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Abstract

Neural Network classifiers generally operate via
the i.i.d. assumption where examples are passed
through independently during training. We propose
CNN2GNN and CNN2Transformer which instead
leverage inter-example information for classification. We
use Graph Neural Networks (GNNs) to build a latent
space bipartite graph and compute cross-attention scores
between input images and a proxy set. Our approach
addresses several challenges of existing methods. Firstly,
it is end-to-end differentiable despite the generally discrete
nature of graph construction. Secondly, it allows inductive
inference at no extra cost. Thirdly, it presents a simple
method to construct graphs from arbitrary datasets that
captures both example level and class level information.
Finally, it addresses the proxy collapse problem by
combining contrastive and cross-entropy losses rather
than separate clustering algorithms. Our results increase
classification performance over baseline experiments and
outperform other methods. We also conduct an empirical
investigation showing that Transformer style attention
scales better than GAT attention with dataset size.

1. Introduction
Traditionally in image classification, examples

are independently passed through a CNN model
which is a stack of convolutional and pooling
layers followed by fully connected classification
layers. The convolutional and pooling layers combine
information from local parts of each image with
the goal of producing a global vector representation
in the fully connected layers. Recent Vision
Transformer based methods [1, 2] replace the
convolution operation with a self-attention module
that operates over patches of an image and which
also computes a per-image global representation.
Implicit in this paradigm is that each image
is processed independently of all other images
and thus although CNNs and Vision Transformers
learn from each image individually, they do not
explicitly capture relationships between images in
the global example space. In particular, there is a
difference between constructing an intra-image global
representation that combines local information of
one image and constructing an inter-image global

Figure 1: Diagram of cross-entropy loss (top-left),
contrastive loss (top-right), and our combined loss (bottom).
We use standard cross-entropy loss along with an adapted
contrastive loss where we compute losses between training
examples and a set of proxies and anchors which are
uniformly distributed by class.

representation which combines information from
multiple images. To allow for the latter, we
leverage GNNs which provide a natural framework
for describing relationships.

The two primary operations in GNNs are
propagation and aggregation. The propagation
step updates each node’s feature representations
via a weight matrix, W, and the aggregation step
applies a permutation invariant function (e.g. sum,
max) over each node’s neighborhood. Aggregation
allows GNNs to learn the relationships between
examples through neighborhood information routing.
Early GNN variants such as GraphSAGE [3] and
Graph Convolutional Network (GCN) [4] use
isotropic neighborhood aggregation. Graph Attention
Networks (GATs) [5, 6] extend aggregation by
introducing an attention computation in the model
which allows nodes to preferentially weight the
contributions of neighbors. This is particularly
important in low-homophily graphs where the
majority of a node’s neighbors are of a different class
[7].

A drawback of many GNN methods is the inability
to do inductive inference. Many methods operate
only in a transductive setting [4, 8, 9] where test
nodes are present in the graph during training.
Inductive inference can be especially challenging
when the user must define the graph as the graph
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generation processes during training and testing may
be misaligned, leading to poor generalization. A
common scheme for building graphs from arbitrary
data is to use a k-nearest neighbors (KNN) graph
[10–12] where nodes are connected via a distance
metric defined over the initial feature space. There are
three main drawbacks to using this method. Firstly,
the structure of the graph is determined via some
initial feature representation which may be a poor
prior for the downstream task. Secondly, this process
is non-differentiable due to the nature of the KNN
selection rule [13, 14] which disconnects the model
that learns the initial features from the model that
learns on the graph. Thirdly, inductive inference
does not scale because it necessitates a computation of
order O(n · t), where n is the number of training nodes
and t is the number of test nodes, to place new nodes
into the graph before a forward pass. We address
these drawbacks by constructing a complete bipartite
graph between training examples and a fixed proxy
set containing learnable proxy vectors and anchor
examples which are chosen uniformly over each class
in the training data. Thus the graph is not built
based on some initial feature representation, but is
instead constructed via class information, directly
aligned to our downstream task. Our model is
end-to-end differentiable as the graph connectivity
circumvents the non-differentiability of the KNN
selection rule. Finally, node insertion for inference is
an O(1) operation because each test example is simply
connected to each element in the proxy set, mirroring
the training setting.

We also explore the relationship between GNNs
and Transformers as described in [15]. The
relationship between GNNs and Transformers is
relevant in our setting because the graph structure
we propose is complete and bipartite like the
self-attention mechanism of Transformers [16]. We
discuss these details in Section 3.3. Our main
contributions are the following:

• We propose a simple framework for building
graphs from arbitrary image data which
leverages inter-example information. It improves
on existing methods by allowing end-to-end
learning and inductive inference and clearly
improves classification accuracy by adding a
simple module to a backbone CNN.

• We use proxies that contrastively learn class
level global information and are also directly
incorporated into feature representations for
classification. We show that a simple combination
of contrastive and cross-entropy losses can
prevent proxy collapse (when learnable proxies

are ignored by the model).
• We conduct an empiricial investigation of two

styles of attention and show the better scalability
of Transformer attention in comparison to GAT
attention.

2. Related Work

GNNs Many GNN methods differ primarily in the
aggregation function [3–6, 17–19]. Splitting up
computation is also a vital part of using GNNs for
large graphs. Methods such as GCN [4] originally
required the entire graph adjacency matrix during
each forward pass. GraphSAGE [3] addresses this
problem through neighborhood sampling. Our
approach makes neighborhood sampling simple via
a complete bipartite graph structure with a fixed
number of proxy set nodes, and we use one-hop
neighborhoods during forward propagation.

In most GNN settings, a graph structure is given.
Misraa et al. [10] explore cases where the graph
structure is not available and must be constructed
using a combination of class based connectivity and
KNN based connectivity. Our method constructs the
graph at the dataset level rather than the mini-batch
level like in [20]. Zhu et al. [7] explore the effect of
homophily on node classification and highlight how
many GNN methods struggle with heterophily. We
overcome this through attention and the construction
of our loss function.
Image Classification We use the ResNet architecture
[21] as the backbone of our model as ResNets have
been shown to be competitive with the state of the
art for image classification. We replace the fully
connected layers used in classic CNN architectures
[21–24] with our cross-attention module and apply a
linear projection for classification.
Contrastive Loss and Proxies Contrastive methods as
described in [25–28] seek to construct an embedding
space such that similar examples cluster together.
This can be done by generating pairs or triplets of
examples. Common approaches include using the
same image with different augmentations to construct
positive pairs [29, 30] or using label information to
construct pairs or triplets of objects [26]. Selecting
pairs or triplets can be computationally expensive.
Solutions to this problem include picking particularly
hard [31] or semi-hard negative examples [32] or
ignoring negative examples altogether [33]. Methods
such as [34–36] introduce proxies or anchors to reduce
pair and triplet selection. Again our method operates
at the dataset level rather than the mini-batch level
in choosing anchors and proxies. Proxies can be
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susceptible to collapse. Methods such as [30] handle
this by enforcing an equipartition constraint. We show
that a combination of contrastive and cross-entropy
losses can prevent proxy collapse as described in
Section 3.4.
SVMs, Kernel Methods, and Prototypical Networks
Support Vector Machines (SVMs) [37] and kernel
methods [38, 39] are similar to our approach
in that they capture relationships between data
points. SVMs use support points which are
analogous to our anchors while kernel methods
capture similarity scores between all data points via
a kernel function making them difficult to scale with
more examples. A downside to both methods is
that the feature transformation for classification is
found by experimenting with a choice of kernel.
Neural networks construct a latent space directly
optimized for the downstream classification task. We
leverage the idea that computing similarities and
using support examples is useful, but we instead
use neural networks as an embedding function,
use attention for similarity computations, and learn
the support examples to be directly optimized for
classification. Non-parametric approaches such as
[40] also learn relationships between data points via
attention, but our parametric approach is directly
tuned for downstream classification and scales better
because attention is applied over a proxy set which
represents the broader data distribution rather than
over the entire dataset.

We also adapt ideas from few-shot learning
through Prototypical Networks [41] which assume
a prototype representation for each class can be
captured by taking the mean of embedded support
set examples. Classification is done by computing
distances to the prototypes. We use embedded
anchor examples as class representatives, but
also include fully learnable proxy vectors which
are not constrained by the embedding function.
Furthermore, rather than computing distances to
prototypes, we use cross-attention and aggregate
information between input image embeddings,
anchor examples, and proxies before performing
a linear classification. This differs from other
methods that generally use proxies/prototypes only
contrastively rather than incorporating them directly
into feature representations.

3. Method

We build a proxy set and add a cross-attention
module on top of a backbone CNN model to learn
relationships between data points for better image
classification. Our approach can be summarized as a

series of five steps:
1. Select c anchor images from dataset D - one per

class
2. Initialize c learnable proxy vectors P ∈ Rc×F

3. Pass n training images and c fixed anchor images
through an encoder CNN, Φ - giving train
embeddings, X ∈ Rn×F, and anchor embeddings,
L ∈ Rc×F

4. Compute separate cross-attentions: CA(X, L) =
L′ and CA(X, P) = P′. The style of
attention differs between CNN2GNN and
CNN2Transformer.

5. X′ = Aggregate(X, L′, P′). Pass X′ through a
linear classification layer.

3.1. Graph and Proxy Set Construction

The proxy set consists of two types of examples:
proxy examples and anchor examples. The proxy
examples are learnable parameters that are initialized
with a dimension equal to the embedding dimension
of a backbone CNN. This allows an attention
coefficient to be computed between each training
example and proxy. We select c proxies corresponding
to c classes in the dataset because the proxies are
meant to serve as global class representatives that
partition the latent space. Anchors remain fixed
throughout the training and inference settings and are
sampled uniformly over each class:

L = {ℓi ∈U Xi : Xi ⊆ X}, i = 1 . . . c (1)

where L is the set of anchors, ∈U is the uniform
sampling operation, c is the number of classes in the
dataset, X is the training set, and Xi is a subset of X
containing elements of class i. We discuss the role
of anchors in the loss function in Section 3.4. In
all settings, a complete bipartite graph is constructed
between a mini-batch of training examples and the
proxy set.

3.2. Isotropic Aggregation

We explore isotropic aggregation functions as used
in previous GNN methods. A forward propagation
step for a mini-batch with meanpooling aggregation
is defined as:

zB = D
−1
2 AD

−1
2 [ϕ(X) ∥ P ∥ ϕ(L)] (2)

where zB is the updated representation for the images
in the mini-batch, X is the set of input images, D

−1
2

is the inverse degree matrix after an element-wise
square root, A is the mini-batch adjacency matrix, ϕ
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Figure 2: Forward propagation steps in the CNN2GNN with attention.

is a backbone CNN, P is the set of proxies, L is the set
of anchors, and ∥ is the concatenation operation.

The maxpooling aggregation is similar
to meanpooling, but multiplication by the
adjacency matrix is replaced by a feature-wise
maximum over the concatenated training node
and proxy set representations. The maxpooling
aggregation for an input image, Xi is computed as:
zi = max [ϕ(Xi) ∥ P ∥ ϕ(L)].

3.3. Attention Based Aggregation
Anisotropic attention based aggregation allows the

model to weight proxy set elements when producing
new training example representations. Proxy set
elements serve as global class representatives so each
input image should most greatly attend to the element
corresponding to its class rather than equally over
each proxy set element. Furthermore, our artificially
constructed graph has high heterophily with an edge
homophily ratio of 1

c as described in [7], where c is
the number of classes. Because GNNs can struggle
in heterophilic settings [7, 42] anisotropic aggregation
allows for a more refined neighborhood context.

We experiment with two approaches for applying
attention.

3.3.1 CNN2GNN

In CNN2GNN, the attention computation can be
written as follows [6]:

e(hi, hj) = aT LeakyReLU(W[hi ∥ hj]) (3)

where e(hi, hj) is the attention weight between a
source image, hi, and a member of the proxy set, hj,

aT is a learnable attention vector, and W is a learnable
weight matrix.

Each training node attends over each proxy set
element, producing a complete bipartite graph with
optional self-loops as seen in Figure 2. We adapt the
implementation from [43] and present the forward
propagation method for an input image in Algorithm
1. For brevity of notation, we show the single-headed
attention case for a single example.

Algorithm 1: CNN2GNN Forward
Input : image Xi, anchors L, proxies P,

backbone CNN ϕ, adjacency matrix A
Output: Context-aware image embeddings zout

1 g = [ϕ(Xi) ∥ P ∥ ϕ(L)]
2 g1, g2 = W1g, W2g
3 gsum[i, j] = g⃗i + g⃗j ∀ g⃗i, g⃗j ∈ g1, g2

4 e = aT · LeakyReLU (gsum)
5 eij = −∞ if Aij == 0 else eij
6 α = So f tmax(e)
7 zout = α · g2

In Algorithm 1, ϕ is a backbone CNN and W1, W2
are learnable weight matrices. Note that in the
implementation, we apply Softmax separately over
the anchor and proxy indices in e to ensure that the
normalization of the anchor attention weights does
not affect the proxy attention weights and vice-versa.
Multi-headed attention is used for greater expressivity
and stability as described in [5, 16].
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3.3.2 CNN2Transformer

In CNN2Transformer, our approach incorporates
anchors and proxies as shown in Figure 3. The
equations are as follows:

Xemb, Lemb = ϕ(X), ϕ(L) (4)

Lmha = S
(

WqXemb · Wk1 Lemb√
d

)
Wv1 Lemb(5)

Pmha = S
(

WqXemb · Wk1 P
√

d

)
Wv2 P (6)

zout = ω (Xemb, Lmha, Pmha) (7)

where X is the set of input images, L is the set
of anchors, P is the set of proxies, ϕ is the CNN
backbone, ω is an aggregation function (e.g. cat, max),
S is the softmax function, and d is the embedding
dimension of the images. Wq is the learnable weight
for the queries. Wk1 , Wk2 and Wv1 , Wv2 are the
learnable key and value matrices respectively. Our
approach uses two cross-attention modules where the
queries are input images and the keys and values
are the anchors or proxies. Thus the output of the
attention modules provides two separate weighted
sums of the anchors and proxies, Lmha and Pmha,
which we then aggregate with the original image
embeddings to produce a final representation. In
this way, the final representation for each image
has information from a fixed set of other images
uniformly distributed by class (i.e. the anchors) and
with parameters trained to globally represent each
class (i.e. the proxies).

3.4. Loss Function and Proxy Collapse

Proxies can collapse without a penalizing term in
the loss function or some sort of regularization [30].
Ideally, we want each proxy to cluster with one of the
classes, acting as a global class token. We combine two
methods to avoid proxy collapse: classifying proxies
and using contrastive style losses on proxies.

Classifying elements of the proxy set is
straightforward where each proxy is assigned a
class uniformly over the number of classes and
passed through a shared classification layer to be
incorporated in each mini-batch loss. The anchors
are similarly classified. This explicitly pushes each
proxy and anchor to be representatives for their class
through a hard classification constraint.

We also apply both triplet [25] and contrastive
losses [28] to prevent collapse. We first uniformly
assign each proxy to a class label. We construct triplets
and from training examples X, anchors L, and proxies
P. Anchors and proxies are as described in Section

Figure 3: Transformer encoder module that produces new
image representations via cross-attention over anchors and
proxies.

3.1. To avoid confusion in terminology between the
anchors we use in our method and the term “anchors”
generally used in triplet loss, we will refer to the
“anchors” in triplet loss as “sources” and denote them
S. The general construction of triplet loss [25] is:

Ltriplet(S, G, N) = max
(
∥ f (S)− f (G)∥2

2−

∥ f (S)− f (N)∥2
2 + α, 0

) (8)

where S is the set of sources, G is the set from
which positives are sampled, N is the set from which
negatives are sampled, f is an embedding function,
∥∥2 is the L2 norm, and α is the margin parameter.
Note that S, G, and N are sets not elements. The
construction for contrastive loss [28] is:

D(X) = ∥ f (X1)− f (X2)∥2, X1, X2 ∈ X (9)

Lcontrastive(X) = (1 − Y)
1
2
(D(X)2+

(Y)
1
2
(max(0, α − D(X))2

(10)

where X1, X2 are instances in a larger set X, f is an
embedding function, ∥∥2 is the L2 norm, α is the
margin parameter, and Y is the similarity between X1
and X2 (i.e. whether or not they are of the same class).
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We use a four contrastive style loss terms:

Lat = Ltriplet(L, X, X), (11)

Lpt = Ltriplet(P, X, X) (12)

Lap = Ltriplet(L, P, P), (13)

Lp = Lcontrastive(P) (14)

Each term either helps prevent proxy collapse or
pushes training examples to attend to the correct
proxy set element. See Figure 4 on how the triplet
losses affect the latent space. Lat and Lpt partition
the latent space such that training images move
towards the anchors and proxies corresponding to
their class. Lap provides a consistent support set
[44] to the proxies via the anchors. Anchors also
act as class representatives but because of their
shared embedding with training examples through
the backbone CNN, their representation is similar to
that of other training examples. The anchors are also
classified during each backpropagation step which
stabilizes their representation by being repeatedly
seen by the model. The proxies are free parameters in
the model, and we found that to avoid collapse, they
require a stable grounding (provided by the anchors)
which balances the stochasticity of Lpt for an arbitrary
mini-batch. Finally, Lp enforces a margin between
each proxy to explicitly penalize collapse.

Both the contrastive style and cross-entropy losses
can be summarized as a sum of individual losses:

Ltotal contrastive = Lat + Lpt + Lap + Lp (15)

Lclassi f ication = Lce(X) + Lce(L) + Lce(P) (16)

where Lce is a standard cross-entropy loss which
classifies instances from a set. The total loss can be
summarized as follows:

Ltotal = Ltotal contrastive + Lclassi f ication (17)

We note that our method works out of the box
without careful heuristical weighting of loss terms,
but that generally it can be difficult to balance many
terms. We highlight some points on optimization that
we believe helps our method work. Different loss
magnitutudes can be problematic during optimization
so embeddings are first L2 normalized. We also
observe that optimization follows roughly three
stages. In Stage 1, classification losses decrease
relatively early in training. In Stage 2, classification
losses stabilize and contrastive losses continue to
decrease as the latent space reorganizes so proxies

move to the “correct” classes - seen in UMAP [45]
plots over time (Figure 4). In Stage 3, contrastive
losses converge during which the classification loss
also decreases to a minimum as the network is fully
optimized. Our method takes roughly 20% longer to
train over baselines (which overfit sooner) to manage
these losses but consistently converges to a better
accuracy as seen in Table 2.

4. Evaluation

4.1. Implementation Details and Datasets

In our experiments we use the standard Imagenet
pretrained ResNet18 and ResNet34 models as
baselines. To compare, we add our module on top
of the ResNets which then serve as the backbone
networks. Proxies are initialized via He initialization
[50]. All experiments use the SGD optimizer with
momentum of 0.9 and learning rate of 3 × 10−4 for
100 epochs. We use a batch size of 256 for all datasets

Backbone Aggregation Accuracy

ResNet18 Meanpool 92.64
Maxpool 92.79

ResNet34 Meanpool 92.82
Maxpool 92.90

Table 1: Isotropic Aggregation Accuracy CIFAR-10

Figure 4: CIFAR-10 image, anchor (X), and proxy (triangles)
embeddings at the start (top left), middle (top right),
and end (bottom left) of training via UMAP plots with
CNN2Transformer (ResNet34). The points are colored by
label and the graph (bottom right) shows how the decrease
of the contrastive losses corresponds with each anchor and
proxy clustering with a class.
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Table 2: Attention Models Validation Accuracy

CIFAR-10 [46] CIFAR-100 [46] STL-10 [47] SVHN [48] ImageNet-1k [49]

ResNet18
Baseline 94.07 76.95 95.38 95.29 69.42
CNN2GNN 95.51 ±0.42 74.80 ±0.81 95.70 ±0.20 96.62 ±0.55 60.12 ±1.02
CNN2Transformer 95.79 ±0.24 77.39 ±0.20 95.74 ±0.19 96.35 ±0.22 71.12 ±0.35

ResNet34
Baseline 95.24 79.32 95.89 95.56 73.03
CNN2GNN 96.39 ±0.41 77.87 ±0.91 96.89 ±0.26 97.01 ±0.31 61.02 ±0.77
CNN2Transformer 96.73 ±0.37 80.10 ±0.45 97.21 ±0.19 96.54 ±0.07 75.42 ±0.15

(a) CNN2GNN (b) CNN2Transformer

(c) CNN2GNN (d) CNN2Transformer

Figure 5: Attention matrices for validation examples with a
ResNet34 backbone where entry (i, j) shows the normalized
attention scores between images with label i and proxies
with label j. Top row is for CIFAR100 and bottom row is
for SVHN. For CNN2Transformer, examples attend most
greatly to proxies corresponding to their label shown by the
diagonal line. CNN2GNN correctly attends to the correct
proxy for the SVHN dataset but fails to do so on CIFAR-100
which has more classes as shown in (a).

except CIFAR-100 and ImageNet-1k where we use a
batch size of 100. For each run, anchors are selected
uniformly at random over the number of classes. For
data augmentation, we use Random Crop [51] and
color jitter on both the baseline and experimental
models. For the anchors, we fix the augmentation
within an epoch and apply a new augmentation
for each new epoch. We use a linear classification
protocol for all experiments. We evaluate on the
CIFAR-10 [46], CIFAR-100 [46], STL-10 [47], and
SVHN [48], and ImageNet-1k [49] datasets and use
the splits given by Torchvision.

4.2. Discussion of Results

Table 1 shows the importance of attention as
isotropic aggregation with our graph construction

Model CIFAR-10 SVHN CIFAR100
CNN2GNN 96.21 96.49 79.63

CNN2Transformer 96.82 97.10 81.49

Table 3: Images not aggregated with
anchors/proxies (ResNet34).

Model Accuracy
BYOL (ResNet50) [52] 91.3

SimCLR (ResNet50) [29] 90.5
NNCLR (ResNet50) [44] 93.7

SpinalNet (VGG19 bn) [53] 96.00
ConvMixer-256/8 [54] 96.03
Mixer-S/16-SAM [55] 96.10

DenseNet-BC (k=24) [56] 94.81
CNN2GNN (ResNet34) 96.39

CNN2Transformer (ResNet34) 96.73

Table 4: Comparisons on CIFAR-10.

Model Accuracy

ConViT-Ti [57] 73.1
MobileNetV2 [58] 74.7
LocalViT-T [59] 74.8
SimCLR (Resnet 50 2x) [29] 74.2
CMC (Resnet 50 2x) [60] 70.6
DenseNet-121 [56] 74.98

CNN2Transformer (ResNet34) 75.42
CNN2GNN (ResNet34) 61.02

Table 5: Comparisons on ImageNet-1k.

Num Proxies/Num Anchors 1 3 5

1 96.73 96.89 96.81
3 96.12 96.62 96.33
5 96.18 96.21 96.42

Table 6: CIFAR10 results varying number of anchors and
proxies per class for CNN2Transformer (ResNet34). Entry
(i, j) is a run with i proxies and j anchors.

performs worse than baselines. This is consistent with
other methods where isotropic aggregation results in
lower accuracy for heterophilic graphs.

Table 2 shows that CNN2Transformer consistently
outperforms baselines and does especially well
on ImageNet-1k. Baselines are pretrained on
ImageNet and fine-tuned for other datasets. We
hypothesize that CNN2GNN performs worse on the
CIFAR-100 and ImageNet-1k datasets because the
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Figure 6: Attention matrix for CIFAR-10 validation
examples with CNN2Transformer (ResNet34 backbone)
where entry (i, j) shows the normalized attention scores
between images with label i and anchors with label j. This
run uses 3 anchors and 1 proxy. We find that attention is
divided over the anchors.

attention mechanism of GAT is weaker than that
of Transformers, particularly for large scale data
with many classes. GATv2 [6] mentions that GAT
attention [5] can collapses over a few nodes (i.e. the
attention is not conditioned on the query nodes),
and we find that the GATv2 attention also collapses
when neighborhood sizes grow as shown in Figure
5. Further results on this finding can be found
in the Appendix. Our method is also robust to
different anchor choices as shown by the relatively
small standard deviations over three runs.

Table 3 shows results of an experiment that
tests the quality of the learned anchor and proxy
representations. Here we do not aggregate the
image representations before doing classification,
meaning that the final representation for each
image is an attention-weighted sum of anchors and
proxies conditioned on the input image. This is
equivalent to removing self-connections in the graph
for CNN2GNN and altering Equation 7 to zout =
ω (Lmha, Pmha) for CNN2Transformer. We find that
despite removing information about the image itself,
the learned representations of the anchors and proxies
outperform baselines.

In Tables 4 and 5, we compare our method
to other methods. We compare against a wide
range of architectures and model sizes and find
that our method performs better than bigger models
across CNN and pure Transformer architectures with
relatively less data augmentation. We also outperform
self-supervised methods such as BYOL, SimCLR, and
NNCLR, although we use a smaller ResNet and do not
use any self-supervision in pretraining.

In Table 6, we show results for different numbers
of anchors and proxies. We find that increasing the

number of anchors increases model performance, but
increasing the number of proxies decreases model
performance. We hypothesize that this is because each
anchor introduces new information about its class,
while additional proxies do not add new information
on the underlying image data distribution. For
example, having several anchors for the car class,
with each anchor being a car of a different color,
trains the model to be invariant to such differences.
This idea is validated by Figure 6 which shows that
examples divide attention over the anchors rather
than collapsing on a single anchor. We also note that
the Lp loss term encourages proxy representations
per assigned class to collapse onto each other which
also explains why multiple proxies per class decreases
classification accuracy.

5. Conclusion

We propose a method for bringing graph structure
into image classification that allows for learning local
and global representations between data points via a
proxy set and cross-attention module. The motivation
behind the work is to bring together ideas from kernel
methods, graph representation learning, and vision.
Our models show clear improvements in classification
accuracy and our graph construction framework
for arbitrary non-graph data addresses common
problems of end-to-end learning and inductive
inference. We further show that a simple combination
of cross-entropy and contrastive losses is enough
to prevent proxy collapse. Finally, we present an
empirical study showing that Transformer attention
scales better than GAT attention with an increasing
number of classes.

For future work, we are interested in adapting
novel graph structures, aggregation schemes, and
proxy learning schemes for downstream tasks.
Our cross-attention over anchors and proxies as
independent sets gives a simple recipe to incorporate
multiple pieces of information (i.e. multimodal data).
A current drawback of our approach is that the
number of proxies scales linearly with the number of
classes which can require significant computational
resources. We leave addressing this for future work,
perhaps by relaxing the class constraint imposed on
proxies.
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[13] Tobias Plötz and Stefan Roth. “Neural
Nearest Neighbors Networks”. In: Advances in
Neural Information Processing Systems. Ed. by
S. Bengio et al. Vol. 31. Curran Associates,
Inc., 2018. URL: https : / / proceedings .
neurips . cc / paper / 2018 / file /
f0e52b27a7a5d6a1a87373dffa53dbe5 -
Paper.pdf (cit. on p. ii).

[14] Anees Kazi et al. Differentiable Graph Module
(DGM) for Graph Convolutional Networks. 2020.
arXiv: 2002.04999 [cs.LG] (cit. on p. ii).

[15] Chaitanya Joshi. “Transformers are Graph
Neural Networks”. In: The Gradient (2020)
(cit. on p. ii).

[16] Ashish Vaswani et al. “Attention is All You
Need”. In: Proceedings of the 31st International
Conference on Neural Information Processing
Systems. NIPS’17. Long Beach, California, USA:
Curran Associates Inc., 2017, pp. 6000–6010.
ISBN: 9781510860964 (cit. on pp. ii, iv).

[17] Felix Wu et al. Simplifying Graph Convolutional
Networks. 2019. arXiv: 1902.07153 [cs.LG]
(cit. on p. ii).

[18] Christopher P. Burgess et al. MONet:
Unsupervised Scene Decomposition and
Representation. 2019. arXiv: 1901 . 11390
[cs.CV] (cit. on p. ii).

[19] Jiani Zhang et al. “GaAN: Gated Attention
Networks for Learning on Large and
Spatiotemporal Graphs”. In: Proceedings of
the Thirty-Fourth Conference on Uncertainty in
Artificial Intelligence. 2018, pp. 339–349 (cit. on
p. ii).

[20] Jenny Seidenschwarz, Ismail Elezi, and Laura
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[57] Stéphane d’Ascoli et al. ConViT: Improving Vision
Transformers with Soft Convolutional Inductive
Biases. 2021. DOI: 10.48550/ARXIV.2103.
10697. URL: https : / / arxiv . org / abs /
2103.10697 (cit. on p. vii).

[58] Mark Sandler et al. “MobileNetV2: Inverted
Residuals and Linear Bottlenecks”. In: (2018).
DOI: 10.48550/ARXIV.1801.04381. URL:
https://arxiv.org/abs/1801.04381
(cit. on p. vii).

[59] Yawei Li et al. LocalViT: Bringing Locality to
Vision Transformers. 2021. DOI: 10 . 48550 /
ARXIV.2104.05707. URL: https://arxiv.
org/abs/2104.05707 (cit. on p. vii).

[60] Yonglong Tian, Dilip Krishnan, and Phillip
Isola. Contrastive Multiview Coding. 2019. DOI:
10 . 48550 / ARXIV . 1906 . 05849. URL:
https://arxiv.org/abs/1906.05849
(cit. on p. vii).

11


