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Abstract

This paper presents a framework for jointly grounding
objects that follow certain semantic relationship constraints
given in a scene graph. A typical natural scene contains
several objects, often exhibiting visual relationships of var-
ied complexities between them. These inter-object rela-
tionships provide strong contextual cues towards improv-
ing grounding performance compared to a traditional ob-
ject query-only-based localization task. A scene graph is
an efficient and structured way to represent all the objects
and their semantic relationships in the image. In an attempt
towards bridging these two modalities representing scenes
and utilizing contextual information for improving object
localization, we rigorously study the problem of grounding
scene graphs on natural images. To this end, we propose
a novel graph neural network-based approach referred to
as Visio-Lingual Message PAssing Graph Neural Network
(VL-MPAG Net). In VL-MPAG Net, we first construct a di-
rected graph with object proposals as nodes and an edge
between a pair of nodes representing a plausible relation
between them. Then a three-step inter-graph and intra-
graph message passing is performed to learn the context-
dependent representation of the proposals and query ob-
jects. These object representations are used to score the
proposals to generate object localization. The proposed
method significantly outperforms the baselines on four pub-
lic datasets.

1. Introduction

“What are the mental events that transpire when our
eyes alight upon a novel scene? The comprehension
that is achieved is not a simple listing of the creatures
and objects. Instead, our mental representation
includes a specification of the various relations that
exist among these entities.”

–Biederman et al., [1]

Figure 1: Our goal: Grounding scene graph on image.
Given a scene graph and an image, we ground (or localize)
objects and, thereby, indirectly visual relationships as well
jointly on the image. [Best viewed in color].

The linking of concepts to context is referred to as
‘grounding’ [3]. In visual grounding, natural scene is the
context, whereas concepts may be expressed using differ-
ent modalities of queries such as sketch [32], natural im-
age [13], speech [4], text [17, 22, 41] or scene graph [16]. In
many computer vision tasks such as image generation [21]
and image editing [31], scene graphs have been a pop-
ular choice as a query owing to their capability of ex-
pressing complex scenes having multiple object instances
and semantic relationships among them in a concise, non-
ambiguous, and structured way. Further, as noted in [28],
“scene graphs explicitly provide a scene’s geometry, topol-
ogy, and semantics, making them compelling representa-
tions for navigation”. In fact, scene graphs have proven
their utility in embodied AI [40], where the scene prior is
often encoded as a scene graph, and grounding them in an
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environment helps embodied agents navigate efficiently.
Foresighting the aforesaid applications, Johnson et

al. [16] have introduced the task of scene graph grounding
as an auxiliary task to scene graph-based image retrieval as
an early work in this direction. While using the graphs as
queries for grounding objects is, in principle, exciting, one
natural question is how to construct such queries. One pos-
sible direction is to use natural language sentences to graph
generation [30], which is yet to achieve an acceptable level
of performance for long and complex sentences and is an
open area of research [36]. Another possibility is to use
a carefully-designed user interface where non-expert users
can quickly draw graphs of arbitrary complexity [16, 43].
Further, one can also obtain scene graph queries by choos-
ing them from a fixed set of scene graphs representing
the spatial configuration of objects in a scene obtained us-
ing commonsense knowledge [11] such as {⟨ Monitor, on,
Table⟩, ⟨ Keyboard, near, Monitor⟩, ⟨Chair, next to, Table⟩,
⟨Person, sitting on, Chair⟩}. Regardless of the method used
to obtain scene graph queries, our scope in this paper is to
study scene graph grounding as a standalone task.

In this work, we formulate and study the task of ground-
ing scene graphs on images as defined in Figure 1, in a prin-
cipled manner. Further, we propose a novel, robust and ef-
fective solution strategy suitable for the query data structure
and the task at hand; and provide rigorous experiments and
analysis on large-scale computer vision benchmarks. We
hope this work will help establish the scene graph ground-
ing as an important and stand-alone cross-modal computer
vision problem, thereby leading to exciting contributions to-
ward this open problem.

In this work, we propose a novel method to solve the
scene graph grounding problem. To this end, given a query
scene graph Gl and an image, we first obtain object propos-
als on the image using a region proposal network and con-
struct a proposal graph Gv . Note that the proposal graph
contains object proposals and trainable visual relationship
embeddings as representations of nodes and edges, respec-
tively. Now, suppose graph Gl and Gv contain m and n
nodes respectively, then we add m × n auxiliary directed
edges between nodes of Gl and Gv to construct a compos-
ite visio-lingual graph Gvl. These auxiliary directed edges
allow us to learn the proposal representations relevant to the
query graph. We then perform message-passing operations
on Gvl to learn the contextual proposal and object repre-
sentation. These learned proposals are scored against each
query object to perform visual grounding. We refer to our
approach as a Visio-Lingual Message PAssing Graph Neu-
ral Network or VL-MPAG Net in short.

We evaluate VL-MPAG Net on four public datasets,
namely Visual Genome [20], VRD [25], COCO-stuff [2],
and SG [16], and compare it against the following base-
lines: (i) Node-only approach where only the objects in

the scene graph query are localized without leveraging the
relationship constraints, (ii) an approach where flattened
triplets obtained from scene graph query is utilized to per-
form grounding using a state-of-the-art approach [17]. (iii)
CRF-based approach proposed by [16] where they build a
conditional random field (CRF) over the bounding boxes
on an image and perform maximum-a-posterior estimation
for object localization. These approaches either do not
leverage relationships or fail to exploit the structural in-
formation present in the graph and thus fall short in per-
formance. Contrary to these approaches, VL-MPAG Net
jointly grounds objects that follow certain semantic rela-
tionship constraints given in a scene graph and thereby, out-
perform them. The implementation for this work is pro-
vided at https://iiscaditaytripathi.github.io/sgl/.
Contributions: We make the following contributions: (i)
We pose the scene-graph grounding as a standalone problem
in a principled manner. (ii) We propose a novel model – VL-
MPAG Net towards solving this problem. The VL-MPAG
Net has two novel characteristics. Firstly, a query-guided
proposal graph generation that utilizes the relationships in
the query graph to generate a sparse proposal graph with
relevant edges. Secondly, a visio-lingual message passing
network that learns a query-conditioned structured repre-
sentation for the object proposals and the query entities to
generate better localization. (iii) We demonstrate efficacy
of VL-MPAG Net via rigorous experiments, ablations, and
analysis on modern large-scale public benchmarks.

2. Related works
Scene Graph in Computer Vision: A scene graph is a
structured representation of a scene that can precisely and
unambiguously represent multiple objects and their seman-
tic relationships. Scene graphs play a pivotal role in holis-
tic scene understanding and are a popular way to repre-
sent visual knowledge [20]. Being semantically rich in
representation, scene graphs have shown their utility in
many computer vision tasks such as visual question answer-
ing [9, 5], image retrieval [16, 35], natural scene genera-
tion [15, 44, 21], and high-level image editing [7, 31]. In
this work, we study scene graphs for grounding multiple
objects and relationships jointly on the image.
Query-guided Object Localization: In query-guided ob-
ject localization, the concepts (or queries) that need to be
localized on the image are expressed using various modal-
ities in the literature. In [32] and [13], authors use the
hand-drawn sketch and natural image of an object, respec-
tively, to express the concept of a ‘single object’. Cheng
et al. [4] use speech input to localize and segment the con-
cept of nouns, i.e., objects and adjectives. Interaction be-
tween a subject and an object has been represented by a
visual relationship, i.e., ⟨subject, predicate, object⟩ triplet.
The task where both subject and object constrained by a
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Figure 2: The proposed scene-graph grounding framework (VL-MPAG Net) works in the following steps: (i) Proposal
graph generation: A proposal graph is first constructed using object proposals obtained from RPN as nodes (shown using
gray nodes), and edges defined using the relations present in the query. Directed edges from the query nodes to the proposals
nodes (shown using dotted arrows) are also included to connect the query and proposal graph (Section 3.2). (ii) Structured
graph learning: Here, structured representation of proposals and queries are learned by a three-step message passing using
edges from the query nodes to the proposals, and in the query and the proposal graphs independently (Section 3.3), and (iii)
Proposal scoring the object proposals are finally scored against the query nodes to localize objects (Section 3.4).

visual relationship, need to be grounded on the image is re-
ferred to as Referring Relationship [25, 19, 12]. Authors in
[26, 22, 17, 8, 45] use single-line sentence or short phrase as
query to ground all the mentioned objects. The idea of scene
graphs in computer vision literature has triggered encoding
complex semantic concepts (such as the interaction between
multiple object categories and instances) in a concise and
structured form. Considering this, in a seminal work, John-
son et al. [16] utilized scene graph queries for localizing
objects constrained by visual relationships and posed it as
a maximum-a-posterior estimation problem. We take this
work further by presenting a novel graph neural network-
based approach and large-scale evaluation for grounding
scene graphs on images.
Graph Neural Networks: The graph neural network
(GNN) was proposed to learn the representation of the enti-
ties present in the graph. They have several variants such
as graph attention networks [33], graph convolution net-
works [6, 18] and message-passing networks [10]. Among
these, message-passing networks learn the representation
for both the nodes and edges in the graph and seen ap-
plication in many fields such as knowledge graph comple-
tion [34] , visual relationship detection [14], scene graph
generation [38] and scene understanding [42]. Unlike cur-
rent literature, we proposed a novel visio- lingual message
passing network to learn the structured representation for
the heterogeneous multi-modal graphs. Graph neural net-
work, in general, has been widely used for various scene
graph-related tasks. Yang et al. [39] proposed graph R-CNN
for the scene graph generation. They propose an attention-
graph convolution network where the global context in the
scene graph is used to update object nodes and relationship
edge labels. Authors in [24] use a graph similarity net-

work for grounding small phrases. Unlike ours, they as-
sume the availability of natural language query, use its em-
bedding in their framework, and perform message passing
independently on visual and lingual graphs. In [15], authors
use graph convolution for scene graph-to-image generation;
they compute a scene layout by predicting bounding boxes
and segmentation masks for objects. Then, they trans-
form the layout into an image with a refinement network.
Query-driven proposal graph generation, message passing
on multi-modal visio-lingual graphs, and learning context-
dependent representation for the proposals and query ob-
jects are some highlights of our proposed GNN-based ap-
proach, which differentiate us from the scene graph-based
GNN literature.

3. Visio-Lingual Message PAssing Graph neu-
ral NETwork (VL-MPAG Net)

3.1. Background and Problem Formulation

A scene graph is a structured representation of the scene
containing object instances as its nodes and the relation-
ship between the instances as its edges. Typically, scene
graphs also contain object attributes represented as nodes
in the graph. However, in the context of this paper, we
drop attributes and our scene graphs contain only objects
as nodes and relationships as edges. Formally, given a set
of object entities O = {e1, e2, · · · , en} and a set of rela-
tions R = {r1, r2, · · · , rm}, a scene graph is defined as
s = (V, E) such that V ⊂ O and E ⊆ V × R′ × V is a set
of labeled edges, where R′ ⊂R.

Let {Iu, Gl
u}Mu=1 be the M -pairs of natural images and

corresponding scene graphs, respectively in a trainset of a
dataset. Further, let O and R be the set of all object entities
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Notation Meaning

Gv , Gl, Gvl Proposal graph, query graph, visio-lingual graph
Iu, Gl

u uth natural image and uth scene graph
O, R Set of object entities and set of relations
Ru Set of region proposals for image Iu
Φi, i ∈ {1, 2, . . . , 6} Neural networks
W,Wi, i ∈ {1, . . . , 4} Trainable matrices
ek, ej Nodes in query graph Gl

rkj Edge in query graph between nodes ek and ej
pk, pj Nodes in proposal graph Gv

hkj Edge in proposal graph between nodes pk and pj

Skl Similarity score between proposal pk and entity el
ESkj,i Similarity score between edge hkj and relation ri

Table 1: Notations used in this paper.

and relations present in the dataset. Each query scene graph
Gl

u is a set of triples {(ei, rj , ek)} such that the object enti-
ties ei, ek ∈ O and the relations rj ∈ R. During inference,
given an image Iu and a scene-graph query Gl

u, the task of
grounding scene graphs on natural images involves local-
izing objects on the image that correspond to the entities,
in the scene graph, that follow the constraints given by the
corresponding relations in the scene graph.

The proposed end-to-end trainable framework is illus-
trated in Figure 2. It works in the following three stages:
(i) proposal graph generation, (ii) structured graph learning,
and (iii) joint proposal scoring which we describe next.

3.2. Proposal Graph Generation

Given an image Iu, we generate a set of region propos-
als Ru using a region proposal network (RPN) proposed
in [29]. It is a neural network that generates a fixed set of re-
gion proposals represented using bounding box coordinates
and confidence score of being a foreground, i.e., one of the
object categories in the query graph. It should be noted here
that RPN does not provide an exact object category label for
the generated proposal. One plausible approach for ground-
ing scene graphs could be to score these region proposals
against the entity nodes present in the scene graph query to
generate object localization. However, this approach does
not utilize the structural information in the query graph or
the target image and is unlikely to be very effective.

The query scene graph explicitly captures the structural
information present among the objects and is represented
as the edges that denote the relationships between objects.
However, to incorporate the structural information (inter-
object semantic relationship) present among different re-
gions in the target image, we create a graph with region
proposals as the nodes and the edges as the relationships
constraining them. The RPN gives a set of region propos-
als, and we propose a ‘query-driven’ strategy to establish
directed edges between pairs of proposals by leveraging the
semantic relations present in the query scene graph. If the
proposals are fully connected, the proposal graph would
have O(|Ru|2)-edges. However, the number of actual con-
nections is restricted by the plausible set of relationships

constrained by the visual semantic association between the
objects in the scene and is much smaller than O(|Ru|2).

Given a pair of region proposals (pk, pj) and their corre-
sponding bounding box coordinates (Bk, Bj), we first esti-
mate the representation of the proposals as follows: pϕk =

Φ1(pk) and pϕj = Φ1(pj), where pϕk , p
ϕ
j ∈ Rd and Φ1 is

a neural network. Note that pk and pj denote the image
region bounded by Bk and Bj on image respectively. We
then compute the representation of the edge between these
two nodes as hϕ

kj = W
[
pϕk , p

ϕ
j ,Φ2 ([γk,j , γk,kj , γj,kj ])

]
.

Here, W ∈ R3d×d, hϕ
kj ∈ Rd and Φ2 is neural network.

The γs are computed using bounding boxes Bk and Bj as
follows: given a pair of bounding boxes Bk and Bj , we
first construct a union rectangular box Bkj that tightly en-
closes Bk and Bj , and then we compute geometric features
for each pair of boxes in {(Bk, Bj), (Bk, Bkj), (Bj , Bkj)}.
For example, the geometric features for the pair (Bk, Bj)
are computed as follows:

γk,j =

[
ln

|xk − xj |
wk

, ln
|yk − yj |

hk
, ln

wj

wk
, ln

hj

hk

]T
, (1)

where, (xk, yk, wk, hk) are the bounding box coordinates
of the box Bk; and these features are generated for every
pair of object proposals. Now, to retain only those edges for
which the representations obtained using visual cues hϕ

k,j

are well aligned to at least one of the relations present on
the given query scene graph, we score each pair of propos-
als (pk, pj) against the relations present in the scene graph
query as follows:

relSimkj = max
(
Θ
(
hϕ
kj , ri

))K

i=1
, (2)

where, {r1, r2, . . . , rK} is the set of relations present in the
query graph Gl

u and Θ is cosine similarity. Now, we add
directed edge from the proposal pk to pj if the relationship
similarity score relSimkj is above a predefined threshold.
This process is repeated for each pair of proposals to gen-
erate a directed graph with pϕk as the node representations
and hϕ

kj as the edge representations. Please note that all the
mappings in this graph generation process, i.e. (W,Φ1,Φ2)
are learnable and are trained in an end-to-end fashion.

3.3. Structured Graph Learning

Let Gl
u be the directed graph representing the uth scene-

graph query, and Gv
u be the corresponding proposal graph

generated from image Iu as described in the the previous
section (Section 3.2). The nodes in the query graph Gl

u

represent the objects, and the edges represent the relation-
ship between the object nodes. We use Glove [27] to get
the initial representation of the entities and relations in Gl

u.
The representation of nodes in both of these graphs is up-
dated by passing messages from the neighbors. However,
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if the proposal representations are updated independently
of the query nodes, the same proposal representation will
be learned for different query scene graphs. For example,
consider an image containing a person wearing a hat and
shoes, and two different queries (person, wearing, hat) and
(person, wearing, shoes). Concretely, in a proposal graph,
a region proposal that corresponds to the query node person
might have neighboring proposals that may correspond to
hat or shoes. If we update the representation of proposal
nodes independent of the query nodes, the representation
of the proposal gets evenly influenced by all its neighbors,
even though some of the neighbors do not correspond to
any of the query nodes. To mitigate this problem, we add
directed auxiliary edges from each node of the query graph
Gl

u to each node of the proposal graph Gv
u as shown by the

dotted edges in Figure 2 and construct a combined visio-
lingual graph. A three-step message passing on this graph
is performed to update the representation of nodes.

In the first step, message passing is performed on the
auxiliary edges from the query graph to the proposal graph,
and the representation of object proposals is updated as:

p̄ϕk = W1p
ϕ
k + W2

∑
j

simkj · eϕ
′

j , (3)

simkj =
e

[
(W3p

ϕ
k)

T
(

W4e
ϕ′
j

)]
∑

l e

[
(W3p

ϕ
k)

T
(

W4e
ϕ′
l

)] , (4)

where, W1,W2,W3,W4 ∈ Rd×d and eϕ
′

j is the representa-
tion of entity ej in the query graph obtained using Glove. In
this step, a weighted sum of the representation of the query
nodes is added to each proposal’s representation. Also, the
weight depends on the compatibility of the proposal repre-
sentation with the query nodes. This step helps incorporate
query information in the proposal representation. In other
words, for a target image, the final representation of the re-
gion proposals will be learned differently for each query.

In the second step, message passing is performed on the
query scene graph. For the query graph Gl

u, the node repre-
sentations are updated as follows:

r̂ϕ
′

kj = Φ3

([
eϕ

′

k , eϕ
′

j , rϕ
′

kj

])
, (5)

êϕ
′

k =
1

|nbd(ek)|
∑

nbd(ek)

Φ4

([
eϕ

′

k , r̂ϕ
′

kj

])
, (6)

where nbd(ek) is the set of neighbouring nodes of ek in the
graph Gl

u and Φ3,Φ4 are two-layer neural networks. Fur-
ther, in the third step, given the proposal graph Gv

u, the rep-
resentation of the proposal nodes are updated as follows:

ĥϕ
kj = Φ5

([
p̄ϕk , p̄

ϕ
j , h

ϕ
kj

])
, (7)

p̂ϕk =
1

|nbd(pk)|
∑

nbd(pk)

Φ6

([
p̄ϕk , ĥ

ϕ
kj

])
. (8)

Here, nbd(pk) is the set of neighbours of node representing
proposal pk in the proposal graph Gv

u, and Φ5,Φ6 are two-
layer neural networks. After learning the contextual repre-
sentation of nodes in both graphs, the proposal nodes are
scored against the query nodes to ground the scene graph
on the image. The representations learned after the second
and third steps of message passing can be made more ex-
pressive by using two layers of GNN because it enables the
model to utilize a 2-hop neighborhood context.

3.4. Joint Proposal Scoring

Once the representation of the query objects and the re-
gion proposals are updated, a scoring function Θ is used to
score the region proposals with the query objects. Consider
a proposal pk ∈ Ru with a label variable yk. During the
training phase, yk is assigned a class cel or 0 based on its
intersection-over-union (IoU) with the ground truth bound-
ing box of the query object el belonging to class cel . It is
assigned the class cel when its IoU ≥ 0.5 and 0 otherwise.
Once the labels are assigned to the proposal boxes, the score
of each region proposal with respect to the queries are gen-
erated as follows: Skl = Θ(p̂ϕk , ê

ϕ′

l ), where Θ is cosine
similarity and Skl is the similarity score between represen-
tations of the proposal pk and query node el. For each node
el in the query graph and a set of region proposal Ru for
image Iu, the loss function is defined as follows:

L(Qu, el) =
∑
k

{
−
(
1[yk=cel ]

ln(Skl)
)

−
(
1[yk ̸=cel ]

ln(1− Skl)
)
+ Lk

MR

}
.

(9)

Here, Lk
MR is a margin loss and is defined as follows:

Lk
MR =

∑
j=k+1

{
1[yk=yj ]max(|Skl − Sjl| −m−

, 0) + 1[yk ̸=yj ]max(m+ − |Skl − Sjl|, 0)
}
,

(10)

where m+ and m− are the positive and negative margins,
respectively, and yk is the class label for the proposal pk.
The margin loss in Equation (10) takes a pair of proposals
and ensures that the proposal pair that are assigned the same
label has prediction probabilities closer to each other and
at the same time makes the proposals with different labels
wider in terms of prediction probabilities.

To select a desirable set of edges during proposal graph
generation, a loss function is also defined on edges that can
be constructed from the set of region proposals. For a set of
N region proposals,

(
N
2

)
edges connecting a pair of region

4395



COCO-stuff VG-FO SG
R@1 R@5 R@1 R@5 R@1 R@5

Edges removed
node-only (Detection) 21.0 47.9 30.1 62.8 23.4 -
node-only (Localization) 33.9 57.2 29.9 53.5 34.7 62.5

Flattened triplets
MDETR [17] 30.1 47.9 25.4 44.8 15.9 29.9

Structured Graph Query
CRF-Based∗ [16] - - - - 23.9 -
Ours (VL-MPAG Net)
1-layer 35.5 57.9 32.7 61.6 35.9 64.2
2-layers 36.3 58.4 36.0 63.3 36.9 65.6

Table 2: Results for scene graph grounding task on
COCO-stuff val and VG-FO for completely overlapping
train-test categories setting. ∗Due to the unavailability of
the implementation of [16] at the time of submission of this
paper, we only compare with reported results in their paper.

proposals can be defined. Let E be the set of all such edges.
Consider a directed edge hkj ∈ E (where k and j are source
and target nodes respectively.) and its label variable zkj .
The variable zkj is assigned a label cri if the pair of propos-
als corresponding to the edge hkj follows the relation ri in
the query graph. The visual representation of the said edge
is subsequently scored against the relationship embedding
ri as follows: ESkj,i = Θ(hϕ

kj , r
ϕ′

i ), where, Θ is cosine
similarity, and ESkj,i is the score between the edge hkj and
the relation ri. For the relation ri and the set of edges E , the
loss is defined as follows:

L(E , ri) =
∑
l

{
−
(
1[zkj=cri ]

ln(ESkj,i)
)

−
(
1[zkj ̸=cri ]

ln(1− ESkj,i)
)}

,

(11)

where, cri is the label of relation ri. One example of
such a label is ‘wearing’. Generally, for a relation, the num-
ber of positive and negative edges have a huge imbalance
(usually much more negative than positive edges), leading
to poor training. To mitigate this problem, we present the
following strategy to sample a more balanced set of edges.

Consider an edge (l,m) (relation) in a query scene
graph. All N region proposals are scored, as defined previ-
ously, with both the nodes (el and em) present in the edge.
Suppose Pl and Pm are the list of proposal sorted in de-
creasing order of scores with respect to el and em. We select
p proposals each from Pl and Pm randomly but ensure half
of them come from the top 50 of each list. From these sets
of p proposals, a set of edges are formed that connect pro-
posals from selected lists. These steps are repeated for all
the edges in the query scene graph to obtain a balanced sub-
set. Then, the loss function defined in Equation (11) is com-
puted for these balanced subsets of edges in mini-batches.
In our experiments, we empirically choose p = 48. We
also define cross-entropy loss on the labeled (foreground
or background) feature vectors of the region proposals and

Edges 1 2 3 4 5 6 7 8

VG-FO
R@1 33.8 35.8 33.5 30.7 27.9 26.0 24.6 23.2
R@5 62.7 64.9 61.2 58.2 54.2 53.2 49.5 48.6
#Samples 21,807 7,543 3,826 2,347 1,547 936 693 434

VG-PO-Unseen
R@1 23.9 30.0 33.7 35.1 34.7 35.7 40.1 35.7
R@5 51.2 58.1 61.5 59.8 56.1 56.4 59.2 56.9
#Samples 25,913 7,665 3,005 1,391 770 390 218 130

Table 3: Effect of the size of the query on the perfor-
mance of the model. Unseen refers to the set of categories
in VG-PO not used during training. (Refer to Section 4.2).

a regression loss on the predicted bounding box locations
with respect to the ground truth bounding boxes.
Inference: During inference, after obtaining object propos-
als on the image, we update query objects and proposals
embeddings via message passing on the constructed graph.
Different from the training, we then score the region propos-
als against the query objects and choose the highest-scoring
proposals for each query object as the localization output.

4. Experiments and Results

4.1. Datasets, Evaluation Protocols and Baselines

We use four public datasets, namely Visual
Genome [20], VRD [25], COCO-stuff [2] and SG [16] for
our experiments. Among these, motivated by VRR-vg [23]
and VG-150 [37], to minimize the bias due to long-tail
distribution and visually-irrelevant relationship (such as
a field for plane or sign that says pumpkin), we use a
subset of the visual genome containing 93K image-scene
graph pair for training and 40K image-scene graph pair for
testing. The scene graphs in this dataset are constructed
using 150 object categories and 40 predicates. We refer
to this split of the visual genome as Visual Genome-Fully
Observed (or VG-FO). To facilitate the study of grounding
unseen objects, we create a split called Visual Genome-
Partially Observed (or VG-PO) which contains scene
graphs constructed from subsets of 125 object categories
during training, whereas the testing scene graphs contain
subsets of additional 25 object categories. The other three
datasets, i.e., VRD [25], COCO-stuff [2], and SG [16]
contain (45K, 100, 70), (77K, 183, 6), and (5K, 166, 68)
number of images-scene graph pairs, object categories,
predicates in all. The scene graphs for COCO-stuff are
constructed using protocols from [15]. We use Recall at 1
and 5 (denoted as R@1 and R@5 from here onwards) to
evaluate scene graph grounding by considering an object
localization as correct when its intersection over union with
the ground truth bounding box is ≥ 0.5

Baselines: As there is no existing method that addresses
the task of visual grounding when scene graph is used
as query except a CRF-based approach [16]. Therefore,
along with comparing against them, we present baselines
to understand: (i) Importance of visual relations (i.e.,
edges in the query) in localizing objects. To this end,
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Figure 3: A selection of results on Visual Genome. Scene graph query along with the grounding results are shown side by
side using the same color border for object nodes in the query graph and corresponding grounded object bounding boxes.

we present the following two baselines for edges-removed
queries: (a) Node only (Detection-based): We detect the set
of object categories in the query scene graph using Faster-
RCNN [29]. Note that this model is limited to object cate-
gories seen during training. (b) Node only (Localization-
based): In this, we obtain region proposals using faster-
RCNN and then score them against the Glove word repre-
sentation of each object present in the query graph to gener-
ate localizations. (ii) Importance of structured property
of the query graph. To this end, we use flattened triplets
(subject-predicate-object) obtained from the scene graph as
a query in MDETR [17] – a transformer-based model for
visual grounding task. To make a fair comparison with our
model, we train this model only on our datasets without
any pretraining and use Resnet50 as the backbone. Fur-
ther, when the scene graph contains only two nodes, the
problem of scene graph grounding reduces to referring re-
lationships [19]. Thus, for such cases, we compare with
state-of-the-art referring relationship methods [19, 25, 12].

4.2. Results and Discussion

We first show the results on VG-FO, COCO-stuff, and
SG datasets in Table 2. We observe that VL-MPAG Net
outperforms all the baselines on all datasets. The node-only
baselines do not leverage the visual relationship in the scene
graph query and perform poorly. The flattened scene-graph
grounding approach (MDETR) does not encode the struc-
tural information in a scene graph and falls short in perfor-
mance. Also, it needs to deal with language understanding
challenges such as co-references, noun phrase and relation-
ship extraction, and long-range dependency of the concepts.
MDETR requires a lot of training data; therefore, to evalu-
ate the model on the SG dataset (which contains only 4K
training samples), we utilize the MDETR model trained on
the VG-FO dataset. The VL-MPAG Net outperforms the
CRF-based approach [16], indicating better representation
learning by GNNs than CRF for the scene-graph localiza-
tion task. Further, COCO-stuff has fine-grained object cate-
gories that are semantically very close (e.g., wall-wood vs.
wall-stone). This causes inferior performance of node only
(detection) baselines on COCO-stuff.
Effect of number of edges in the query graph: We
perform grounding scene graphs experiments with varying

Model Subject Object
R@1 R@5 R@1 R@5

SSAS [19] 21.5 - 24.2 -
VRD-LP [25] 31.5 38.8 34.9 40.3
CPARR [12] 49.8 69.4 52.4 70.2
Ours (VL-MPAG Net) 51.6 79.3 51.7 76.1

Table 4: Comparison of VL-MPAG Net against the re-
ferring relations baselines for the scenario when graph
contains only two nodes on VRD dataset.

sizes of the query scene graph. The largest scene graphs we
ground on the image in our experiments contain eight edges.
To analyze the performance of VL-MPAG Net with respect
to scene graph size, we compute R@1 and R@5 with vary-
ing numbers of edges in the query scene graph on two splits
of VG datasets used in this paper. As shown in Table 3,
our method successfully grounds scene graphs even when
the graph contains as large as eight edges. In the case of
VG-FO, as the dataset contains fewer samples of large-size
scene graphs, there is a drop in recall when the graph size
becomes larger. In contrast, on grounding unseen objects
(also refer to Grounding Unseen Objects towards the end of
this section), a larger scene graph size helps. This result is
intuitive as a large graph gives better global context, subse-
quently enabling the grounding of unseen objects as well.

For scene graphs containing only one edge, the problem
of scene graph grounding reduces to referring relationship.
We directly compare our approach with state-of-the-art re-
ferring relationships methods in Table 4 on VRD dataset.
Here, CPARR [12] utilizes the relation between the query
nodes by combining the node prediction score with the re-
lation prediction score at the last stage. VL-MPAG Net,
instead, utilizes the relation information during the initial
stages of modeling and, thereby, achieves competitive if not
better R@1 and significantly better R@5 (nearly 10% and
6% better compared to the most competitive method).
Qualitative Analysis: A selection of scene graphs ground-
ing on the VG-FO dataset is shown in Figure 3. From de-
tailed analysis (refer to the supplementary material), we ob-
serve that VL-MPAG Net is able to localize the correct ob-
jects in a dense image containing instances of many object
categories. As an example in the Figure 3, in the second
example, the model is able to localize the ‘flowers’ printed
on the ‘plate’ as specified in the query.
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Model Seen Categories Unseen Categories
R@1 R@5 R@1 R@5

Node only (Localization) 33.2 56.6 19.6 43.1
MDETR [17] 26.2 47.1 26.4 45.7
Ours(VL-MPAG Net)

1-layer 38.0 64.9 27.5 54.5
2-layers 39.9 66.9 29.0 53.6

Table 5: The proposed model outperforms the baselines for
‘seen’ and ‘unseen’ object categories on VG-PO dataset.

Multi-instance Localization: The representations learned
for the nodes of the same class in our framework differ due
to the difference in the one- or two-hop neighboring objects
and relations. Therefore, our framework naturally enables
multi-instance localization. Even if one- or two-hop ob-
jects and relations are the same (For example, the leftmost
localization in Figure 3), our model allows localizing all
the objects corresponding to each node and thereby enables
multi-instance localization. However, in such rare cases, it
becomes infeasible to disambiguate different instances.
Grounding Unseen Objects: Although the primary goal of
this work is to address the task of grounding scene graphs
on natural images, localization of unseen object categories
is an auxiliary but challenging setting that we also evalu-
ated on the VG-PO dataset in Table 5. Compared to ‘seen’,
‘unseen’ object categories suffer in performance. However,
the proposed model can better capture the context between
objects, leading to significantly better performance than the
baselines. The node only (loc.) suffers the most because it
does not utilize the relations that might help the localization
of ‘unseen’ object categories. MDETR, on the other hand,
uses a transformer-based model to learn the contextual em-
beddings and captures the context for ‘unseen’ categories,
which in turn aid in their localization. Node only (det.) re-
quires all the object categories to be known during training;
hence, is dropped for comparison.
Robustness to Sparse and Incomplete Query: The scene
graph grounding method must be robust against sparse and
incomplete queries, not just clean ones. To demonstrate
the robustness of the proposed model, we first perturb the
scene-graph queries by introducing different degrees of
noise and then evaluate our model against such perturbed
queries. For each edge in the scene graph, we perturb the
graph with a probability p by replacing the subject, ob-
ject, or relation with synonyms obtained using the Word-
Net synsets or removing the relation from the query graph.
We utilized the VL-MPAG Net model trained on the VG-
FO dataset to perform this analysis. For 10% to 40% noise,
we obtain the R@1 = [30.6, 29.9, 29.0, 28.2] respectively,
demonstrating the robustness of our model to incomplete
and sparse scene graph queries.
Analysis of the message-passing steps: The message pass-
ing, in our framework, is performed on the auxiliary edges
from the nodes of the query graph to the nodes of the pro-

AE-MP QG-MP PG-MP Order R@1 R@5

29.9 53.5
✓ ✓ 28.5 53.0

✓ ✓ 31.8 59.6
✓ 29.9 53.7
✓ ✓ ✓ QG-MP → AE-MP → PG-MP 31.3 59.3

✓ ✓ ✓ AE-MP → QG-MP → PG-MP 32.7 61.6

Table 6: Analysis of the message passing steps per-
formed on the VG-FO dataset. Here AE-MP, QG-MP, and
PG-MP denote Message Passing on auxiliary visio-lingual
edges, the query graph, and the proposal graph, respec-
tively. A → B indicates that A is performed before B.
The last row represents our full model.

posal graph (AE-MP), the query graph (QG-MP), and the
proposal graph (PG-MP). To better understand the effect of
these message-passing steps and their order, we performed
an ablation experiment by removing them one by one and
changing the order of AE-MP and QG-MP on the VG-FO
dataset. Results of this ablation are reported in Table 6. The
first step, where message passing is performed on the auxil-
iary edges from the query graph to the proposal graph (AE-
MP), is essential, as evident by the decrease in performance
(row 2 in Table 6) when it is excluded. Further, the mes-
sage passing on the query graph (QG-MP) and the proposal
graph (PG-MP) helps to incorporate the structural informa-
tion while learning the representation of the nodes and the
edges, leading to improvement in localization performance.
The order of message passing is also crucial. Performing
message passing on auxiliary nodes first, followed by query
graph and proposal graph respectively (AE-MP → QG-MP
→ PG-MP) helps VL-MPAG Net learn better conditional
node representations for the proposal graph, thereby help-
ing to achieve better localization. This is also evident in
results where we observe that the above order gives a su-
perior performance compared to one where message pass-
ing on query graph (QG-MP) is performed before message
passing on auxiliary nodes (AE-MP).

5. Conclusions

We thoroughly studied the problem of grounding
scene graphs on natural images, presented an end-to-end
visio-lingual message passing-based graph neural network
framework, and performed experiments on large-scale im-
age datasets. The performance improvement over baselines
confirms the efficacy of the proposed VL-MPAG Net and
exhibits that better modeling of the context present in scene
graphs leads to better grounding. We believe this work will
revive research interests and future contributions toward
the under-explored scene graph-based grounding problem.
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