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Abstract

Deep image compression performs better than conven-
tional codecs, such as JPEG, on natural images. How-
ever, deep image compression is learning-based and en-
counters a problem: the compression performance dete-
riorates significantly for out-of-domain images. In this
study, we highlight this problem and address a novel task:
universal deep image compression. This task aims to
compress images belonging to arbitrary domains, such as
natural images, line drawings, and comics. To address
this problem, we propose a content-adaptive optimization
framework; this framework uses a pre-trained compres-
sion model and adapts the model to a target image dur-
ing compression. Adapters are inserted into the decoder
of the model. For each input image, our framework op-
timizes the latent representation extracted by the encoder
and the adapter parameters in terms of rate-distortion. The
adapter parameters are additionally transmitted per im-
age. For the experiments, a benchmark dataset contain-
ing uncompressed images of four domains (natural images,
line drawings, comics, and vector arts) is constructed and
the proposed universal deep compression is evaluated. Fi-
nally, the proposed model is compared with non-adaptive
and existing adaptive compression models. The compar-
ison reveals that the proposed model outperforms these.
The code and dataset are publicly available at https:
//github.com/kktsubota/universal-dic.

1. Introduction

Image compression is a fundamental technology for re-
ducing the costs of storage and network transmission. Com-
pressed images are ubiquitous—digital cameras and smart-
phones compress images. The common compression stan-
dard is JPEG [51], whereas JPEG2000 [45], BPG [8],
and VVC [10] are more recent standard-based compres-
sion. Deep image compression is the image compres-
sion technique based on neural networks. Recent studies
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Figure 1: Examples of compression results on a comic im-
age in the BAM dataset [52]. General deep image compres-
sion (WACNN [57]) performs superior to the state-of-the-
art conventional codec (VVC [10]) on natural images. How-
ever, its performance deteriorates on out-of-domain images.
By addressing this problem, our framework exhibits supe-
rior performance to VVC on out-of-domain images. In this
figure, ours can reconstruct the brush texture in dark brown
with relatively high fidelity.

have demonstrated that deep image compression exhibits
higher performance than conventional codecs on natural im-
ages [19, 54, 57].

However, deep image compression is learning-based.
Therefore, we encounter the problem of performance degra-
dation in compressing out-of-domain images. General com-
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pression models pre-trained only on natural images exhibit
relatively low performance on images in other domains, as
shown in Fig. 1. To investigate this problem, we address
a novel deep image compression task, which we name uni-
versal deep image compression. The objective of universal
deep image compression is to compress images from arbi-
trary domains, such as line drawings and comics, as well as
natural images.

We propose a content-adaptive optimization framework
to address the problem of compressing out-of-domain im-
ages. This framework adapts the pre-trained compression
model to each target image and addresses domain shifts be-
tween pre-training and testing. Our framework is efficient
owing to a small number of parameters needed for the per-
image adaptation during testing.

Our framework has two advantages over previous ap-
proaches studied in content-adaptive compression [13, 30,
31, 48, 55, 56]: the flexibility of the base network archi-
tecture and the efficiency in terms of rate-distortion. In
content-adaptive compression, certain studies adapted the
compression model during testing by refining the latent rep-
resentation extracted by the encoder [13, 53]. Other stud-
ies additionally updated the parameters in the decoder and
transmitted these [30, 31, 48, 55, 56]. However, the state-
of-the-art latent refinement method [53] has restrictions on
pre-trained compression models: it assumes that the hyper
latent representation follows a Gaussian distribution to per-
form the bit-back coding [22, 50]. Moreover, previous ap-
proaches for updating the parameters in the decoder update
an excessive number of parameters for an individual im-
age [31, 48], insert and train ad-hoc layers [56], or optimize
parameters only in terms of distortion [31, 56].

In our framework, we refine the latent representation by
the simplified approach of the state-of-the-art refinement
method. We omit the process of bit-back coding and only
optimize the latent representation in terms of rate-distortion
with gradient descent. Therefore, our latent refinement is
efficient and flexible to the base network architecture.

To update the decoder, we insert adapters into the de-
coder and train these. Adapters are small modules with a
small number of parameters and have been successful in
parameter-efficient transfer learning [23, 33, 41, 46]. Using
adapters, we can improve the compression performance by
updating a relatively small number of parameters. More-
over, we optimize adapters in terms of rate-distortion with
gradient descent. Therefore, our decoder update is efficient
in terms of rate-distortion.

To evaluate our framework, we construct a benchmark
dataset that comprises four domains: natural images, line
drawings, comics, and vector arts. We sample natural im-
ages from the Kodak dataset [16] and images in the other
three domains from the BAM dataset [52]. We use one of
the state-of-the-art compression models (window attention-

based convolutional neural networks (WACNN) [57]) for
the baseline, and modify it by inserting adapters and op-
timizing the latent representation and the adapter parame-
ters. We pre-train the model on a natural image dataset and
evaluate its performance on in-domain and out-of-domain
images.

The main contributions of this study are as follows

• We address universal deep image compression. To our
knowledge, this is the first work that addresses the deep
compression of images in arbitrary domains, such as
line drawings and comics.

• We propose a content-adaptive optimization frame-
work, wherein we adapt a pre-trained model to each
target image. Our framework refines the latent repre-
sentation by a simplified approach of the state-of-the-
art method. We then train adapters inserted into the de-
coder via optimization in terms of rate-distortion. The
adapter parameters are additionally transmitted.

• We demonstrate experimentally that the proposed
method is effective and significantly outperforms the
state-of-the-art conventional codec on the four do-
mains.

2. Related Work
2.1. Deep Image Compression

Deep image compression achieves image compression
by optimizing the modules in an end-to-end manner [5].
To obtain compressed images with less distortion, numer-
ous studies have worked toward improving the modules
such as the encoders and decoders [14, 54] and the en-
tropy models [34, 36, 37]. Some studies worked on im-
age compression for human perception instead of distor-
tion [12, 35, 39, 43]. Other studies worked on achieving
variable rate compression [15].

Deep image compression outperforms conventional
codecs on natural images [19, 54, 57]. However, these stud-
ies trained only on natural images, such as CLIC [47] and
ImageNet [44], and evaluated only on natural images, such
as Kodak [16], CLIC [47], Tecnick [3], and DIV2K [2].
Hence, their compression performance when applied to
other domains, such as line drawings and comics, remains
uncertain.

In contrast, Kim et al. [27] worked on lightweight and
fast decoding in deep image compression. They evaluated
their proposed method on both natural and cartoon images.
However, their approach needs to prepare a dataset for train-
ing on cartoon images, unlike a content-adaptive optimiza-
tion framework that requires no pre-training per domain.
Moreover, the number of evaluation domains is limited. In
this study, we study the compression of images in various
domains, such as line drawings, comics, and natural images.
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Figure 2: Outline of the proposed method. First, we refine the latent representation; subsequently, we train the adapters.

2.2. Content-Adaptive Compression

Content-adaptive compression achieves high perfor-
mance by adapting the compression model for each target
image. In deep image compression, content-adaptive com-
pression is achieved by the per-image refinement of the la-
tent representation obtained by the encoder [13, 53]. The
latent bitstream can be obtained by compressing the refined
latent representation. In addition to the latent refinement,
Zou et al. [55] updated the parameters in the decoder per
image. The model bitstream can be obtained by compress-
ing the updated parameters.

Updating and compressing the parameters in the decoder
has been studied primarily for compression of multiple im-
ages, post-processing of video compression, and deep video
compression. Rozendaal et al. [48] updated all the param-
eters in the decoder and entropy model. They optimized
the parameters in terms of rate-distortion and finally com-
pressed these by entropy coding. However, although they
addressed multiple images for the adaptation, this approach
requires a relatively large number of bits for compressing
an individual image.

Other studies updated the limited number of adapting
parameters. Zou et al. [55] addressed deep image com-
pression and updated only the biases of convolution lay-
ers in the decoder. Lam et al. [31] addressed the post-
processing of compressed videos and updated only the bi-
ases of convolutional layers in the post-processing net-
work. Zou et al. [56] addressed deep video compression.
They inserted overfittable multiplicative parameters (which
multiply the output of convolutional layers) and updated
these for intra-frame coding. However, updating param-
eters are selected in an ad-hoc manner and are optimized
only in terms of distortion. Unlike these previous ap-
proaches, we introduce adapters and optimize these in terms
of rate-distortion. Adapters exhibit superior performance in
parameter-efficient transfer learning.

2.3. Parameter-Efficient Transfer Learning

Parameter-efficient transfer learning aims to adapt a
model pre-trained on a large-scale dataset per task, with re-
ducing the number of adapting parameters. Unlike a general
adaptation approach that fine-tunes all the parameters of a
pre-trained model, most of the model parameters are fixed.
Therefore, we can reduce the cost of transmission of param-
eters and preserve the knowledge in pre-training.

This task was first studied for obtaining a universal rep-
resentation of multiple domains in computer vision [41, 42].
Recently, motivated by the emergence of a big pre-trained
transformer model [49], such as BERT [17] and T5 [40],
this task has been studied primarily for training efficiently
in natural image processing [9, 23].

We can classify the algorithms for parameter-efficient
transfer learning into the following two types. (1) adapt-
ing newly added parameters [20, 25, 33, 41, 42] and (2)
adapting part of the parameters in the model [9, 18, 38].
The first approach introduces an adaptation module, such as
adapters [41, 42], compacters [25], and hyperformers [26].
The second approach adapts normalization and lightweight
layers [38], biases of layers in the model [9], and sparse
difference in model weights [18].

Among these approaches, adapters are widely used [20,
23, 33, 41, 42, 46]. Adapters are modules with a small num-
ber of parameters. These are implemented as matrix multi-
plication [42], decomposition of a matrix [42], multiplica-
tion of two matrices with activation [23], or channel-wise
scaling [33]. Motivated by the success of adapters in this
task, we used adapters in our framework.

3. Method
The objective of universal deep image compression is

to compress images from arbitrary domains. To achieve
this objective, we proposed a content-adaptive optimization
framework. Given a pre-trained compression model and an
uncompressed image, the model is adapted to each target
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Figure 3: Network architecture of the main decoder with
adapters. WAM, Conv., IGDN, and RB denote a window-
attention module [57], a convolutional layer, an inverse gen-
eralizable divisible normalization layer [4], and a residual
block [21], respectively.

image during testing.
The outline of the proposed method is shown in Fig. 2.

In encoding, first, latent representation is extracted by the
encoder and adapters are inserted into the decoder. Subse-
quently, the latent representation is refined via optimization
in terms of rate-distortion. Next, the adapters are trained
by optimizing in terms of rate-distortion. Finally, the la-
tent representation and the parameters of the adapters are
encoded by entropy coding, and the latent and adapter bit-
streams are transmitted. In decoding, the transmitted bit-
streams are decoded by entropy decoding, and finally, the
compressed image is obtained.

We used WACNN [57], which is a state-of-the-art ar-
chitecture, as the base network architecture. Note that our
framework can be applied to other network architectures.
WACNN has a hyper-prior architecture [6]. It transmits the
hyper latent representation as well as the latent represen-
tation. In our explanation, we considered these two repre-
sentations in a unified manner and called these as the latent
representation.

Hereafter, we explain the details of our framework. Our
framework comprises the following three technical com-
ponents. The first is the insertion of the adapters into the
decoder. The second is the refinement of the latent repre-
sentation extracted from the target image. The third is the
training of the adapters. We describe the details of each
component in the next subsections.

Let us define the characters for the explanation. Let x be
the input image, x̂ be the compressed image, y be the latent
representation, ŷ be the quantized latent representation, y∗

be the refined latent representation, q be the quantizer, g be
the decoder with adapters, bl be the latent bitstream, ba be
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Figure 5: Outline of adapter training.

the adapter bitstream, ϕ be the pre-trained parameters for
the decoder except for adapters, θ be the parameters of the
adapters, and θ∗ be the updated parameters of the adapters.

3.1. Insertion of Adapters

We empirically determined good insertion positions of
the adapters and inserted an adapter into the window atten-
tion module (WAM) [57] on the second side of the main de-
coder. The network architecture of the main decoder with
adapters is shown in Fig. 3.

We implemented the adapter by matrix decomposition
presented in [42]. This architecture is simple albeit effec-
tive, as shown in [33]. Let the input of the adapter be h ∈
RC×H×W and the adapter be r : RC×H×W → RC×H×W .
The operation of the adapter is written as

r(h;θ) = AB⊤h, (1)

where A,B ∈ RC×M are learnable parameters of the
adapter and θ = [A,B]. Thus, the number of adapter pa-
rameters is 2MC.

The number of adapter parameters is much smaller than
the number of model parameters. For WACNN [57], the
number of model parameters is 6.50 × 107 and C = 192.
Thus, when M = 2, the number of adapter parameters is
768. This is 0.0012% to the model parameters.

3.2. Latent Refinement

The outline of the latent refinement is illustrated in
Fig. 4. We optimized the latent representation y with gradi-
ent descent via the simplified approach of Yang et al. [53].
The loss function is written as

Ll(y) = R(q̃(y)) + λD (g (q̃(y);ϕ,θ) ,x) , (2)
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where R is bitrate, D is the distortion, λ ∈ R is the hyper-
parameter for adjusting the trade-off of rate-distortion, and
q̃ is the uniform quantization with the approximation of
stochastic Gumbel annneling [53]. In this optimization, we
did not train the adapters and fix the parameters to zero. We
omitted bit-back coding in Yang et al. [53] because it re-
quired modification of the pre-trained network architecture.

We obtained the refined latent representation y∗, which
is given as follows.

y∗ = arg min
y

Ll(y). (3)

Finally, we quantized y∗ and encoded ŷ∗ by entropy cod-
ing to obtain bl. Note that this latent refinement can be
completed using a local decoder at the transmitter.

3.3. Adapter Training

The outline of adapter training is shown in Fig. 5. We
optimized the parameters of the adapters as the optimiza-
tion of the latent representation. Let w be the quantiza-
tion interval and θ̂ be the quantized adapter parameters.
We quantized θ with approximation and optimized θ in
terms of rate-distortion. We used the mixed quantization
approach [32]. That is, we uniformly quantized θ with a
straight-through estimator [24] for the decoder and add uni-
form noise U(−w/2, w/2) to θ for the entropy model. Let
θ̃ be the adapter parameters added uniform noise.

The loss function for optimizing θ is written as

La(θ) = − log2 p(θ̃) + λD
(
g
(
ŷ;ϕ, θ̂

)
,x

)
, (4)

where p is the entropy model of θ. The first term is the loss
function for the bitrate and computes the entropy of θ̂. We
used a logistic distribution with the scale of s ∈ R as p.

After this optimization, we obtained the updated param-
eters of the adapters θ∗, which are given as follows.

θ∗ = arg min
θ

La(θ). (5)

Finally, we quantized θ∗ and encoded θ̂
∗

by entropy coding
to obtain ba.

4. Experiment
4.1. Experimental Setup

We constructed a benchmark dataset containing uncom-
pressed images of four domains: natural images, comics,
line drawings, and vector arts. We collected natural images
from the Kodak dataset [16] and the images in the other
domains from the BAM dataset [52]. The Kodak dataset
consists of 24 natural images. We used all the images in the
Kodak dataset. The BAM dataset consists of artistic images
other than natural images. We sampled 100 images from the

Table 1: Evaluation dataset.

Domain Test data Average Resolution

Natural image 24 576× 704
Comic 100 606× 587
Line drawing 100 584× 577
Vector art 100 554× 580

BAM dataset per domain that were not degraded by JPEG
compression. We considered images labeled with “pen-
ink”, “comic”, and “vectorart” as line drawings, comics,
and vector arts, respectively. The statistics of the con-
structed dataset are presented in Table 1.

We used WACNN [57] implemented with Compres-
sAI [7] as the base compression model. We pre-trained
six models with L = R + λD by setting λ to 0.0018,
0.0035, 0.0067, 0.013, 0.025, and 0.0483. The pre-training
data comprised 300,000 natural images sampled randomly
from OpenImages [29]. Thus, the results for the natural im-
ages indicate in-domain performance, whereas those for the
other three domains indicate out-of-domain performance.

With regard to the hyper-parameters, we set w = 0.06,
s = 0.05, and M = 2 in the proposed method. We set λ to
an equal value in pre-training. We use mean squared error
as distortion D.

Implementation Details. In pre-training, we used the
Adam optimizer [28] for up to 100 epochs with a batch
size of 16. We set the learning rate to 10−3 for the first
78 epochs, 10−4 for the following 20 epochs, and 10−5 for
the final two epochs.

In adaptation, we used the Adam optimizer for up to
2,000 iterations for the latent refinement and 500 iterations
for the adapter training. We set the learning rate to 10−3 for
the first 1,600 iterations and 10−4 for the final 400 iterations
for the latent refinement. We set the learning rate to 10−3

for the first 400 iterations and 10−4 for the final 100 itera-
tions for the adapter training. The θa is initialized with the
Gaussian noise of N (0, 0.022). For further details, please
refer to our publicly available source code.

4.2. Comparison with Other Methods

Rate-Distortion Performance. First, we compared the
proposed method with a baseline method that does not per-
form adaptive optimization. We calculated the peak signal-
to-noise ratio (PSNR) and bits per pixel (BPP) for each
image, and computed the average values to plot on a rate-
distortion curve. The results are displayed in Fig. 6. Evi-
dently, the proposed method significantly outperformed the
baseline method. The improvement in PSNR was approxi-
mately 1–2 dB. This indicates that adaptive optimization is
effective for universal deep image compression.

Next, we compared the proposed method with other

2533



0.2 0.4 0.6 0.8
Rate (BPP)

30

32

34

36

38
PS

NR
 (d

B)
Ours
WACNN [57]

Natural image

0.2 0.3 0.4 0.5 0.6 0.7 0.8
Rate (BPP)

30

32

34

36

38

40

PS
NR

 (d
B)

Ours
WACNN [57]

Comic

0.2 0.4 0.6 0.8 1.0
Rate (BPP)

30

32

34

36

38

40

42

PS
NR

 (d
B)

Ours
WACNN [57]

Line drawing

0.10 0.15 0.20 0.25 0.30 0.35 0.40
Rate (BPP)

34

36

38

40

42

44

PS
NR

 (d
B)

Ours
WACNN [57]

Vector art

Figure 6: Comparison with WACNN [57], which is the baseline method that does not perform adaptive optimization.

Table 2: Comparison with existing adaptive compression methods on BD rate (%) to VVC [10]. The BD rates of JPEG, BPG,
VVC, and WACNN [57] are provided for reference. A smaller value is more effective.

Method Natural Image Comic Line drawing Vector art Average

JPEG 184 447 186 676 373
BPG 33.7 88.0 28.8 114 66.2
VVC 0.00 0.00 0.00 0.00 0.00
WACNN [57] -6.31 11.6 14.5 25.3 11.3

Yang et al. [53] -9.82 -0.50 1.84 8.47 -0.00
Lam et al. [31] 151 197 161 367 219
Rozendaal et al. [48] 234 317 267 718 384
Zou et al. [56] -9.68 -2.40 -0.13 4.12 -2.02
Ours -9.79 -2.82 -0.25 2.87 -2.50

adaptation methods. For a fair comparison, we reimple-
mented Yang et al. [53], Rozendaal et al. [48], Zou et
al. [56], and Lam et al. [31] in our framework. Please refer
to the supplementary material for the detailed experimental
setup. Additionally, we performed a comparison with the

baseline method and three conventional codecs: JPEG [51],
BPG [8], and VVC [10] for reference. In particular, we
used VVC for intra-frames implemented in VTM [1]. We
computed Bjøntegaard Delta bitrate (BD rate) [11] com-
pared with VVC. The results are presented in Table 2. Evi-
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Natural Image PSNR/BPP 29.6/0.242 23.7/0.252 28.7/0.254 29.5/0.254 29.3/0.247

Comic PSNR/BPP 37.4/0.171 21.9/0.212 32.6/0.177 37.2/0.183 36.7/0.180

Line drawing PSNR/BPP 30.9/0.396 19.7/0.459 27.2/0.420 30.2/0.387 29.4/0.391

Vector art
PSNR/BPP

Input
33.7/0.071

Ours
21.3/0.169

JPEG
29.4/0.074

BPG
33.3/0.069

VVC
32.4/0.064

WACNN [57]

Figure 7: Qualitative results for the four domains. Ours reconstruct the wires, shadow of the character’s head, overlapping
lines, and the monster’s nose with relatively high fidelity, respectively.

dently, the proposed method achieved performance superior
to those of the other adaptation methods. Furthermore, the
proposed method outperformed VVC, which is the state-
of-the-art conventional method. Note that Lam et al. [31]
and Rozendaal et al. [48] performed inferior to the baseline
method. This is because these methods transmitted many
parameters in the decoder for an individual image.

Qualitative Results. The qualitative results of the pro-
posed method, baseline method, and conventional codecs
are shown in Fig. 7. We compared these methods at a sim-
ilar BPP. Our method achieved higher visual quality com-
pared with conventional codecs and the baseline method.

Runtime. We measured the runtime of encoding and de-
coding using GPUs (NVIDIA Tesla V100). We conducted
experiments on vector arts using the baseline and proposed
methods. We show the average runtime in Table 3. The
decoding time was found to be comparable to that of the
baseline method. However, the proposed method required
more time for encoding than the baseline method owing to
the adaptive optimization framework.

Table 3: Comparison of runtime.

Method Encoding (s) Decoding (s)

WACNN [57] 0.16 0.16
Ours 260 0.18

4.3. Ablation Studies

Effectiveness of Adapters. To show the effectiveness
of adapters, we compared the proposed method with other
methods that update parameters other than adapter param-
eters. In the experiments, we updated zero parameters, bi-
ases of the layers as in [31], and overfittable multiplicative
parameters (OMPs) as in [56]. The numbers of updated pa-
rameters were 0, 9283, and 192, respectively.

The results on vector arts are listed in Table 4 and
revealed that the highest performance is obtained when
adapters are adapted. The qualitative results are shown in
Fig. 8. Evidently, the artifacts around the boundary of the
texts were reduced using adapters.
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Table 4: Comparison of update of different parameters on
BD rate (%). A smaller value is more effective.

Method # of parameters BD rate (%) ↓
Adapters (Ours) 768 0.00
Zero parameters 0 6.16
Biases 9283 42.1
OMPs 192 0.91

PSNR/BPP
Input

35.4/0.099
Ours

34.5/0.090
Without adapters

Figure 8: Qualitative results for the effectiveness of
adapters. The top image is the entire input image, whereas
the bottom images are the cropped patches. We can observe
artifacts around the texts are reduced by using adapters.

Effectiveness of Rate-Distortion Optimization of
Adapters. In our framework, we optimized the adapters
in terms of rate-distortion. In this experiment, we present
the results for when the adapters were optimized only in
terms of distortion and compressed into eight bits as in Zou
et al. [56]. In the implementation, we linearly transformed
the parameters of the adapters to the range of [0, 255] and
quantized the parameters to the integer. This was performed
to obtain integer values of eight bits and two real values of
32 bits, which are the scale and bias for the linear transfor-
mation. The BD rate compared with our method on vector
arts was 4.21%. The results indicate the effectiveness of the
rate-distortion optimization of the adapters.

Application to Another Network Architecture. Our
framework can be applied to other network architectures.
In this experiment, we demonstrate the performance of our
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Figure 9: Results on vector arts using Cheng20 [14] as base
network architecture.

framework when it is applied to Cheng20 [14]. In our im-
plementation, we used cheng2020-attn in CompressAI [7].
We used publicly available models pre-trained on natural
images. Subsequently, we inserted adapters after the con-
volutional layer at the first side of the final residual block
of cheng2020-attn. The results are shown in Fig. 9, which
revealed that our framework significantly outperformed the
baseline method on Cheng20 [14].

Optimization Order. Our framework first optimizes the
latent representation and then optimizes the parameters of
the adapters. In this experiment, we swap the order of the
optimization. That is, we first train the adapters and then
refine the latent representation using the trained adapters.
The BD rate compared with our method on vector arts was
0.70%. The results indicate that our optimization order is
effective.

5. Conclusion
In this study, we addressed a novel task that we named

universal deep image compression. We observed a problem
wherein deep image compression deteriorates its perfor-
mance on out-of-domain images. We proposed a content-
adaptive optimization framework to address this problem.
To adapt a pre-trained compression model per target im-
age, we refined the latent representation extracted by the
encoder and trained the adapters inserted into the decoder.
Our framework can be applied to all pre-trained compres-
sion models. We constructed a benchmark dataset with four
domains and demonstrated that our framework is effective.
The limitation of our research is an expensive encoding time
due to the optimization during compression. Reducing the
encoding time is an important future work of our research.
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