
Efficient Flow-Guided Multi-frame De-fencing

Stavros Tsogkas Fengjia Zhang Allan Jepson Alex Levinshtein
Samsung AI Center Toronto

101 College St., Toronto, ON, Canada, M5G 1L7
{stavros.t, f.zhang2, allan.jepson, alex.lev}@samsung.com

Abstract

Taking photographs “in-the-wild” is often hindered by
fence obstructions that stand between the camera user and
the scene of interest, and which are hard or impossible
to avoid. De-fencing is the algorithmic process of auto-
matically removing such obstructions from images, reveal-
ing the invisible parts of the scene. While this problem
can be formulated as a combination of fence segmentation
and image inpainting, this often leads to implausible hal-
lucinations of the occluded regions. Existing multi-frame
approaches rely on propagating information to a selected
keyframe from its temporal neighbors, but they are often in-
efficient and struggle with alignment of severely obstructed
images. In this work we draw inspiration from the video
completion literature, and develop a simplified framework
for multi-frame de-fencing that computes high quality flow
maps directly from obstructed frames, and uses them to ac-
curately align frames. Our primary focus is efficiency and
practicality in a real world setting: the input to our algo-
rithm is a short image burst (5 frames) – a data modality
commonly available in modern smartphones– and the out-
put is a single reconstructed keyframe, with the fence re-
moved. Our approach leverages simple yet effective CNN
modules, trained on carefully generated synthetic data, and
outperforms more complicated alternatives real bursts, both
quantitatively and qualitatively, while running real-time.

1. Introduction
Rapid improvements in both the camera hardware and

image processing software have turned modern cell phones
into powerful yet portable image and video recording de-
vices. This has enabled and encouraged casual users to
shoot photos without any time for special preparation,
setup, or framing of the shot. On the flip side, photos and
videos taken under these conditions rarely contain just the
object(s) of interest, and are hindered by various obstruc-
tions that stand between the subject and the user.

One type of obstruction that is of special interest because

Figure 1: We train a simple and efficient model for de-
fencing: removing fence obstructions from images, reveal-
ing the underlying scene of interest. Our method is fast and
can accurately remove fences of varying size and appear-
ance from real bursts, without online finetuning.

of its commonness is fences. Imagine, for instance, taking
a photo of an animal through a zoo fence, or people play-
ing basketball in a fenced-out outdoor court; these are just
a few everyday scenes that are obstructed by fence struc-
tures that are either inconvenient or completely impossible
to avoid. De-fencing uses computer vision algorithms to
automatically remove such fence obstructions from images,
as shown in Figure 1. De-fencing is a harder problem than
it may initially seem. Fences have varying structure and
appearance patterns, and come in different thicknesses and
sizes. Furthermore, reconstruction of the background scene
can become challenging because of low lighting and noise,
or motion blur, caused by rapidly moving objects.

The first works that tackled de-fencing in a principled
manner were by Liu et al. [32, 19]. They formulate the prob-
lem as the segmentation of a repeating foreground pattern
that exhibits approximate translational symmetry, followed
by inpainting to recover the occluded image regions. The
approach of [32] is mainly limited by the fact that it uses a
single image as input. Because of the opaque nature of the
fence obstruction, the occluded parts of the scene must be
hallucinated by the inpainting algorithm; [19] partially ad-
dresses this by using a photo taken from a different view, to
reduce the number of pixels that must be hallucinated.

De-fencing can also be viewed as a special case of the
more general problem of layer separation [21, 1, 5, 14],
which models an image as a composition of individual lay-

1838

ers, e.g., a foreground layer containing the obstruction and
a background layer containing the scene of interest. Xue
et al. [31] formulate generic obstruction removal as a layer
separation problem, driven by motion parallax. Although
their solution is generic and works well, it involves multi-
ple time-consuming, hand-tuned optimization steps, and the
use of hand-crafted motion and image priors. SOLD [14] is
a deep learning re-incarnation of [31] that achieved state-
of-the-art results on obstruction removal, and can also be
adapted to remove fences from a multi-frame input burst.
Unfortunately, SOLD depends on computationally expen-
sive networks for flow computation and frame reconstruc-
tion, making it impractical for use in low-powered devices.
It also often requires an online optimization step that takes
∼ 3 minutes to produce acceptable results on real bursts,
and even without this input-specific finetuning, it cannot be
run in real time. Finally, since the background frames are
the output of a reconstruction CNN module, they occasion-
ally contain inconsistencies or artifacts.

Flow-guided completion methods [7, 29, 29, 13, 35] re-
duce such artifacts by computing inpainted flow maps be-
tween pairs of obstructed frames and using them to explic-
itly transfer pixel values to a reference frame from its tem-
poral neighbors. Inpainting flows in the occluded area is
easier than directly inpainting pixel values, so a less pow-
erful network can be used, and the results tend to look
more plausible because the pixel values are taken from real
frames instead of being hallucinated by a generative net-
work. These works do not make any assumptions regard-
ing the shape and type of the occlusion, other the fact that
it is completely opaque. However, the mask marking the
occluded area is considered to be known, which is an unre-
alistic requirement for our purposes.

Here our goal is to develop a de-fencing algorithm that
prioritizes efficiency and practicality. We develop a frame-
work that enjoys the realism and modularity of flow-based
video completion approaches, while being significantly
simpler to train and deploy. Instead of videos, the input to
our algorithm is shorter bursts of K = 5 frames, which are a
very common photo modality in modern smartphones. The
type of occlusion is known (fences), but we do not make
any assumptions regarding its spatial extent or location; in-
stead, we train a class-specific segmentation model to au-
tomatically detect fences in images. Computing flow maps
of scenes occluded by fences, presents us with a new chal-
lenge, as standard optical flow networks fail under the pres-
ence of repeated patterns [9, 14]. To solve this problem,
we train a segmentation-aware SPyNet [23] that can simul-
taneously compute and inpaint flow maps corresponding to
the occluded background scene, ignoring foreground occlu-
sions. Finally, to quantitatively evaluate the performance of
our approach on real data, we collect a dataset of multi-
frame sequences and corresponding “pseudo-groundtruth”

for the reference frame using a alignment procedure, akin
to [3]. To summarize:

• We design a CNN pipeline for multi-frame de-fencing
that is simple, modular, efficient, and easy to train.

• Unlike flow-based works, which assume the occlusion
is known, we estimate it automatically from the input.

• We train a segmentation-aware optical flow model that
can reliably estimate flows corresponding to the back-
ground scene despite severe fence obstructions.

• Our method achieves state-of-the-art results on syn-
thetic and real bursts, without requiring sequence-
specific finetuning. As a result, it has significantly
lower runtimes compared to alternatives.

2. Related Work
2.1. Image and Video De-fencing

Liu et al. [32] is perhaps the first work to formally intro-
duce de-fencing in a computer vision context, as symmetry-
driven automatic fence segmentation, followed by inpaint-
ing. [19] improves on this work by using online learning
to aid lattice detection and segmentation, and by leverag-
ing a second viewpoint to improve inpainting. Jonna et
al. [11, 10] also improve fence segmentation, by comple-
menting RGB with depth data.

[16, 34] extend de-fencing to video sequences of arbi-
trary number of frames. Mu et al [16] rely on motion par-
allax to separate foreground fence obstructions from back-
ground (although the definition of “fence” is quite loose),
while Yi et al. [34] describe a bottom-up approach for video
de-fencing that groups pixels in each frame using color and
motion cues. Both methods rely on optimization techniques
to refine their optical flow or frame inpainting results.

More recently, deep learning has been adopted for video
defencing [9, 4]. Jonna et al. [9] use a pretrained classifi-
cation CNN as a feature extractor and train a SVM classi-
fier that distinguishes fence from non-fence patches. The
authors reformulate an existing optical flow algorithm to
make it occlusion-aware and recover the de-fenced image
using FISTA optimization [2]. Du et al. [4] replace the
CNN-SVM combination with a fully convolutional network
(FCN) [15] and apply temporal refinement to the extracted
segmentations by aggregating information from neighbor-
ing frames. Our approach shares a similar pipeline but
simplifies both the segmentation extraction and occlusion-
aware flow computation steps, while being considerably
faster, as we do not perform test-time optimization.

2.2. Layer Separation

A more generic formulation of the fence removal prob-
lem views an image as a composition of layers, each with

1839

its own alpha map (which can be semi transparent), and
the goal is to separate the layers. In [5] the foreground-
background layers are the output of two convolutional net-
work, trained per image in an unsupervised fashion, and are
recovered using a deep image prior [28]. A similar idea
is used by Alayrac et al. [1] for video decomposition, but
with supervised training. Other approaches for video de-
composition use explicit motion information [31, 14]. Xue
et al. [31] describe a computational method for decompos-
ing a scene into an foreground obstruction layer and a back-
ground scene from multi-scale motion cues of a multi-frame
sequence, in an unsupervised way. They solve an optimiza-
tion problem that alternatingly finds the constituent layers
and the respective motion fields that, when used to align
the burst to a reference frame, can reconstruct the original
frames with low error. A modern reincarnation of this ap-
proach is proposed by Liu et al. with SOLD [14]. SOLD
follows a similar multi-scale approach, using a convolu-
tional framework, both for layer reconstruction and motion
estimation – the latter wth a pre-trained PWC-Net [25].

2.3. Flow-based Video Completion

Video completion is a related problem to multi-frame
fence removal, the main difference being that the segmen-
tation mask is assumed to be provided and the emphasis is
typically on longer frame sequences. Our work is motivated
by Xu et al. [29], who proposed the idea of first tackling the
easier problem of flow inpainting, and then using the com-
pleted flows to propagate color values to a reference frame
from its temporal neighbors. Since it not guaranteed that
all occluded pixels are visible in some frame, a separate
image inpainting step must be used to fill any remaining
holes. Gao et al. [6] improve this approach by synthesizing
sharp flow edges along the object boundaries and using non-
local temporal neighborhoods for propagating pixels across
frames. These works involve a series of individual, sepa-
rately trained processing stages, some of which are hand-
crafted, inefficient, and can potentially compromise perfor-
mance of subsequent stages. Li et al. [13] address this is-
sue by proposing an end-to-end framework for flow-guided
video completion. Their approach was developed concur-
rently to our own and shares some of its simplicity and effi-
ciency advantages. However, their framework still operates
under the assumption that the occlusion mask is provided.

3. Method

We begin with an overview of the problem we are solv-
ing, and establish the notation that we use throughout the
paper. The input to our algorithm is a burst of K RGB
frames, {Ii}, composed from an unknown background
scene of interest{Bi} and an unknown opaque foreground

occlusion in the form of a fence {Fi}. Specifically,

Ii = Si · Fi + (1− Si) ·Bi, (1)

where Si ∈ [0, 1] is a soft fence occlusion mask. Our goal
is to train a model that removes the fence obstruction from
{Ii} and recovers a single keyframe background image Bk,
where k is the keyframe index.

Instead of outputting the unobstructed frame directly, we
break down the problem into the steps illustrated in Fig-
ure 2. We start by training a network that is applied indi-
vidually on each frame in {Ii}, and outputs fence segmen-
tation predictions {Si}. The role of these segmentations
is two-fold: i) they mark the occluded area that needs to
be recovered; ii) they are used to condition a segmentation-
aware network that computes optical flows corresponding to
the background scene only, directly from the occluded input
{Ii}. With this network we extract flows {fkj} between the
keyframe Ik and each other frame Ij in the sequence, and
align the burst. Finally, we employ learned flow-guided im-
age inpainting, to recover the parts of the keyframe that are
occluded by the fence, yielding the final output B̃k. In the
following subsections we explain in detail each step.

3.1. Single-frame Fence Segmentation

Our fence segmentation model takes as input a single
RGB frame, possibly containing a fence, and outputs a soft
fence segmentation mask. Although this sounds like a rel-
atively simple task, there are, in fact, multiple challenges.
First, datasets of large size and with high quality annota-
tions for fence segmentation are surprisingly scarce. The
most appropriate for this task is probably the De-fencing
dataset [4]. Fences in this dataset do not exhibit significant
variance in terms of appearance, scale, or structure, so we
rely on substantial data augmentation to train a network that
is robust to different types of fences and environments.

More specifically, we apply different degrees of down-
scaling to the original image and its associated annotation,
to effectively create fences at different scales (varying fence
width/distance from the camera). To augment the limited
scene variety in the De-fencing dataset, we also mask out
fences, using the groundtruth segmentations, and overlay
them on images from the DAVIS dataset [22]. Finally, we
apply random horizontal flipping to the fence image and
take randomly crop a 320× 192 window for training.

The segmentation network itself is a U-net [24] back-
bone, with four encoder and four decoder blocks, that is
trained from scratch on our augmented fence data using a
binary cross entropy loss and the ADAM optimizer [12].
To obtain segmentation scores in the [0, 1] range, we ap-
ply a sigmoid in the output logits from the last U-net layer.
Table 1 lists precision-recall and f-measure scores of our
method at different thresholds. Even though we do not

1840

Burst (K frames)

Fence
Segmentation Optical flow

K fence masks K-1 flows

Frame inpainting

Reconstructed
keyframe

Figure 2: Given a burst of K frames with fence obstructions as input, we reconstruct a single keyframe, after removing the
fence. Our pipeline is composed of three distinct steps: a) initially, a fence mask is estimated on each input frame individually
with a U-net fence segmentation model (Sec. 3.1); b) the estimated masks are used to condition a segmentation-aware optical
flow SPyNetm, which simultaneously computes and inpaints flows corresponding only to the background scene, ignoring
the repeated fence occlusion patterns (Sec. 3.2); c) finally, an image inpainting module takes the estimated masks and flows,
aligns the frames with respect to a selected keyframe and fills in the missing pixel values (Sec. 3.3).

Method Precision Recall F-measure
Du et al. [4] 0.910 0.959 0.934
U-net (thresh=0.05) 0.908 0.958 0.931
U-net (thresh=0.1) 0.934 0.942 0.937
U-net (thresh=0.3) 0.969 0.899 0.932

Table 1: Segmentation results on the De-fencing test set [4].

(a) Keyframe (b) SPyNet

(c) SPyNetm (d) Ground truth

Figure 3: Standard optical flow networks fail under repeated
occlusion patterns. Our occlusion-aware SPyNetm can re-
liably estimate the optical flow of the background scene,
ignoring the foreground occlusion. For training, “ground-
truth” flows are computed using a vanilla SPyNet on the
original background frames.

use temporal information from multiple frames like [4], we
achieve comparable performance.

3.2. Segmentation-aware Optical Flow Estimation

Optical flow computation is an integral step in many
obstruction removal and video completion pipelines. The
challenge is in how to align the background regions with-
out being distracted by foreground occlusions. SOLD [14]
uses a pretrained PWC-Net [25] to compute flows between

all frame pairs in the burst, and uses frames warped to the
keyframe to prime background reconstruction. Note that, in
the case of fence removal, flows are only computed for the
background layers, after removing the obstruction. The rea-
son, according to the authors, is that the flow estimation net-
work cannot handle the repetitive structures, and often pre-
dicts noisy results, which renders the alignment step unreli-
able. This is further aggravated by the fact that the weights
of PWC-Net are frozen, so it cannot adapt to deal with po-
tential errors in background layer reconstructions from the
first levels in the coarse-to-fine SOLD architecture; this can
consequently yield inaccurate flow estimates in subsequent
levels, compounding errors. Finally, PWC-Net relies on
cost volume computation, whose runtime does not scale fa-
vorably with input size, at least when using a publicly avail-
able implementation [17]. On the other hand, [29, 6] com-
pute flow maps between obstructed pairs of frames using
FlowNet [8]. One key difference in this scenario is that the
obstruction does not follow a repetitive structure pattern, but
is typically a large, compact area. This causes the flow maps
to contain holes which are inpainted in a separate step.

In our work we drastically simplify flow estimation for
obstructed scenes by utilizing the fence segmentation net-
work described in Section 3.1. First, we replace PWC-
Net with the faster, more lightweight, SPyNet [23] architec-
ture1. Second, we modify its first convolution layer to input
both the fence segmentation masks, Si, Sj , along with their
corresponding input frames Ii, Ij . Our modified SPYm ar-
chitecture then estimates the mask-conditional flow map

fm
ij = SPYm([Ii;Si], [Ij ;Sj]), (2)

[·] denoting concatenation along the channel dimension. We
use the original pretrained weights to initialize SPYm, ex-
cept for the modified part of the input layer, which we ini-
tialize randomly. During training, fm

ij are computed be-
tween synthetically generated frames of fence images over-
laid on clean background frames. Consequently, we use
flow maps computed with the vanilla SPyNet on the clean

1We use “SPY” in equations, for short.

1841

Residual
Dense Network

(RDN)

W

[]

W

+

Figure 4: Frame inpainting module. We use the predicted
fence segmentations to mask out (⊙) the occluded areas in
the input frames. We then use optical flow to warp (W) the
masked frames and respective masks. Finally, the flows, the
validity maps (see text), and the aligned frames and masks
are concatenated ([·]) and passed as features to a CNN pre-
dicting the keyframe residual in the occluded regions.

background frames Bi, Bj as pseudo ground truth targets.
We use an L1 loss to finetune SPYm:

Lf =
1

2N

∑
x

|SPY(Bi, Bj)|x − fm
ij|x|, (3)

where N is the number of image pixels, x denotes the lo-
cation at which we evaluate, and we average over 2N to
account for the u, v flow channels.

Conditioning SPyNet on segmentation predictions al-
lows us to denote parts of the scene corresponding to ob-
structions and ignore them while computing background
flows, solving a fundamental problem faced by SOLD.
This idea was previously explored in [4] but it involved a
costly optimization process. Our approach is simple but
robust to the presence of significant fence obstructions.
Segmentation-aware flow estimation can be useful in a va-
riety of practical settings where one wants to ignore parts
of the scene as distractions or sources of noise. Figure 3
demonstrates the effectiveness of our approach by compar-
ing outputs of the vanilla SPyNet and our segmentation-
aware SPyNetm, on the same obstructed scene.

3.3. Flow-guided Multi-frame Fence Removal

The final component in our fence removal pipeline is a
frame inpainting module, depicted in Figure 4. The frame
inpainting module takes as input the sequence of obstructed
frames {Ii}, forward flow maps fm

ki , computed between
the keyframe Ik and each other frame in the burst using
the mask-conditional SPyNetm (Section 3.2), and the fence
segmentation masks {Si} computed using our single-frame
segmentation model (Section 3.1). We first use {Si} to
mask out the areas that correspond to fences in each frame,
obtaining masked frames Imi = Ii ⊙Si. Then flows fm

ki are
used to warp all frames and their respective segmentations

with respect to the reference frame, giving rise to aligned
masked frames Ĩmi = W (Imi , fm

ki) and aligned fence masks
S̃i = W (Si, f

m
ki). We also compute binary masks {Vi} that

mark valid warped regions, and are “on” for all pixels that
fall inside the image grid after warping.

fin = [{Ĩmi }; ˜{Si}; {Vi}] is passed as input to a Residual
Dense Network (RDN) [36] that is responsible for filling in
the missing areas in the keyframe. We also add a skip con-
nection between the masked keyframe Imk and the output of
the RDN, so the latter only has to learn to fill in the miss-
ing areas instead of reconstructing the entire image. The
inpainting module is trained in a supervised fashion using
an L1 loss and the clean background as the ground truth:

Lin =
1

N

∑
x

|Bk|x − (Imk + RDN(fin))|x|. (4)

3.4. Implementation details

We implement our pipeline in Python 3 and Py-
Torch [20]. For U-net, PWC-Net, SPyNet, and RDN,
we use their publicly available third-party implementa-
tions [27, 18, 17, 33]. To facilitate our experiments, we have
also re-implemented SOLD in PyTorch (SOLDpt), follow-
ing closely the original Tensorflow implementation [14];
we plan to make our re-implementation publicly available
to allow for broader use by the community and replica-
tion of results. Unless otherwise mentioned, we train all
our models for 1000 epochs, using a starting learning rate
lr = 10−4, a weight decay rate wr = 4 · 10−5, and
the ADAM optimizer [12] with parameters α = 10−4,
β1 = 0.9, β2 = 0.999, ϵ = 10−8. All three models (fence
segmentation, occlusion-aware flow estimation, frame in-
painting) are trained independently.

4. Data for Training and Evaluation
We use two types of data in our experiments. The first

type is synthetic multi-frame sequences, generated similarly
to previous works [4, 14]. These are used predominantly for
training and validation experiments, but a held-out test set is
also used for evaluation. The second type is real bursts with
fence obstructions, which include uncontrolled sequences,
for which no ground truth clean frame is available, and con-
trolled sequences, which come with a clean background
scene (without the fence) as ground truth.

Synthetic bursts are generated by overlaying obstruction
(foreground) layers on a clean scene (background). We
source background scenes (which are also used as ground
truth during training and evaluation) from Vimeo-90k [30],
which consists of videos depicting every day activities in
realistic settings, often including people and other objects.
We specifically use the original test split of the dataset2,

2http://data.csail.mit.edu/tofu/testset/

1842

which contains sequences of seven (7) frames. Training and
validation splits are generated on the fly, but for our evalua-
tion experiments we use a fixed test set of 100 bursts.

The foreground fence obstructions are sourced from the
De-fencing dataset [4], which contains 545 training and 100
test images with fences, along with corresponding binary
masks as ground truth for the fence segmentation. The se-
quences in this dataset have been collected in various out-
door conditions and have a variable frame count per scene.
Since we have the ground truth fence masks, we can use
them to mask out the fence from any given frame and over-
lay it on a clean background from Vimeo. To obtain a fence
image burst of size K, we mask out the fence from a sin-
gle frame and apply K random perspective distortions to it,
to simulate the changes caused by slightly different view-
points and motion. To increase the variability of fences and
background scenes, we apply various forms of data aug-
mentations before fusing them into a single frame; these are
listed in detail in the supplemental material.

Real bursts. Because we want to develop a practical algo-
rithm for fence removal, good performance under realistic
motion, lighting, and obstruction patterns is of paramount
importance. In previous works, performance on real se-
quences is –for the most part– evaluated qualitatively, since
obtaining the ground truth background is far from trivial.
Liu et al. [14] include only two sequences with fence-like
obstructions, collected in a controlled environment, which
is too small a dataset for a proper quantiative evaluation.

In this paper we construct a wider set of controlled se-
quences, specifically for quantitative evaluation. Rather
than collecting toy scenes as in Liu et al. [14], we capture
real world hand-held sequences with a fence and a corre-
sponding background ground truth image without a fence.
As we cannot physically remove a fence, we instead bring
our camera to the fence and center it in one of the fence cells
such that only the background is visible. To maintain a sim-
ilar level of brightness and sharpness of the background in
the input and ground truth images, we fix the exposure and
focus of the camera on the background during capture. Due
to camera motion and possible changes in illumination, the
input keyframe and its respective ground truth may be mis-
aligned or have color discrepancies. We align crops of the
scene using standard feature-based RANSAC fitting of ho-
mographies, similar to [3] and correct color discrepancies
using color histogram matching. We then filter out any mis-
aligned crops using SSIM, PSNR, and human visual check,
avoiding mostly homogeneous regions, to promote diver-
sity in our dataset. Our final real burst dataset consists of
185 320× 192 input bursts and corresponding ground truth
keyframes. More details on dataset generation and image
sampling are provided in supplemental material.

vimeo_test_clean.zip

5. Experiments
We compare our method and other works on synthetic

and real bursts. For quantitative evaluations we use the
test set of our synthetically generated fence-obstructed se-
quences, and our real bursts described in Section 4. For all
baselines, we use the officially released model weights, with
the exception of our SOLD reimplementation. We also pur-
posedly omit the sequence-specific online optimization step
of SOLD in our comparisons. Although online optimization
improves performance, its runtime is quite slow (∼ 3 min-
utes per burst), pushing it outside the scope of our work,
which is centered around efficiency and practicality. For
qualitative evaluations and visual comparison, we use real
sequences from previous work and the data we collected.

5.1. Baselines

Single-frame baseline. We pass either ground truth or
our (thresholded) U-net fence mask predictions as input
to LaMa [26], a state-of-the-art CNN-based inpainting
method, to create a single-frame de-fencing baseline. LaMa
takes as input a (possibly obstructed) image and a binary
mask and inpaints the area marked by the mask.

SOLD [14] primarily targets reflection removal, but it can
be adapted to deal with opaque obstructions such as fences
or raindrops on glass. We evaluate both the original Tensor-
flow model (SOLDtf) and our PyTorch reimplementation
(SOLDpt), with the latter trained on our synthetic data.

Flow-guided video completion operates in a setting that is
different than ours in a few ways. First, the mask denoting
the occluded area is known, and its shape is either rectan-
gular or in the shape of an object in the video. Second,
the number of frames in a typical input video sequence is
K ≫ 5. Lastly, the output is the entire inpainted video.
Nevertheless, we can apply these methods for de-fencing
in a relatively straightforward fashion by passing the fence
segmentation as the occlusion mask, treating the burst as a
(short) video sequence, and keeping the inpainted result for
the reference frame only. In our experiments we compare
against two recent flow-guided approaches, FGVC [6] and
E2FGVI [13], using their publicly provided code.

5.2. Fence Removal on Synthetic and Real Data

Quantitative comparisons on synthetic and real bursts
are shown in Table 2. We report performance in terms of
the commonly used SSIM, PSNR, and LPIPS metrics. For
LPIPS we use a VGG-16 backbone as the feature extrac-
tor. PSNR and SSIM can be computed as an aggregation of
pixel-wise scores, so we use the fence masks (ground truth
in the case of synthetic data, thresholded and binarized U-
net predictions in the case of real data3) to dissect perfor-

3To get better pseudo ground truth fence masks, we run U-net at multi-
ple scales and compute the pixel-wise maximum across scales.

1843

(a) Keyframe (b) LaMa [26] (c) SOLD [14] (d) FGVC [6] (e) Ours (f) Ground truth

Figure 5: Qualitative de-fencing results on real sequences. We highlight areas of interest in red (shown as zoomed insets)
and report PSNR inside the fence mask for all methods. Last example is from Xue et al. [31] and has no ground truth.

Synthetic data (Methods in blue use GT fence masks)

Method SSIM ↑ PSNR (dB) ↑ LPIPS ↓
in out total in out total (VGG)

SOLDtf [14] .783 .970 .941 23.36 37.82 30.34 .111
SOLDpt [14] .893 .993 .977 28.14 45.70 35.82 .040
LaMa [26] .788 .995 .964 24.97 51.38 33.10 .039
LaMa [26]∗ .655 .955 .910 20.96 31.74 27.38 .089
FGVC [6] .846 .943 .928 25.56 33.85 30.36 .068
FGVC [6]∗ .784 .896 .879 22.73 27.80 26.05 .113
E2FGVI [13] .918 .997 .985 30.79 55.87 38.89 .030
E2FGVI [13]∗ .890 .984 .969 29.34 38.64 35.25 .044
Ours .954 .999 .992 33.76 56.55 41.78 .015
Ours-fencegt .957 .999 .993 34.33 58.58 42.42 .012

Real bursts (Methods in blue use pseudo-GT fence masks)
SSIM ↑ PSNR (dB) ↑ LPIPS ↓

in out total in out total (VGG)
.728 .911 .885 23.50 30.27 27.71 .132
.813 .916 .902 26.41 30.90 29.71 .094
.480 .902 .845 19.95 29.96 26.25 .133
.477 .867 .816 20.85 28.02 25.98 .132
.848 .910 .901 27.56 30.48 29.73 .095
.856 .907 .900 27.49 29.90 29.36 .090
.571 .902 .856 19.69 29.88 25.87 .167
.709 .901 .875 25.58 30.25 29.14 .117
.869 .917 .909 28.60 31.14 30.46 .080
.872 .918 .910 28.77 31.15 30.53 .078

Table 2: Results on synthetic test data (left) and our collected real bursts (right). Results in rows denoted with “*” are
computed after thresholding the fence segmentations at t = 0.1, and dilating the binary mask 4 times with a 3× 3 square.

mance in three different regions: a) inside the mask (in); b)
outside the mask (out); and c) in the entire image (total).
Performance outside the mask is high for all methods, since
this part of the image is not occluded. Performance inside
the mask is the most important criterion, since it quanti-
fies the quality of reconstruction only in the occluded area.
We outperform all single- and multi-frame baselines, based
on all metrics, with FGVC [6] performing second best at
the cost of much higher runtime (see Section 5.3). We
would like to draw the reader’s attention to the results of
LaMa [26], in particular. LaMa is a state-of-the-art inpaint-
ing method, yet it achieves surprisingly low PSNR-in and
SSIM-in scores. The reason becomes clear if one looks at
Figure 5 (e.g., antennae structure in the first example): even

though LaMa produces perfectly plausible results under the
occluded area, these are often very different than the actual
background scene. These results tellingly demonstrate the
advantage of using multiple frames for de-fencing. Figure 5
also illustrates that alternatives like SOLD and FGVC can
yield blurry or completely scrambled results, likely due to
issues with frame alignment. For more qualitative results
see our supplemental material.

5.3. Runtime Analysis

Table 3 compares the total runtime of our pipeline with
other approaches. In our case, timing includes all necessary
processing steps: fence segmentation, optical flow compu-
tation, alignment, and frame inpainting. LaMa, FGVC, and

1844

Method LaMa SOLDpt FGVC E2FGVI Ours
Runtime (s) 0.2 0.8 0.7 0.16 0.14 (0.08)

Table 3: Runtime comparison for a 5-frame burst (LaMa
processes a single frame). Times for other methods do not
include segmentation (fence segmentations are part of the
SOLD output). We provide the runtime of our method with-
out the segmentation step in parentheses, for comparison.

E2FGVI times do not include the time spent on fence seg-
mentation, since these methods assume that the occlusion
masks are precomputed. Our method is clocked at ∼ 7 fps,
for 320 × 192 inputs, which is ∼ 5× faster than the next
best performing methods, SOLD and FGVC, and compara-
ble to E2FGVI and LaMa. The runtime difference with the
last two may not seem large in absolute terms, but it still
amounts to a 12.5% and 30% lower runtime respectively,
while our method significantly outperforms them in terms
of reconstruction quality on real data. If we exclude the
time spent on segmentation from our pipeline, the speedup
becomes even more noticeable (50% and 60% respectively).
All timings are performed on a workstation equipped with
a Nvidia GTX 1080 Ti, with 12GB of GPU RAM. The de-
tailed breakdown of timings for our pipeline is: i) segmen-
tation (for a 5-frame burst): 0.06s; ii) flow estimation and
alignment: 0.04s; iii) frame inpainting (RDN): 0.04s.

5.4. Ablation

Changing the frame inpainting module architecture al-
lows us to trade-off reconstruction performance for effi-
ciency. Replacing the RDN with a simple CNN consist-
ing of 8 convolution + LeakyReLU layers decreases per-
formance by 3.5 dB on synthetic test data but also reduces
runtime by ∼ 30%, from 0.14s to 0.1s.

Does frame alignment matter? Inaccurate computation
of the motion corresponding to the (occluded) background
can lead to errors in frame alignment, impacting the quality
of frame reconstruction. We experiment with the following
two alternatives for computing flows: i) original SPyNet on
obstructed frames; ii) SPyNet followed by masking the oc-
cluded areas and using Laplacian inpainting [29] to com-
plete the missing flows (SPyNetinp). We also consider the
option of not aligning frames at all, and leaving our RDN
inpainting network to learn how to complete the occluded
areas in the reconstructed keyframe.

The importance of alignment and the quality of flows
used become becomes clear when looking at the results
in Table 4. Not aligning the input frames at all leads to
a noticeable drop in keyframe reconstruction performance.
Standard flow networks cannot handle the repeated fence
obstruction patterns, and explicitly inpainting the flows un-
der the occluded area does not help either since flow arti-
facts extend to non-fence areas as well, as shown in Fig-

Alignment SSIM ↑ PSNR (dB) ↑ LPIPS ↓
in out total in out total (VGG)

None .792 .996 .965 24.82 53.64 32.84 .028
SPyNet .841 .997 .973 26.84 54.32 34.93 .047
SPyNetinp .841 .997 .973 26.81 54.13 34.89 .048
SPyNetm .954 .999 .992 33.76 56.55 41.78 .015

Table 4: Effect of frame alignment on keyframe reconstruc-
tion quality (results on our synthetic test data).

Figure 6: Failure example. Imperfect fence predictions
(middle) compromise the quality of the inpainting (right).

ure 3. Our occlusion-aware SPyNetm, on the other hand,
can accurately estimate background flows, resulting in su-
perior frame alignment and reconstruction quality.

5.5. Limitations and Failure Cases.

The main limitation of our approach is that the quality of
the final reconstruction depends on the outputs of U-net and
SPyNetm in the two previous stages. Errors in fence seg-
mentation affect segmentation-aware optical flow computa-
tion, potentially compromising frame alignment, which is
crucial for good inpainting (see ablation in Section 5.4). In
addition, fence segmentations are also used in masking out
the occluded areas in {Ii}, The most deleterious mistakes
occur when the fence occlusion is out of our training distri-
bution, e.g., when the fence has an unusual shape/pattern,
or when the contrast with the background is low. This is
an issue that can be handled to a certain extent through bet-
ter data augmentation during training or by having access
to richer datasets with varied types of fences, as we show in
the supplemental material. A failure example and its effect
on frame inpainting is shown in Figure 6.

6. Conclusions
We have developed a simple, modular, and efficient

pipeline for removing fence obstructions from a singe frame
in a photo burst. Our algorithm enjoys the realism of flow-
guided video completion methods, while addressing some
of their practical limitations, such as complicated training
and long runtimes. Our method runs at 7 fps for 5-frame
320× 192 bursts, on a Nvidia GTX 1080 Ti, and is particu-
larly effective on real data, outperforming other single- and
multi-frame de-fencing baselines on a dataset of obstructed
bursts we collected specifically for this problem.

1845

References
[1] Jean-Baptiste Alayrac, Joao Carreira, and Andrew Zisser-

man. The visual centrifuge: Model-free layered video rep-
resentations. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 2457–
2466, 2019.

[2] Amir Beck and Marc Teboulle. A fast iterative shrinkage-
thresholding algorithm for linear inverse problems. SIAM
journal on imaging sciences, 2(1):183–202, 2009.

[3] Goutam Bhat, Martin Danelljan, Luc Van Gool, and Radu
Timofte. Deep burst super-resolution. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 9209–9218, 2021.

[4] Chen Du, Byeongkeun Kang, Zheng Xu, Ji Dai, and Truong
Nguyen. Accurate and efficient video de-fencing using con-
volutional neural networks and temporal information. In
2018 IEEE International Conference on Multimedia and
Expo (ICME), pages 1–6. IEEE, 2018.

[5] Yosef Gandelsman, Assaf Shocher, and Michal Irani. ”
double-dip”: Unsupervised image decomposition via cou-
pled deep-image-priors. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition,
pages 11026–11035, 2019.

[6] Chen Gao, Ayush Saraf, Jia-Bin Huang, and Johannes Kopf.
Flow-edge guided video completion. In European Confer-
ence on Computer Vision, pages 713–729. Springer, 2020.

[7] Jia-Bin Huang, Sing Bing Kang, Narendra Ahuja, and Jo-
hannes Kopf. Temporally coherent completion of dynamic
video. ACM Transactions on Graphics (TOG), 35(6):1–11,
2016.

[8] Eddy Ilg, Nikolaus Mayer, Tonmoy Saikia, Margret Keuper,
Alexey Dosovitskiy, and Thomas Brox. Flownet 2.0: Evolu-
tion of optical flow estimation with deep networks. In Pro-
ceedings of the IEEE conference on computer vision and pat-
tern recognition, pages 2462–2470, 2017.

[9] Sankaraganesh Jonna, Krishna K Nakka, and Rajiv R Sahay.
Deep learning based fence segmentation and removal from
an image using a video sequence. In European Conference
on Computer Vision, pages 836–851. Springer, 2016.

[10] Sankaraganesh Jonna, Sukla Satapathy, and Rajiv R Sahay.
Stereo image de-fencing using smartphones. In 2017 IEEE
international conference on acoustics, speech and signal
processing (ICASSP), pages 1792–1796. IEEE, 2017.

[11] Sankaraganesh Jonna, Vikram S Voleti, Rajiv R Sahay, and
Mohan S Kankanhalli. A multimodal approach for image de-
fencing and depth inpainting. In 2015 Eighth International
Conference on Advances in Pattern Recognition (ICAPR),
pages 1–6. IEEE, 2015.

[12] Diederik P Kingma and Jimmy Ba. Adam: A method for
stochastic optimization. arXiv preprint arXiv:1412.6980,
2014.

[13] Zhen Li, Cheng-Ze Lu, Jianhua Qin, Chun-Le Guo, and
Ming-Ming Cheng. Towards an end-to-end framework
for flow-guided video inpainting. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 17562–17571, 2022.

[14] Yu-Lun Liu, Wei-Sheng Lai, Ming-Hsuan Yang, Yung-Yu
Chuang, and Jia-Bin Huang. Learning to see through ob-
structions with layered decomposition. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 2021.

[15] Jonathan Long, Evan Shelhamer, and Trevor Darrell. Fully
convolutional networks for semantic segmentation. In Pro-
ceedings of the IEEE conference on computer vision and pat-
tern recognition, pages 3431–3440, 2015.

[16] Yadong Mu, Wei Liu, and Shuicheng Yan. Video de-fencing.
IEEE Transactions on Circuits and Systems for Video Tech-
nology, 24(7):1111–1121, 2013.

[17] Simon Niklaus. A reimplementation of PWC-Net us-
ing PyTorch. https://github.com/sniklaus/
pytorch-pwc, 2018.

[18] Simon Niklaus. A reimplementation of SPyNet us-
ing PyTorch. https://github.com/sniklaus/
pytorch-spynet, 2018.

[19] Minwoo Park, Kyle Brocklehurst, Robert T Collins, and
Yanxi Liu. Image de-fencing revisited. In Asian Conference
on Computer Vision, pages 422–434. Springer, 2010.

[20] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer,
James Bradbury, Gregory Chanan, Trevor Killeen, Zeming
Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison,
Andreas Kopf, Edward Yang, Zachary DeVito, Martin Rai-
son, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner,
Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An im-
perative style, high-performance deep learning library. In H.
Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E.
Fox, and R. Garnett, editors, Advances in Neural Informa-
tion Processing Systems 32, pages 8024–8035. Curran Asso-
ciates, Inc., 2019.

[21] M Pawan Kumar, Philip HS Torr, and Andrew Zisserman.
Learning layered motion segmentations of video. Interna-
tional Journal of Computer Vision, 76(3):301–319, 2008.

[22] F. Perazzi, J. Pont-Tuset, B. McWilliams, L. Van Gool, M.
Gross, and A. Sorkine-Hornung. A benchmark dataset and
evaluation methodology for video object segmentation. In
Computer Vision and Pattern Recognition, 2016.

[23] Anurag Ranjan and Michael J Black. Optical flow estima-
tion using a spatial pyramid network. In Proceedings of the
IEEE conference on computer vision and pattern recogni-
tion, pages 4161–4170, 2017.

[24] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-
net: Convolutional networks for biomedical image segmen-
tation. In International Conference on Medical image com-
puting and computer-assisted intervention, pages 234–241.
Springer, 2015.

[25] Deqing Sun, Xiaodong Yang, Ming-Yu Liu, and Jan Kautz.
Pwc-net: Cnns for optical flow using pyramid, warping, and
cost volume. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 8934–8943,
2018.

[26] Roman Suvorov, Elizaveta Logacheva, Anton Mashikhin,
Anastasia Remizova, Arsenii Ashukha, Aleksei Silvestrov,
Naejin Kong, Harshith Goka, Kiwoong Park, and Victor
Lempitsky. Resolution-robust large mask inpainting with
fourier convolutions. In Proceedings of the IEEE/CVF Win-

1846

ter Conference on Applications of Computer Vision, pages
2149–2159, 2022.

[27] Nikhil Tomar. Semantic-segmentation-architecture.
https://github.com/nikhilroxtomar/
Semantic-Segmentation-Architecture, 2020.

[28] Dmitry Ulyanov, Andrea Vedaldi, and Victor Lempitsky.
Deep image prior. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 9446–9454,
2018.

[29] Rui Xu, Xiaoxiao Li, Bolei Zhou, and Chen Change Loy.
Deep flow-guided video inpainting. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 3723–3732, 2019.

[30] Tianfan Xue, Baian Chen, Jiajun Wu, Donglai Wei, and
William T Freeman. Video enhancement with task-oriented
flow. International Journal of Computer Vision (IJCV),
127(8):1106–1125, 2019.

[31] Tianfan Xue, Michael Rubinstein, Ce Liu, and William T
Freeman. A computational approach for obstruction-free
photography. ACM Transactions on Graphics (TOG),
34(4):1–11, 2015.

[32] Liu Yanxi, Belkina Tamara, H Hays James, and Roberto
Lublinerman. Image de-fencing. In Computer Vision and
Pattern Recognition, 2008. CVPR 2008. IEEE Conference
on, pages 1–8, 2008.

[33] Jeffrey Yeo. Rdn. https://github.com/yjn870/
RDN-pytorch, 2019.

[34] Renjiao Yi, Jue Wang, and Ping Tan. Automatic fence seg-
mentation in videos of dynamic scenes. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recogni-
tion, pages 705–713, 2016.

[35] Kaidong Zhang, Jingjing Fu, and Dong Liu. Inertia-guided
flow completion and style fusion for video inpainting. In
Proceedings of the IEEE/CVF Conference on Computer Vi-
sion and Pattern Recognition, pages 5982–5991, 2022.

[36] Yulun Zhang, Yapeng Tian, Yu Kong, Bineng Zhong, and
Yun Fu. Residual dense network for image super-resolution.
In Proceedings of the IEEE conference on computer vision
and pattern recognition, pages 2472–2481, 2018.

1847

