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Abstract

In recent years, implicit surface representations through
neural networks that encode the signed distance have
gained popularity and have achieved state-of-the-art results
in various tasks (e.g. shape representation, shape recon-
struction, and learning shape priors). However, in con-
trast to conventional shape representations such as polygon
meshes, the implicit representations cannot be easily edited
and existing works that attempt to address this problem are
extremely limited. In this work, we propose the first method
for efficient interactive editing of signed distance functions
expressed through neural networks, allowing free-form edit-
ing. Inspired by 3D sculpting software for meshes, we use
a brush-based framework that is intuitive and can in the fu-
ture be used by sculptors and digital artists. In order to
localize the desired surface deformations, we regulate the
network by using a copy of it to sample the previously ex-
pressed surface. We introduce a novel framework for simu-
lating sculpting-style surface edits, in conjunction with in-
teractive surface sampling and efficient adaptation of net-
work weights. We qualitatively and quantitatively evaluate
our method in various different 3D objects and under many
different edits. The reported results clearly show that our
method yields high accuracy, in terms of achieving the de-
sired edits, while at the same time preserving the geometry
outside the interaction areas.

1. Introduction
Representing and manipulating surfaces and 3D shapes

is a problem of paramount importance in many diverse ap-
plications, ranging from mechanical and architectural de-
sign to computer animation, augmented/virtual reality, and
physical simulations. It thus comes as no surprise that the
representations devised over the years are as many and di-
verse as the applications, each with their respective advan-
tages and disadvantages. Bézier patches, B-splines and sub-

division surfaces are only some of the choices, with the
most ubiquitous being the polygon meshes [20].

Although polygon meshes offer a useful and efficient
representation it is hard to model diverse topologies, as that
would require the vertices or their connectivity to change.
To surpass these limitations researchers have tried incorpo-
rating different geometrical representations, such as voxel
grids, octrees, and implicit functions. Due to the grid (or
grid-like) structure of the former two, they have been used
with convolutional networks [11, 21, 40]. Nevertheless,
voxel grids cannot achieve high resolution and, even though
octrees address this, they, too, result in jagged models.

In the last years, given the ever-rising popularity of ar-
tificial neural networks, a new class of surface representa-
tions has been proposed, namely the Implicit Neural Rep-
resentations (INRs). In this approach, the surface, which is
frequently required to be closed, is represented implicitly
as a level set of a neural network with one output. Sev-
eral papers have presented very interesting and promising
results using such representations [31, 43]. In most of the
papers, the network tries to learn either the signed distance
function or the occupancy function. Also, the network can
learn only one surface or a class of surfaces by taking a class
code along with the spatial coordinates as input. In contrast
to 3D meshes, voxel grids, and other common representa-
tions, INRs are not coupled to spatial resolution and can be
sampled at arbitrary spatial resolutions, since they are con-
tinuous functions.

Despite the particularly promising results of implicit rep-
resentations, there are still limitations to their usage. One of
the most important limitations is that the shapes cannot be
easily edited. This is due to the fact that in these representa-
tions the geometric structures are not represented in a local
fashion. Each weight of the corresponding network affects
the geometry over an unbounded region of the output space.
This means that, in order to perform a localized modifica-
tion on the 3D shape, generally all weights of the network
need to be modified.
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Figure 1: Examples of shape editing capabilities offered by our 3DNS, acting directly on the Neural SDF representation. First
column: original shapes. Following columns: results of multiple edits using various brush settings, visualizing intermediate
stages of the process. All edits and renderings are done on the implicit neural representation, avoiding completely the use of
triangular meshes. Images were taken from our interactive editor, which uses Sphere Tracing [19] to render the zero-level
set of the Neural SDFs. Please zoom in for details and refer to the paper’s webpage (https://pettza.github.io/
3DNS/) for a demo video.

This editability problem of INRs is an open challenge
that has attracted very limited attention in the literature. Ex-
isting works allow for some form of interactive editing, by
either optimizing the shape code fed to the network [13, 18]
or by training the networks for articulated objects [12, 27]
and changing the joints’ parameters (which are also fed to
the network). In either case, the editing is limited inside a
learned shape space and, so, these methods do not support
arbitrary modifications of the shape’s 3D geometry.

To overcome the aforementioned limitations, this work
introduces the first method that allows interactive edit-
ing of INRs, specifically neural Signed Distance Functions
(SDFs). We approach the problem from a 3D sculpting per-
spective, aiming at equipping INRs with functionalities that
3D software have for the standard mesh representations.
Our method, which we call 3D Neural Sculpting (3DNS),
edits the surface modeled by the zero-level set of a neural
network in a brush-based manner. As mentioned above, us-
ing a feedforward neural network to represent an SDF cre-
ates a problem of locality. For this, we propose using sam-
ples of the surface represented by the network to regulate

the learning of the desired deformation. The source code is
available at https://github.com/pettza/3DNS.

2. Related Work
2.1. Implicit Surface Representations

The idea to represent surfaces implicitly is by no means
a new one. In fact, there have been continual attempts to use
implicit representations in computer graphics and machine
learning. In the shader art community, analytic implicit rep-
resentations have been used to render from simple primi-
tives to complex scenes and fractal objects [33]. On the
other hand, in the machine learning community earlier ap-
proaches have relied upon radial basis functions (RBFs) [6]
and octrees [15] to express SDFs. The authors of [42] use
points sampled on an implicit surface to control its shape.

Recently, the use of a neural network as the function ex-
pressing the surface was proposed in by three concurrent
works [8, 25, 31], which ignited interest in these implicit
neural representations. DeepSDF [31] uses a network to
represent the SDF for a shape (or a shape class, using ad-
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ditionally a shape code as input to the network), while the
other two [8, 25] express the occupancy function. Since
then many more works on INRs have ensued.

The works referenced above use a regression-type loss
function for training. For SDFs, this requires the computa-
tion of ground truth distances at points in space which can
be difficult. Various attempts have been made to reformu-
late the loss function for training a neural SDF. SAL [2]
neural SDFs are trained using a loss that, nevertheless, dis-
regards the sign of the distance, which requires careful ini-
tialization. SAL++ [3] extends this method to utilize infor-
mation about the normal vectors of the surface. The authors
of [1] incorporate samples of the level sets of the network
function to the loss. Further progress was made by IGR
[17], which uses the fact that SDFs satisfy the eikonal equa-
tion to train the network as a differential equation solving
network [36], thus requiring only uniform samples inside a
bounding box of the surface and samples that lie on the sur-
face, without computation of ground truth distances. Our
loss is derived from this.

Other works have experimented with the architecture of
the networks. SIREN [37], which uses sines instead of the
usual RELUs, presented promising results in a variety of
tasks including surface reconstruction. Convolutional net-
works are used in [9, 10] by discretizing the input point
cloud. State-of-the-art results have been attained by cou-
pling neural networks with data structures that retain lo-
calized spatial information. Octrees, which store learnable
weights are used in [7, 38] and a method called hash en-
coding is used by Instant-NGP [28]. Besides high detailed
representations, NGLoD [38] and Instant-NGP [28] achieve
interactive framerates, as well.

Besides training using raw geometric data like point
clouds and meshes, there have been efforts to train neural
SDFs directly from images [4, 29, 30, 44]. The authors of
[45] propose an SDF variant that takes direction into ac-
count (Signed Directional Distance Function). In contrast to
a neural SDF which expresses the distance approximately,
they prove that their network structure ensures it expresses
the SDDF of some object.

It is worth mentioning that, while we focus on neural rep-
resentations of shapes, implicit representations have found
success in expressing quantities other than distance func-
tions. For example, NeRF [26] produces highly realistic
images by expressing the radiance and density of a scene. A
recent survey [43] explores these representations, to which
the authors refer as Neural Fields, in depth.

2.2. Neural SDF Editability

The research on editability is quite limited. DualSDF
[18] proposes a two-level representation, one which com-
prises a collection of primitives (e.g. spheres) and a neural
SDF which share the shape space. The user is able to ma-

nipulate the fine representation of the neural SDF by spec-
ifying changes to primitives’ parameters which affect the
shape code. A similar process is possible with DIF [13],
where instead of primitives a sparse set of points is used.
The authors of [12] and those of [27] both deal with artic-
ulated objects. The joints’ parameters are given as input to
the network and, thus, can be used to manipulate the shape.

Since the above works deform the expressed shape by
proxy of the network’s inputs the space of possible shapes
is limited to the one learned during training. In contrast,
our method allows the user to more freely change the local
3D geometry in ways that do not necessarily lie within a
learned shape space, similar to the functionalities that until
now were offered by 3D software for meshes only.

3. Background
We begin by presenting some material upon which we

rely to develop our method. In Section 3.1 we give a defini-
tion of SDF, in Section 3.2, we describe SIREN [37] which
is the architecture that we build upon, in Section 3.3 we
present weight normalization [35] and finally in Section 3.4,
we describe the formulation of the adopted loss function.

3.1. Signed Distance Functions (SDFs)

Let S be a surface in R3, then the (unsigned) distance of
a point x to the surface is:

UDF (x, S) = min
y∈S

{d(x,y)} (1)

where d is a metric on R3, typically (in our case as well) the
Euclidean distance.

If S is closed the signed distance function is defined as:

SDF (x, S) =

{
UDF (x, S) if x inside S

−UDF (x, S) otherwise
(2)

A Neural SDF is a neural network that takes the spatial
coordinate x as input and approximates the SDF of a sur-
face. As a consequence, Neural SDFs use a whole neural
network to parameterize a single shape. They effectively
use a continuous function to represent a shape and in this
way they are not dependent on a specific spatial resolution.

3.2. SIREN Representation

We build upon SIREN [37], which is a multilayer per-
ceptron (MLP) that uses sines, instead of the usual ReLUs
for its non-linearities. Evidently, sines allow the network
to more accurately represent finer details. The use of sines
is related to Fourier features [5], for which the aforemen-
tioned property has been theoretically explained [39] using
the NTK framework [22]. We chose SIREN as our architec-
ture due to its simplicity and effectiveness. We note, how-
ever, that our method is model-independent and, therefore,
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could be applied to a variety of networks. The only alter-
ation we experiment with is adding weight normalization to
each layer which we discuss next.

3.3. Weight Normalization

We propose to extend SIREN by equipping it with
weight Normalization, which is a memory-efficient tech-
nique proposed by [35] for accelerating convergence. It
works by reparametrizing the weights of a linear layer so
that they are represented by a length parameter and a direc-
tion vector. This approximately ‘whitens’ the gradients dur-
ing training and this makes the 3D shape represented by the
Neural SDF to update across iterations in a more effective
manner. As we show in Section 5.4 applying it to SIREN
has a positive effect.

3.4. Loss Function for Neural SDF

We adopt the loss function introduced by SIREN [37]
and briefly present it here for the sake of completeness. In
more detail, many of the works on neural SDFs [7, 10, 28,
31, 38] use a regression type loss to train the neural net-
works. The loss is evaluated for points sampled on the sur-
face, near the surface, and in a bounding box around it. The
ground truth signed distance needs to be computed for off-
the-surface points which can be difficult, especially for non-
mesh data which interest us (see Section 4). The authors
of [17] propose a loss function that comprises a regression
loss evaluated only on points on the surface (for which the
distance is 0), a term for the normal vectors at the same
points, and a term that enforces the network to have unit
gradients w.r.t. to the input (this is commonly referred to as
the eikonal term). The latter term is evaluated for points that
are sampled uniformly inside a bounding box. The authors
of [37], besides some minor changes, expand the above loss
with a term that penalizes small values of the neural SDF at
off-surface points. In summary, the loss function L(θ) that
we minimize during training is defined as:

L(θ) = LS(θ) + Leik(θ) + Les(θ), where: (3)
LS(θ) = EpS

{λ1 |fθ(x)|+ λ2 g (∇xfθ(x), nx)} (4)

Leik(θ) = λ3 Eq

{∣∣∥∇xfθ(x)∥ − 1
∣∣} (5)

Les(θ) = λ4 Eq{e−α|fθ(x)|} (6)

where λ1, λ2, λ3 and λ4 are balancing weights (set to
1.5 · 103, 5, 2.5, 5 respectively), S is the target surface,
pS is a distribution on the surface, q is the uniform distribu-
tion in a bounding box, θ is the parameter vector, fθ is the
network function, g is the cosine distance, nx is the normal
vector at x and α a large positive number (set to 100). LS

encompasses the regression and normal terms, Leik is the
eikonal term, and Les is the term described last.

Figure 2: Brush template profile. See equation 11.

4. Proposed 3D Neural Sculpting
Our goal is to deform a surface (represented as a neu-

ral SDF) around a selected point on it in a manner similar
to what is possible for meshes with 3D sculpting software.
We refer to the selected point as the interaction point, to
the area around it as the interaction area and to the process
in general as an interaction or edit. The main problem in
our case is how to enforce locality. Generally, a change to
the parameters of a neural network is expected to affect its
output for an unbounded region of the input space. Conse-
quently, naively trying to train the network only where the
surface needs to change will ostensibly distort the rest of the
surface as well, which is what we confirm through experi-
mentation in Section 5.6. In order to ameliorate this adverse
effect as much as possible, we produce the point cloud that
is to be used to evaluate the loss of equation 4 by includ-
ing both samples from the surface that the network already
represents (we call these model samples) and samples from
the desired deformation. After discarding samples from the
former set that are close to the interaction point we use the
union with the latter set for training. In Section 4.1 we de-
scribe our surface sampling, then we present our formula-
tion of sculpting brushes in Section 4.2 and then, in Section
4.3 we describe how we sample the interaction area.

4.1. Surface Sampling

Two prior works [1, 10] have proposed similar algo-
rithms that sample the zero-level set of a neural network
function. They work by sampling points uniformly inside a
bounding box and then projecting them on the level set with
generalized Newton-Raphson iterations. For a true SDF,
this would move a point to the surface point closest to it.

A naive way to produce samples for each training itera-
tion would be to use this algorithm. However, this approach
has two major drawbacks. Firstly, it is time inefficient. Sec-
ondly, the distribution of the resulting samples can be quite
non-uniform. Inspired by [10] where the sample set is ex-
tended by perturbing existing samples with gaussian noise
we produce the samples for the next iterations using the
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(a) Bunny (b) Frog (c) Bust (d) Pumpkin (e) Sphere (f) Torus

Figure 3: The dataset of 3D shapes that we use in our experiments. Please zoom in for details.

ones we already have. To that purpose, we add to each point
a vector sampled uniformly from the tangent disk and then
reproject them on the surface using the aforementioned pro-
cedure. We opt for the tangential disks, instead of gaussians,
so that we explore the surface as much as possible without
moving too far from it. The radius of the tangent disks is a
hyperparameter we set to 0.04.

This way of sampling forms a Markov Chain [34]. Natu-
rally, the stationary pdf distribution is of interest. It is rela-
tively easy to see that the requirements of Theorem 1 of [14]
(regarding the existence of the stationary distribution of a
continuous space Markov Chain) are satisfied and, hence,
the stationary distribution exists and has support over the
surface. It is hard to theoretically reason about the shape
of the distribution. However, we provide experimental re-
sults in Section 5.5, which demonstrate that our sampling
process produces more uniformly distributed samples. Uni-
formness guarantees that every surface region is included
equally during training.

4.2. Brushes

We define a brush template as a C1 (or higher) positive
2D function defined over the unit disk centered at the ori-
gin which reaches a maximum value of 1 and vanishes at
the unit circle (ideally its gradient and its higher derivatives
vanish as well). Suppose bT (x) is a brush template, then

Figure 4: The brush application is demonstrated above. S
is the surface, x0 is the interaction point, n is the normal
vector at x0, p is the tangent plane and Br,s is the brush
function whose graph over p is the dark green curve.

the properties above are summarized as follows:

bT : {x ∈ R | ∥x∥ ≤ 1} → R+ (7)
max{bT (x)} = 1 (8)
∥x∥ = 1 ⇒ bT (x) = 0 (∧∇xbT (x) = 0) (9)

We can, then, define a brush family Br,s parametrized
over radius r and intensity s:

Br,s(x) = s bT

(x
r

)
, r ∈ R+, s ∈ R (10)

We show the behaviour of different radii and intensities
in Section 5.3. Notice that a positive value for the intensity
creates a bump on the surface, while a negative value creates
a dent. In our experiments, we use the following brush tem-
plate whose profile is shown in Figure 2. For other types,
please refer to the supplementary material.

bT (x) =

{
P (1− ∥x∥) if ∥x∥ < 1

0 otherwise
(11)

P (x) = 6x5 − 15x4 + 10x3 (12)

In order to apply the brush at a point on the surface, we
consider it defined on the tangent plane at that point. Due to
the implicit function theorem [24] we can express the zero-
level set of the network function, in a region of that point,
as the graph of a 2D function over the same plane. We can,
thus, apply the brush by simply adding the brush function to
the latter. As we will see, even though this is not important
for computing the samples’ positions, we use it to compute
the correct deformed normals.

4.3. Interaction Sampling

We will now describe how we produce samples on the
area of the surface that is affected by the brush. We begin
by placing uniform samples on a disk tangent to the inter-
action point whose radius is the same as the brush’s radius.
We can, then, project these samples on the unaltered surface
and then move them perpendicular to the tangent plane (at
the interaction point) a distance equal to the brush function’s
value. Theoretically, for what we discussed in the previous
section to be applicable this needs to be a parallel projec-
tion, however, we use the same procedure that we described
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Figure 5: Example of the effect of a supported bumping brush (causing an outward local deformation) on the same interaction
point on a sphere using different values for the radius and intensity. A similar effect is supported for a denting brush (causing
an inward local deformation).

in Section 4.1 so that we don’t affect the surface in a greater
area than intended. The above process is shown in Figure 4
Next we compute the normals at the sampled position.

Suppose that f is a 2D function defined over a 3D plane
(its gradient ∇f then lies on the plane), and n is the nor-
mal vector to that plane (analogous to the z axis), then the
following is an unnormalized vector, perpendicular to the
graph of the function:

−∇f + n (13)

Accordingly, what we need in order to compute the nor-
mals of the samples is the gradient of the 2D function whose
graph is the deformed surface. As we explained in the pre-
vious section, this function is the sum of the brush function
and the function defined implicitly by the network. We can
directly calculate the gradient of the brush function. By the

Shape Chamfer Distance ×103 (↓)
Without WN With WN

Bunny 9.021 8.995
Frog 8.095 7.921
Bust 7.167 7.139
Pumpkin 8.646 8.506
Sphere 7.087 6.861
Torus 7.198 6.882
Average 7.869 7.717

Table 1: Chamfer distances computed with 100000 points
for weight normalization ablation.

implicit function theorem, the gradient of the implicit func-
tion is given by:

−
(∇xfθ(x))∥

(∇xfθ(x))⊥
(14)

where ∥ denotes the component parallel to the tangent plane
and ⊥ the component perpendicular to it.

We, firstly, sample the model and discard the samples
that lie inside a sphere centered at the interaction point with
a radius equal to the brush’s radius. Then, we sample the
interaction. The number of samples we take is the number
of discarded samples multiplied by an integer factor bigger
than 1. We utilize this factor in order to balance the contri-
butions of the model and interaction samples. We want the
influence of the interaction samples to be larger since it is
where the surface must change, while adapting to the size of
the affected area. We use a factor of 10 for our experiments.
Finally, the set of samples for the training is the union of the
non-discarded model samples and the interaction samples.

5. Experiments
In this section, we qualitatively and quantitatively eval-

uate our proposed 3DNS in various 3D objects and under
several different surface edits. For additional results please
refer to the supplementary material.

5.1. Dataset

For our experiments we have created a small dataset of
six 3D shapes, see Fig. 3. For four of them, we start from
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Figure 6: On the top row the estimated pdf is visualized with face colors. On the bottom row, the respective histograms of
the estimated pdf values are shown. The dashed vertical red line indicates the value of the uniform pdf. For the two columns
on the left, our proposed algorithm was used, while for the ones on the right, the naive approach.

a mesh representation: The Stanford Bunny, which comes
from [41] and the frog, pumpkin, and bust, which come
from TurboSquid 1. The other two shapes are a sphere and
a torus which are usually provided by 3D modeling soft-
ware as starting shapes. We start from an analytical rep-
resentation of these shapes. Specifically, we use a sphere
with a radius of 0.6 and a torus with a major radius of 0.45
and a minor radius of 0.25. For our implementation, we
use PyTorch [32]. As a pre-processing step, we normal-
ize the coordinates of the four meshes of our dataset by
translating and scaling them uniformly so that they lie in-
side [−(1 − b), 1 − b]3, where b is a positive number. The
latter parameter is used so that there is space around the
models where we can edit them. We set b to 0.15. We train
networks to represent the shapes of the dataset by sampling
them uniformly. The architecture of the networks is SIREN
with 2 hidden layers and 128 neurons each, and weight nor-
malization (except in Section 5.4). We use 120000 samples
for the loss of equation 4 and another 120000 for the losses
of equations 5 and 6 and train for 106 iterations.

5.2. Performance Metric

For quantitative comparisons, we use the Chamfer dis-
tance, which is a common metric used for geometric tasks.
If A, B are two point clouds, their Chamfer distance is de-
fined as follows:

CD(A,B) =
1

|A|
∑
a∈A

min
b∈B

d(a, b) +
1

|B|
∑
b∈B

min
a∈A

d(a, b)

(15)

5.3. Brush Parameters

We demonstrate how the brush parameters allow the user
to control the edit in Figure 5. Specifically, we use different

1https://www.turbosquid.com

radii and intensities on the same interaction point on the
sphere. For each row, the intensity is the same and is shown
on the left. Similarly, for each column, the radius is the
same and is shown on the top.

5.4. Weight Normalization Ablation Study

In order to prove the improvements provided by weight
normalization, we train six models for the shapes we pre-
sented above in the first case with weight normalization and
in the second case without. The Chamfer distance between
a point cloud sampled from the ground truth models and
one sampled from the trained network by our sampling al-
gorithm is given in Table 1. It can be seen that, even though
not by a large margin, the models trained with weight nor-
malization perform better in every case.

5.5. PDF Estimation

We want to study the uniformness of the stationary distri-
bution of our sampling algorithm. We do this by estimating
the pdf over the surface. Firstly, we create a triangle mesh of
the surface using the Marching Cubes algorithm [23]. We,
then, generate samples with our algorithm for N iterations,
with M samples per iteration. In effect, we are simulating
M Markov chains. For each triangle of the mesh, we count
the number of samples c that are closest to it. The estimated
mean value of the pdf over the triangle is then:

pdf =
c

N ·M ·A
(16)

where A is the area of the triangle.
We visualize the estimated pdf for the bunny and the

sphere with the face colors in Figure 6. In the same figure,
we show histograms of the pdf estimations, as well. The
value of the uniform pdf, which is equal to the inverse of
the surface area, is shown in the histograms with a dashed
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Shape
Mean Chamfer Distance ×103 (↓)

Over whole surface Inside interaction area
Ours Naive Simple Mesh Ours Naive Simple Mesh

Bunny 9.407 14.106 11.127 5.527 12.919 17.707
Frog 8.172 12.865 8.756 4.750 9.805 17.051
Bust 7.279 11.486 7.901 3.818 8.779 14.926
Pumpkin 8.774 13.558 11.489 4.315 5.910 20.693
Sphere 7.209 12.550 7.399 3.555 6.117 12.982
Torus 7.142 13.516 7.415 3.574 5.980 13.402
Average 7.997 13.014 9.015 4.257 8.252 16.127

Table 2: Comparison of our editing method with and without model samples (Ours and Naive, respectively) and direct mesh
editing on a mesh with equivalent size (Simple Mesh). Chamfer distances are computed with 100000 points. The mean for
each shape is taken over 10 independent edits.

vertical red line. We can see that the histograms are cen-
tered tightly around this value, indicating that the station-
ary distributions of our sampling process are quite uniform.
For comparison, we give the corresponding results for the
naive sampling outlined in Section 4.1, in the same Figure.
Here, we notice the bright areas which are sampled more
frequently than the rest of the surface, as well as the longer
tails of the histograms and the fact that they are off-centered.

5.6. Mesh Editing Comparison

We compare our proposed method with the editing of
meshes which is by far the most popular representation for
3D modeling and sculpting and, also, the naive approach of
using only interaction samples. We edit a mesh by chang-
ing the positions of the vertices that lie inside the interac-
tion area (the sphere that was used to discard samples). We
follow the process described in Section 4.3, the only dif-
ference being that, instead of projecting samples from the
tangent plane onto the surface, we compute a vertex’s cor-
responding position on that plane as the intersection of a
ray starting from the vertex with direction along its normal.
In order to have a fair comparison, we use a mesh with ap-
proximately the same size as the network. We begin with
a high-resolution mesh as the ground truth (this is the mesh
the network was trained on for the four meshes and one con-
structed via Marching Cubes [23] for the sphere and torus)

Figure 7: Example of an edit using different methods. From
left to right, ground truth (ideal edit result), ours, naive and
simplified mesh.

and, following [38], use quadratic decimation [16] to get the
smallest mesh with size larger or equal to the network’s size.
Afterward, we perform the same ten edits on these three rep-
resentations. Each edit is performed on the unedited mod-
els. We compute the mean Chamfer distance of the network
and the simplified mesh to the ground truth mesh, over the
whole surface, as well as only inside the interaction areas.
We set the brush’s radius to 0.08 and its intensity to 0.06 for
all the edits. The results are summarized in Table 2, where it
is shown that our method outperforms the other approaches.
We, also, provide an example in Figure 7.

6. Limitations and Future Work

Despite the successes of neural SDFs and the results we
present above, there are also drawbacks. One problem with
this way of editing is that the shape cannot easily be edited
outside the bounding box where the eikonal loss has been
applied because there the network does not approximate an
SDF. Also, since the neural network function is smooth it
is difficult to model hard edges and corners using a neu-
ral SDF. However, there is research on neural SDFs that
use auxiliary data structures to represent the surface locally
[7, 28, 38] that can be potentially utilized to address these
shortcomings, which is a direction we aim to pursue. Fur-
thermore, our framework could in the future be extended in
editing neural scene representations such as NeRFs [26].

7. Conclusion

We have presented 3DNS, a method for editing neural
SDF representations in an interactive fashion inspired by
existing 3D software. We believe that research towards the
editability of these representations can help render them vi-
able for more applications, either scientific or artistic in na-
ture. Nevertheless, in order to compete with the existing
tools and capabilities of meshes, more research is required.

4528



References
[1] Matan Atzmon, Niv Haim, Lior Yariv, Ofer Israelov, Haggai

Maron, and Yaron Lipman. Controlling neural level sets,
2019.

[2] Matan Atzmon and Yaron Lipman. Sal: Sign agnostic learn-
ing of shapes from raw data, 2020.

[3] Matan Atzmon and Yaron Lipman. Sald: Sign agnostic
learning with derivatives, 2020.

[4] Sai Praveen Bangaru, Michaël Gharbi, Tzu-Mao Li, Fujun
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