.

We also achieve state-of-the-art results on the two
binary segmentation tasks, Spleen segmentation (Ta-
ble 1 Supplementary Material) and ISIC 2017 segmen-
tation (Table 2 Supplementary Material). On Spleen
segmentation we outperform recently proposed bench-

mark models such as SETR [41], CoTr [38] and Tran-
sUNet [5] by over 1.2% dice with considerably fewer pa-
rameters. On the ISIC 2017 dataset we outperform the
recently proposed Boundary Aware (BA) Transformer
[35] specifically designed for the task of skin cancer seg-
mentation by 1.1% on the dice. We also evaluate the
sensitivity (true positive rate) of our model, as it is a
good estimate of a model’s ability to accurately seg-
ment the cancer boundaries. Models trained on the
ISIC 2017 dataset tend to have a high specificity but
low sensitivity due to which we consider the latter here.
We outperform BA Transformer on the sensitivity met-
ric. We noticed through our ablation studies that this
was largely due to the ability of our Wide-Focus module
to capture hierarchical feature information at different
convolution receptive fields effectively and accurately.
Figure 2 shows qualitative results of our model.

ACDC Post-2017-MICCAI Online Test Set
Results. We Train FCT (31.7 million parameters) on
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Head Branches Avg. RV MYO LV
MLP - 91.29 90.5 88.3 95.1
Conv1D 1 (D=1) 91.49 91.2 88.4 94.9
Conv1D 2 (D=1,2) 91.34 90.5 88.4 95.1
Conv1D 3 (D=1,2,3) 91.41 90.2 88.8 95.3
Conv1D 4 (D=1,2,3,4) 91.67 91.1 88.8 95.1
Conv2D 1 (D=1) 91.99 91.3 89.1 95.5
Conv2D 2 (D=1,2) 91.61 90.9 88.8 95.1
Conv2D 3 (D=1,2,3) 92.11 91.6 89.3 95.5
Conv2D 4 (D=1,2,3,4) 91.65 90.6 89.1 95.2
Conv2D 2 (k=3,4) 91.47 90.4 88.8 95.2

Table 1: Ablation study to determine the optimal configuration of our Wide-Focus module. FCT224 (with 16.1
million parameters) is used for these ablations. D denotes the dilation rate, and k denotes the convolution kernel
size.

Method Avg. RV MYO LV
R50 UNet [29] 87.55 87.10 80.63 94.92
R50 Att-UNet [26] 86.75 87.58 79.20 93.47
ViT [7] 81.45 81.46 70.71 92.18
R50 ViT [7] 87.57 86.07 81.88 94.75
TransUNet [5] 89.71 88.86 84.53 95.73
Swin UNet [3] 90.00 88.55 85.62 95.83
LeVit-UNet384 [39] 90.32 89.55 87.64 93.76
nnUNet [14] 91.61 90.24 89.24 95.36
nnFormer [42] 91.78 90.22 89.53 95.59
FCT224 w/o D.S. 91.49 90.32 89.00 95.17
FCT224 full D.S. 91.49 90.49 88.76 95.23
FCT224 92.84 92.02 90.61 95.89
FCT384 93.02 92.64 90.51 95.90

Table 2: Segmentation results on the ACDC dataset. Our model’s results are reported on two different input image
sizes. D.S. stands for Deep Supervision. Full D.S. is the case where D.S. is applied at every input scale.

the 100 images in the dataset for the ACDC Challenge,
and report our results on the 50 unseen test cases for
which ground truth masks are not provided. We train
our model on input images of size of 512 × 512. To
account for the variations in the sizes of the images
in the dataset, we crop and tile the images to get a
512 × 512 resolution and apply the same augmentation
to the masks. To generate final predictions, we remove
these extra predictions that occur due to tiling as a
post processing step by averaging the tiled predictions
to create the final output. We train this model as de-
noted in Section 4. The link to our results is available
online2 and can be compared with previous state-of-
the-art results3. Table 4 summarises the results of the

top five submissions in comparision with our results
(Table 5 in supplementary material shows detailed re-
sults across all classes). We take the mean to provide
average values, however, the detailed tables with full
results can be found in the links provided.

6. Ablation Study
We primarily study the effect of two key components

on our model’s performance through ablations: remov-
ing skip connections from the encoder to the decoder,

2https://acdc.creatis.insa-lyon.fr/#submission/
62f8e74b6a3c7704c25c679f

3https://acdc.creatis.insa-lyon.fr/description/
results.html
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Method Avg. Aorta GB Kid.
(L)

Kid.
(R)

Liver Panc. Spl. Stom.

R50 UNet [5] 74.68 84.18 62.84 79.19 71.29 93.35 48.23 84.41 73.92
R50 Att-Unet [5] 75.57 55.92 63.91 79.20 72.71 93.56 49.37 87.19 74.95
TransUNet [5] 77.48 87.23 63.13 81.87 77.02 94.08 55.86 85.08 75.62
TransClaw UNet [4] 78.09 85.87 61.38 84.83 79.36 94.28 57.65 87.74 73.55
LeVit-UNet384 [39] 78.53 87.33 62.23 84.61 80.25 93.11 59.07 88.86 72.76
MT-UNet [34] 78.59 87.92 64.99 81.47 77.29 93.06 59.46 87.75 76.81
Swin UNet [3] 79.13 85.47 66.53 83.28 79.61 94.29 56.58 90.66 76.60
FCT224 83.53 89.85 72.73 88.45 86.60 95.62 66.25 89.77 79.42

Table 3: Segmentation results on Synapse dataset. Kid. denotes Kidney, Panc. Pancreas, Spl. Spleen and Stom.
Stomach. Dice Coefficient is reported.

Method Avg.
Mahendra Khened [23] 91.37
Georgios Simantiris [30] 91.92
Kibrom Girum [8] 91.93
Fabian Isensee [13] 92.95
Fumin Guo [9] 93.02
FCT512 93.13

Table 4: Top 5 results on the ACDC Post-2017-
MICCAI online leaderboard. FCT512 (with 31.7 mil-
lion parameters) is used for this experiment. Avg.
stands for the Average dice Coefficient.

and different settings of our novel Wide-Focus module.
We conduct our ablations on the ACDC dataset. Skip
connections are clearly important to our model’s per-
formance (see Table 3 Supplementary Material) and
the optimal setting resembles that of the original UNet
[29]. To create the optimal setting of our Wide-Focus
module (see Table 1), we observed the effects of wider
convolutional branches and larger dilation rates on our
model’s performance. We observed that beyond three
convolution branches with linearly increasing dilation
rates, the model’s accuracy starts to saturate and even-
tually decrease. We believe it is due to the fact that
the dilated kernel fails to approximate a global kernel
at the deeper layers and this leads to the dilated re-
ceptive field missing key feature information. This is
also in line with our findings that smaller kernels in the
FCT block lead to better performance.

7. Conclusions
We proposed the Fully Convolutional Transformer

that is capable of accurately performing binary and

semantic segmentation tasks with fewer parameters
than existing models. FCT is over five times smaller
than nnFormer and three times smaller than Tran-
sUNet and LeViT-UNet in terms of the number of pa-
rameters. The FCT layer comprises of two key com-
ponents - Convolutional Attention, and Wide-Focus.
Convolutional Attention removes the need for posi-
tional encoding at the patch creation stage by us-
ing Depthwise-Convolutions to create overlapping
patches for the model. Our Depthwise-Convolution
based MHSA block integrates spatial information to
estimate long range semantic dependencies for the first
time in a medical imaging context. Wide-Focus, as
seen through our ablations, helps leverage fine grained
feature information present in medical images and is
an important factor in boosting the performance of
our transformer block. We demonstrated the ability of
our model through state-of-the-art results across mul-
tiple highly competitive segmentation datasets of vary-
ing modalities and dimensions. Our FCT block is the
first fully convolutional transformer block proposed for
medical imaging applications, and can be easily ex-
tended to other domains and applications of medical
imaging. We believe that our model can serve as an
effective backbone for future segmentation tasks and
pave the way for innovations in transformer-based med-
ical image processing.
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