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Abstract

Procedural texts are a special type of documents that
contain complex textual descriptions for carrying out a se-
quence of instructions. Due to the lack of visual cues, it
often becomes difficult to consume the textual information
effectively. In this paper, we focus on recipes - a particular
type of procedural document and introduce a novel deep-
learning driven system - Recipe2Video that automatically
converts a recipe document into a multimodal illustrative
video. Our method employs novel retrieval and re-ranking
methods to select the best set of images and videos that can
provide the desired illustration. We formulate a Viterbi-
based optimization algorithm to stitch together a coherent
video that combines the visual cues, text and voice-over to
present an enhanced mode of consumption. We design au-
tomated metrics and compare performance across several
baselines on two recipe datasets (RecipeQA, Tasty Videos).
Our results on downstream tasks and human studies indi-
cate that Recipe2Video captures the semantic and sequen-
tial information of the input in the generated video.

1. Introduction

Documents are rich sources of information and we con-
sume a wide range of these in our day-to-day lives - novels,
technical reports, manuals, etc. Procedural documents are
a special type of documents that are used as a reference for
carrying out a sequence of instructions (e.g., an Ikea assem-
bly manual providing a step-by-step guide towards a furni-
ture assembly). The presence of complex textual descrip-
tions and absence of appropriate illustrations can make the
consumption of such documents difficult. For instance, in a
recipe, a user may find it difficult to identify certain ingre-
dients or to visualize intricate cooking procedures.

Edgar Dale’s ‘Cone of Experience’ (‘Learning Pyra-
mid’) and the other study [37] indicate that visual content
improves the cognition of information. Motivated by these
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studies, we propose Recipe2Video, that alleviates the chal-
lenges in the consumption of such documents by automat-
ically converting them into illustrative videos. While our
algorithms are generic by design, we specifically focus on
recipes as domain, and convert recipe texts into illustrative
videos. Given a recipe document, we synthesize an explana-
tory video tailored to the expertise of the user, thus enhanc-
ing the consumption experience. Our illustrative video not
only provides users with distinctive information modes, but
also with an opportunity to engage in self-correction via
comparison with visual outcomes in the generated video.

Our key contributions are: (1) a novel end-to-end
pipeline that synthesizes different video variants for a pro-
cedural document; (2) novel mechanism to retrieve, re-rank,
and efficiently select the right combination of assets (text,
images, and videos) for a given procedural instruction; (3)
a novel optimization framework based on Viterbi algorithm
to create a seamlessly transitioning video that can take into
account the overall relevance and coherence across multiple
frames; (4) evaluation metrics based on cognitive models of
procedural text understanding.

The remainder of this paper is organized as follows. Sec
2 presents related work in this domain. Sec 3 details our
Recipe2Video framework from a systemic and algorithmic
point of view. Extensive quantitative results are presented
in Sec 4. An in-depth analysis of human studies is presented
in Sec 5 and Sec 6 presents limitations and future work.

2. Related Work
Synthesizing videos from procedural texts by converting

complex text into consumable multi-modal combinations is
a novel problem that has not been tackled in its entirety yet.
Therefore, we outline the prior works that address compo-
nents of the general problem we are interested in.

Url2Video [10] converts an input webpage into a short
video representing the contents of that webpage. This so-
lution focuses on visual display by utilizing CSS elements
from the webpage and assigns importance to content us-
ing a combination of keywords and CSS attributes. A re-
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cent work [21] synthesizes audiovisual slideshows using
hardcoded word concreteness from input text. We instead
learn to process the input text by understanding semantics
and synthesize coherent multi-modal combinations that en-
hance information consumption. Some video creation star-
tups [4, 2] pick text from an input article and add audio-
visual components from a predefined library to synthesize
videos. However, there are no attempts to decide what is
the right combination of modalities to display for a given
context which is one of our core contributions.

DOC2PPT [14] converts a document into a slide-
deck/PPT. Their method combines document summariza-
tion, image and text retrieval, slide structure and layout pre-
diction to arrange key elements in a form suitable for pre-
sentation. However, the output slides do not support modal-
ities other than images and text. Further, the slides are not
optimized for an end-to-end visual coherence, which is a
key aspect in our problem. Also, Doc2PPT relies on super-
vision from a corpus of research papers and the correspond-
ing slide decks, and hence is limited to academic papers.

CookGan [43] focuses on synthesising the image of a
cooked dish based on the input ingredient list. It accounts
for the changes in the appearance of the dish due to different
cooking methods and captures final appearance in the gen-
erated image. However, we are more interested in generat-
ing a video rather than individual multi-modal components.

Li et al. [22] generate videos from text by training a con-
ditional generative model to extract both static and dynamic
information from text using a hybrid framework [22]. Their
method focuses on general textual description and the gen-
eration is limited to natural scenes, hence does not naturally
extend to procedural documents. However, they do provide
insights around several models for text-to-video conversion,
which we have leveraged in our work.

Another related work is B-Script [17], which determines
the right content and positions of B-roll and inserts it within
the main footage. Recent works in multi-modal summariza-
tion generate a summary text along with the most relevant
images [44, 37]. While these works are not directly applica-
ble to our problem, they provide key insights towards gen-
erating multimodal outputs and evaluating the generation.

3. Recipe2Video: System Architecture
Given a recipe document, Recipe2Video first retrieve dif-

ferent assets including clips and images for each instruction
and arrive at a combination of assets that best depicts every
component and action in that instruction. We score and re-
rank the retrieved assets to capture their ability in covering
the information presented in the instruction. The ranking
also accounts for the temporal aspects of the components
or actions in the instruction. Next, we perform a modality
choice (clip or image) for every instruction to generate a
frame that minimizes the cognitive load of the user. Figure

Figure 1. A schematic of the Recipe2Video system. Given a a pro-
cedural recipe text along with a communicative goal, our frame-
work synthesizes a tailored video catering to the goal.

1 displays a schematic of the Recipe2Video architecture.
We consider fine-grained variations of video for catering

to different user needs. In our work, we consider two pos-
sible variants - the elaborate variant for users who prefer a
detailed multimodal depiction of contents in the input doc-
ument. Such users could be novices or careful users who do
not want to miss out on any detail and use the video for self-
correction. This typically contains larger number of visual
assets with longer duration. The succinct variant caters to
users who prefer quicker depictions of contents in the doc-
ument. Such users could be experts who want a quick refer-
ence. This variant contains a smaller number of assets that
cover larger chunks of information within a short duration.

3.1. Multimodal Retrieval:
Any procedural text, including recipes, typically con-

tains an enumeration of different components used, fol-
lowed by a sequence of instructions. As a first step, we
retrieve visuals (referred to as assets from here on) such as
images and clips from a large corpus that illustrate the com-
ponents and actions. In Recipe2Video, the corpus is built
by combining images and videos from the RecipeQA [41],
TastyVideos [38, 39], and YouCook2 [42] datasets. We ex-
tract and store short clips (from full recipe videos) based
on the available ground truth timestamp annotations. The
objective is to arrive at unitary clips that illustrate a specific
process that can be used independently of the full video. For
every instruction, we gather a set of relevant assets by com-
bining the retrievals obtained from three different mecha-
nisms, to improve robustness and guarantee enough rich-
ness in the selected assets for further processing.

(1) Textual Indexing-based Retrieval: We use the de-
scriptions associated with the assets to index them using
a weighting-based ensemble of models [25, 31]. We use
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hyper-geometric divergence from randomness weighting
model [6] to score, rank and retrieve the indexed assets.

(2)Textual Embeddings-based Retrieval: We compute a
similarity score between the pretrained word2vec embed-
dings [27] of asset description and instruction to rank assets.

(3) Cross-modal Semantics-based Retrieval: Since the
first 2 approaches do not focus on the semantics of the
retrieved modalities, we use recently proposed deep net-
works for multimodal representations [32, 26] to project
assets and text instructions into a common representation
space and use the similarity in this space to rank the assets.
For images, we use the CLIP (Contrastive Language-Image
Pre-Training) embeddings [32] pretrained on 400 million
image-text pairs. We retrieve the images from our corpus
whose embeddings have maximum cosine similarity to the
text instruction embeddings. For videos, we use the model
from [26] which learns a joint text-video embedding by
leveraging video clip-caption pairs. Since the model is pre-
trained on HowTo100M dataset [26], we finetune it on our
dataset and use it to extract video and text embeddings.

3.2. Ranking Assets and their Combinations:
To prune the set of assets retrieved, it is vital to consider

the relevance and value of each asset towards illustrating the
given instruction beyond semantics as described in the pre-
vious subsection. Often, an instruction might need a combi-
nation of image(s) and clip(s) to be completely illustrated.
Hence, we evaluate every retrieved asset for its ability to de-
pict the instruction and arrive at a combination (if required)
to best cover the entire instruction. Our system uses the fol-
lowing computations to rank assets and their combinations.

(1) Ranking with Information Coverage Scores: In this
step, we focus on scoring and ranking assets based on the
extent to which they depict the key aspects of the instruc-
tion. We extract the key phrases of an instruction [36] and
then compute a set of scores that indicate the affinity of each
of these key phrases to the retrieved assets using a Zero-shot
Classifier extended from the CLIP [32] model. For videos,
we compute and aggregate the affinity of a list of represen-
tative keyframes. More formally, let t1, t2, . . . , tK be the
key phrases extracted from an instruction. For each image I
(or aggregation of keyframes), we compute the distribution

over key phrases PC given by PC (I, k) =
exp

(
eI

T
etk

)
ΣK

i=1 exp (eIT eti)
,

where, etk = CLIP_TEXT (tk), eI = CLIP_IMAGE (I),
with CLIP_TEXT(.) and CLIP_IMAGE(.) being the text
[33] and image [12] encoders. We assume that an ideal asset
(combination) should uniformly cover all aspects of the in-
struction and compute the KL divergence between the cov-
erage distribution obtained above and a uniform distribution
and use it to rank assets. Let PU ∼ Unif (K) be the uniform
distribution over K key phrases. The asset with the highest
rank (thus maximizing information coverage) corresponds

to a such that,

a = argmina∈A KL (Pc (a)| | PU )

= argmaxa∈AΣK
k=1PC (a, k)

log (PC (a, k))

log(PU (k))
(1)

where KL (Pc (a)| | PU ) serves as a measure for informa-
tion coverage. An example-based explanation for this ap-
proach is provided in the supplementary material.

(2) Ranking with Temporal Aspect Scores: Finding vi-
sual assets that integrate well with recipe texts is challeng-
ing because these texts describe several temporal aspects
like the change in state of the components, etc. To tackle
this, we leverage the CITE (Corpus of Image-Text Rela-
tions) dataset [5], which contains human-annotated answers
to temporal questions on image-text pairs derived from
RecipeQA [41]. We use the following subset of questions
from CITE: (1) Does the image show how to prepare before
carrying out the instruction? (2) Does the image show re-
sults of the action described in the instruction? (3) Does the
image depict an action in progress described in the instruc-
tion? We believe that the ability of an asset to answer these
questions helps in providing information about the prepara-
tion, execution, or results of an instruction, thus embedding
the temporal aspects of the instruction. We train a feed-
forward neural network, called Temporal Classifier, on this
dataset using the CLIP embeddings [32] of assets and texts
as input. The trained model is run on all the retrieved assets
to obtain a set of confidence scores for each of the temporal
aspects introduced before. For videos, we take the average
of the scores computed on all key frames. Akin to informa-
tion coverage, we score all the assets and their combinations
to arrive at the aggregated scores that indicate their ability
to capture different temporal aspects. For each (instruction,
retrieved asset) pair, we compute sbef , saft, sdur that indi-
cate the scores corresponding to the three temporal aspects.

The characterization of the temporal aspects into 3 cat-
egories also us to synthesize a video emphasizing on dif-
ferent aspects of the procedure. By default, we give equal
weights to all 3 questions in our ranking. We compose
2-asset and 3-asset combinations for each of the elaborate
and succinct variants using sbef , saft, sdur scores. In the
succinct case, we pick the top-k (k = 2, 3) assets that
rank the highest on the average of the 3 scores so that the
higher-ranked assets contain all 3 temporal aspects, leading
to fewer assets with wider information range.

In the elaborate case for 3-asset combination, we first
pick the top-n (n = 5) assets that rank the highest in each
individual temporal aspect. Then, we consider all n3 combi-
nations of assets and pick the combination that ranks high-
est on the summation of their temporal aspect scores. In
the elaborate case for 2-asset combination, we again pick
the top-n (n = 5) assets that jointly rank the highest in two
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aspects ([sbef , saft] or [sdur, saft]) and iterate over all n2

combinations, picking the one that ranks the highest on the
summation of their joint scores.

(3) Ranking with Modality Appropriateness Scores:
While information coverage and temporal aspect based
rankings provide us a list of asset combinations that cover
information and key temporal questions on the procedure,
they do not address whether these combinations are the
ideal modalities to represent the instruction. To determine
the appropriate modalities for each instruction, we utilize
the concept of weak supervision [20, 29], which captures
supervisory signals such as heuristics, constraints, or data
distributions on a small sample and extends it to a larger cor-
pus. Given an unlabeled dataset, akin to recipe instructions,
weak supervision enables programmatic creation of labels
for this dataset via labelling functions. We design multi-
ple labelling functions (LFs) based on cognitive models for
procedural text understanding [15] that capture domain ex-
pertise and simple intuitions of human annotator behavior.
Each LF labels a subset of the data, and multiple LFs ensure
that a large proportion of data is labelled entailing high cov-
erage. A single data point can be labelled by multiple LFs,
thereby reducing noise, and making the process robust. We
use the following LFs in our system to compute models for
computing the modality appropriateness:
a. Action Type: We identify verbs (actions) [9] from in-
structions and classify them into categories based on our
inductive biases and cognitive studies [7, 15]. These cat-
egories are then mapped to their appropriate modality. For
e.g., one-time actions -> image modality: e.g., bake in oven;
general actions -> text modality – e.g., leave for 5 minutes;
Repetitive actions -> short clips: e.g., whisking.
b Action Count above a threshold -> Video modality: In-
structions containing multiple verbs cannot be illustrated
with a single image, hence videos should be preferred.
c. Instructions with Numerical Quantities -> Textual
modality: Quantitative information, e.g., 3 spoons of sugar,
Some wheat flour in recipes, is illustrated better via text as
it provides accurate and immediate actionable knowledge of
the material to collect [7].

We verify that our LFs cover the entire instruction
dataset via the coverage metric provided by [34]. We use
a majority label consensus to resolve conflicts when differ-
ent LFs label an instruction differently, which also serves as
a denoiser to our weak labelling. Thus, we arrive at a weak-
labelled dataset that contains textual instructions mapped
to one of the four labels (text, image, image-list, video),
which determines the appropriate modality for each instruc-
tion. We train a multi-class classifier on this dataset using
CLIP embeddings of instructions with a cross-entropy loss.
At inference, the trained classifier predicts a 4-dimensional
vector for every instruction, with each dimension represent-
ing a score for each of the labels. We use one of these scores

as Mod (yi) based on the asset combination yi.
3.3. Sequence Generation & Video Synthesis:

Prior works in automatic video editing/generation [28,
24, 23] state that visual and semantic coherence of the out-
put video is a key requisite for user consumption. We make
decisions at an instruction level to ensure a coherent video.
We start with the CLIP embeddings of each asset combina-
tion and use the cosine similarity between them as a mea-
sure of coherence of their transitions, similar to works that
compute textual coherence [40].

Apart from the visual and semantic coherence, the cho-
sen combination of assets for each instruction should also
optimize for information coverage, temporal coverage, and
modality appropriateness. We solve this by formulating a
Viterbi-style dynamic programming problem [19], used in
sequence prediction tasks to generate outputs that maximize
local independent scores (coverage & modality appropriate-
ness) and transition scores between consecutive elements
(visual & semantic coherence). For the chosen assets in
each step, we assign a score for the sequence ȳ as follows:

F (ȳ) =
∑
yi∈ȳ

S (yi) +
∑

yi, yi+1

T (yi, yi+1) (2)

where S (yi) = weighted_sum(Rel (yi) , IC (yi) , TC (yi) ,
Mod (yi)), all three scores are normalized and given equal
weights, Rel (yi) = similarity score between the text
embedding and the asset embedding, IC (yi) is the infor-
mation coverage score (given by 1 − σ (kld (yi)) , σ(.) is
the sigmoid function), TC (yi) is the temporal coverage
score, Mod (yi) is the modality appropriateness score,
and T (yi, yi+1) is the semantic similarity between yi
and yi+1. With this approach, maximizing F (ȳ) will
output sequences such that the inter-coherence of frames
is high, making it smooth for users to follow a video. Our
novelty is not Viterbi algorithm itself but using it with our
measures and transitions in the context of multi-modal
content which has not been done in prior work. In [28],
transition probabilities are computed across uniform frames
and audio clips which are then used in inference (similar to
Viterbi) to stitch optimal frames. We use a similar transition
scheme T (.) with multi-modal assets instead. While [28]
uses embedding similarity, we use our ranking measures
(coverage, temporal score) in S(.) that add to the novelty of
our approach. Finally, to produce consumable video from
our selected visuals, we chose an optimal template from
a set of predefined templates for a frame. We utilize [3]
to generate voice-over for the input instructions, overlay
it with the corresponding frames and merge all such clips
into our final video [45, 1].

4. Experimental Results
Evaluating our synthesized videos at large scale con-

sidering the overall users’ experience is a non-trivial task.
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We therefore design metrics to capture specific aspects of
Recipe2Video. We consider two datasets for our evaluation
– (1) RecipeQA [41] (test set), containing 960 recipe texts
along with task-specific question-answer pairs; (2) Tasty
Videos [39], containing 1000 recipe texts along with recipe
categories. For each recipe text, we synthesize elaborate
and succinct video variants from Recipe2Video.

Given the novelty of our end-to-end system, it is not
straight-forward to compare our system with different base-
lines. Moreover, we do not have ground-truth frame se-
quences to compare our outputs with. We therefore adapt
the following baselines that are closely related to our work
to ensure a fair and exhaustive comparison. Audiovisual
Slideshows [21] uses the notion of word concreteness to
obtain search query from input text and uses it to retrieve
assets. We test our retrieval module independently to repli-
cate this baseline. Multimodal Summarization [44] aims
to generate a multimodal (text-image) summarization of a
multimodal document, while ensuring faithfulness to the in-
put document. It is equivalent to our system, which contains
the retrieval module and the information coverage compo-
nent of the Ranking module. This also serves as an abla-
tion for our Ranking module with regards to temporal as-
pects and modality appropriateness scoring. Doc2PPT [14]
aims to generate slides sequentially from academic docu-
ments, by using a Hierarchical RNN with Progress Tracker
(PT). However, it does not account for coherence. Since the
code is not publicly available, we consider a variant of our
model that replaces the Viterbi Decoding (Section 3.3) with
a greedy decoding approach that does not consider optimiz-
ing the inter-frame transitions. We retain our ranking mod-
ule in its entirety to match the strength of their hierarchical
RNN model. Finally, Random Sampling is a naïve base-
line where we sample assets for each step using a randomly
generated query and combine into a video using greedy de-
coding, removing all other modules.

Note that, to the best of our knowledge, no previous work
considers semantic video variants (as elaborate/succinct in
our case) to meet different users’ consumption needs . Thus,
we report values on the standard video output of each base-
line to compare with the elaborate variant synthesized by
Recipe2Video, and consider a sped-up baseline video with
fewer frames to compare with the succinct variant. We be-
lieve all the proposed baselines are relevant and competitive
adaptations of existing approaches to better tackle the prob-
lem at hand. We reiterate that, unlike our proposed system,
none of the baselines solve the problem in its entirety.

We adapt standard metrics to capture the performance of
the different modules of our proposed system [15]. Note: all
metrics (such as Visual Relevance) can be computed for text
documents. We put a blank symbol (–) in these scenarios.
We describe the considered metrics in the following.

Visual Relevance measures how visually close the as-

sets in synthesized videos are to the corresponding input
texts. We take pairwise cosine similarity of ViT representa-
tions [12] of assets and input document images and average
over all videos. Note that the document images are used by
Recipe2Video and are used only for evaluation. Since Tasty
Videos recipes do not have images in the input document,
we use this measure only for RecipeQA documents.

Textual Relevance measures how verbally close the as-
sets in synthesized videos are to the input document. We
take pairwise cosine similarity of sentence BERT [35] of
video text and input document text and average over all
videos. Video text is obtained using dense captioning [18]
of extracted keyframes. A high value indicates that our
method retains the verbal information of the procedure, and
the assets are not obfuscating this information.

Action Coverage measures the number of verbs in the
input document that are visually encoded in the final video.
We count the number of verbs in the final video using dense
captioning and compute the ratio with the input document’s
verbs. A high value shows that our method encodes verbs
behaviorally into the visuals [15].

Video Quality measures the visual quality of the synthe-
sized videos via Inception Score (IS) [30]. We use the pre-
trained Inception-v3 network to compute IS score, which
is given by the exponential of averaged KL divergence be-
tween conditional p (y|x) and marginal p (y) probability
distributions. A high video quality score indicates that our
video frames are diverse and visually pleasing to the user.

Abrupt Info Gain measures the abruptness of information
gained after each frame in the video. We calculate the dis-
tance between consecutive encoded representations of each
frame and average the distances over the entire video. A
high standard deviation of these distances indicates that the
information conveyed to the user over the entire duration
of the video is not smooth, thereby increasing cognitive

load. Abruptness is given by

√
ΣN

t=1

(
dt − d̂

)2

/N where

dt = 1 − fTt ft−1 and d̂ = ΣN
t=1dt/N , with N being the

number of frames and ft the encoded representation of the
frame at time t.

Summarization Score measures the ability of our videos
to convey the same overall summary that the document
conveys. We compute the sentence embeddings of input
document and video text (from dense captions of extracted
keyframes) and take the cosine similarity of all possible sen-
tence combinations in each domain. We then use LexRank
[13] to find the most central sentences that represent the ex-
tracted summaries. Comparing the summaries of input doc-
uments with generated video yields the required score.

Additionally, we also evaluate the capabilities of our syn-
thesized videos on various downstream tasks. Note that
Recipe2Video is not explicitly trained to perform well on
these tasks. Instead, we hypothesize that Recipe2Video’s
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Table 1. Performance Comparison of various baselines against Recipe2Video on the RecipeQA and TastyVideos. All values are averaged
over 962 input texts for Recipe QA and 1000 input texts for Tasty Videos. First row corresponds to input text documents. (↑) arrow
indicates that a higher score on the metric is better. Some columns are left blank (–) since the input text document we consider does not
have visuals / categories. The first column refers to the downstream task of Visual Coherence and is limited to the Recipe QA evaluation.
The second column is the task of predicting categories from the context encoded from system outputs and is restricted to Tasty Videos.

Variant System
Visual

Relevance
(↑)

Category
Prediction

(↑)

Textual
Relevance

(↑)

Action
Coverage

(↑)

Video
Quality

(↑)

Abrupt
Info Gain

(↓)

Summ.
Score

(↑)

Recipe QA Text Document – – 1.00 – – 0.52 (± 0.13) 1.00

Elaborate (Recipe QA)

Random Sampling
Audiovis. Slides

MSMO
Doc2PPT

Recipe2Video (Ours)

0.36
0.52
0.78
0.81
0.80

–
–
–
–
–

0.42
0.55
0.84
0.85
0.85

0.25
0.51
0.56
0.63
0.72

4.24 (± 0.54)
4.09 (± 0.50)
4.04 (± 0.51)
4.31 (± 0.18)
4.16 (± 0.46)

0.86 (± 0.22)
0.38 (± 0.11)
0.41 (± 0.16)
0.41 (± 0.10)
0.26 (± 0.04)

0.49
0.62
0.73
0.71
0.70

Succinct (Recipe QA)

Random Sampling
Audiovis. Slides

MSMO
Doc2PPT

Recipe2Video (Ours)

0.23
0.42
0.56
0.55
0.78

–
–
–
–
–

0.40
0.45
0.63
0.64
0.85

0.25
0.51
0.56
0.63
0.68

4.14 (± 0.35)
4.28 (± 0.44)
4.16 (± 0.37)
4.25 (± 0.12)
4.24 (± 0.23)

0.96 (± 0.34)
0.59 (± 0.18)
0.53 (± 0.24)
0.47 (± 0.21)
0.34 (± 0.05)

0.36
0.58
0.65
0.65
0.73

Tasty Videos Text Document – 0.52 1.00 – – 0.58 (± 0.18) 1.00

Elaborate (Tasty Videos)

Random Sampling
Audiovis. Slides

MSMO
Doc2PPT

Recipe2Video (Ours)

–
–
–
–
–

0.45
0.58
0.62
0.63
0.65

0.44
0.66
0.72
0.77
0.81

0.26
0.55
0.62
0.71
0.88

4.40 (± 0.33)
4.58 (± 0.60)
4.69 (± 0.59)
4.91 (± 0.58)
4.78 (± 0.68)

0.58 (± 0.19)
0.48 (± 0.13)
0.42 (± 0.20)
0.44 (± 0.23)
0.25 (± 0.05)

0.47
0.58
0.72
0.71
0.68

Succinct (Tasty Videos)

Random Sampling
Audiovis. Slides

MSMO
Doc2PPT

Recipe2Video (Ours)

–
–
–
–
–

0.32
0.38
0.49
0.50
0.63

0.42
0.47
0.55
0.55
0.72

0.25
0.54
0.53
0.68
0.82

4.34 (± 0.28)
4.19 (± 0.44)
4.72 (± 0.25)
4.88 (± 0.52)
4.75 (± 0.61)

0.64 (± 0.28)
0.55 (± 0.18)
0.46 (± 0.17)
0.47 (± 0.18)
0.31 (± 0.08)

0.45
0.58
0.62
0.61
0.71

representations are strong enough to effectively solve these
tasks, unlike other textual or baseline representations.

Given a context and a set of question images, the Visual
Coherence task (in RecipeQA) predicts the best image (out
of four available options) that best relates to the question
images. We vary the context to compare our baselines. For
videos, we compute the average of frame representations
and concatenate them to ViT representations [12] of both
question images and option images. We then reduce the di-
mensionality of these representations using Singular Value
Decomposition (SVD) and compute the cosine similarity.
We predict the option that has the highest cosine similarity
with the set of question images as the final image.

In Visual Cloze task (for RecipeQA), given a context and
a sequence of images with a placeholder, the task is to pre-
dict which image out of four available options fits well in
the placeholder position. We again vary the context across
baselines and compute SVD representations as explained
earlier. We then replace the placeholder position with each
of the option images and predict the option that leads to the
lowest abruptness in information gain across the ordering.

In Textual Cloze task (for RecipeQA), given a context
and a sequence of texts with a placeholder, the task is to
predict which text out of four available options fits well in
the placeholder position. We follow the previous compu-
tations replacing the frame representations with BERT rep-
resentations. Note that both cloze tasks not only capture
the representative strength of videos but also the strength of
sequential information encoded in them.

In Category Prediction task (for Tasty Videos), we use
the set of categories that comes with every recipe and pre-
dict the categories from the context (varied across base-
lines). We measure the performance using multi-label ac-
curacy by taking the set intersection of true labels and top-
10 labels with the highest similarity scores. We reduce the
51 available unique labels to 10 commonly occurring labels
and add an “Other” label for the remaining 41 categories.
Metric-based Evaluation: We look at different statistics
across the RecipeQA and TastyVideos datasets. RecipeQA
has longer instructions (average of 475.48 words per recipe)
with fewer steps (6.62 steps on an average) leading to fewer
frames and assets retrieved. Tasty Videos has shorter in-
structions (139.70 words per recipe) with almost double the
number of steps (12.60 steps per recipe), leading to more
frames. Recipe2Video enables an easy and quick consump-
tion across these long texts, by synthesizing succinct videos
less than a minute long (39.04s for RecipeQA and 44.36s
for TastyVideos) and elaborate videos of about two minutes
(100.08s for Recipe QA and 109.17s for TastyVideos)

The average duration of succinct videos is less than half
the duration of the elaborate videos, making it suitable for
quick concise consumption of the input document.

Table 1 compares the performance of Recipe2Video
against the baselines on the RecipeQA and Tasty Videos
datasets, across different metrics. The first row com-
putes scores for a textual document and serves as a ref-
erence to verify our hypothesis of presenting an alternate
video modality to consume procedural texts. We observe
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Table 2. Downstream Task Performance of various baselines
against our Recipe2Video (Elaborate variant) on RecipeQA test
set. (↑) arrow indicates that a higher score is better. We use the
context encoded from system outputs for the tasks.

System Visual
Coherence (↑)

Visual
Cloze (↑)

Textual
Cloze (↑)

Text Document 0.71 0.36 0.58

Random Sampling
Audiovis. Slides

MSMO
Doc2PPT

Recipe2Video (Ours)

0.28
0.73
0.75
0.78
0.79

0.29
0.28
0.29
0.45
0.56

0.24
0.35
034
0.54
0.53

that Recipe2Video performs significantly better in smooth-
ing the video consumption experience as indicated by the
Abrupt Info Gain. This can be attributed to the overall co-
herence that Recipe2Video imparts in choosing the relevant
assets. Recipe2Video also scores very high in the Action
Coverage metric, owing to a strong temporal aspect rank-
ing. Our variants perform well on all other metrics, with
values close to the best baselines. High values on Visual and
Textual Relevance show that our retrieval presents good per-
formance. However, these values, along with Video Quality
are lower than the Doc2PPT baseline, perhaps due to per-
frame optimizations performed in Doc2PPT.

Succinct variant scores the highest on summarization
score along with Multimodal Summarization baseline. This
variant also has a higher visual quality as compared to the
elaborate variant. Nevertheless, the ease of consumption is
lower due to quickly changing information-heavy frames.
Textual Relevance and Summarization Scores are similar
across baselines since they are text dependent and all base-
lines process the text in a similar way (except for the Audio-
visual Slideshows baseline that uses word concreteness and
thus scores lower). Textual Relevance and Summarization
Scores are the highest by default for text document since no
changes are made to the text. However, the input documents
contain no illustrative visuals and are very abrupt for con-
sumption, leading to a potential suboptimal user experience.
Scores of both our variants on all other metrics confirm our
hypothesis that video modality is a much better way to con-
sume procedural document, providing visuals for reference
and self-correction, and enabling a smooth consumption.

Table 1 reports the performance of Recipe2Video and
other baselines on Tasty Videos across various evaluation
metrics described earlier. As reported in Table 1, the per-
formance on Tasty Videos dataset follows a similar trend
overall, reinforcing the benefits of our work. These results
indicate that Recipe2Video generalizes to a different pro-
cedural text dataset with more steps and shorter sentences
as compared to RecipeQA. Our method achieves strong co-
herence values across all the steps and retrieves highly rele-
vant assets despite fewer query words available per step. We
however note that the domains of both datasets are recipes,
and leave extensions to other domains for future work.

Performance on Downstream Tasks: Table 2 com-

pares downstream task performance of various baselines
with Recipe2Video on the RecipeQA dataset. Our represen-
tations achieve a +0.08 gain on accuracy for the Visual Co-
herence task as compared to representations of input texts
(computed by taking an average of Bert-based sentence rep-
resentations of each step [35]). This can be explained by the
higher quality of the visual assets that are selected to gener-
ate the video. We achieve significant gains in Visual Cloze
task (+0.20) as compared to textual documents. It is worth
stressing that this is a challenging task as it requires an un-
derstanding of the exact sequence of the visuals too. Our
encoded video representations contain such sequential in-
formation, despite not having been trained for it explicitly.
While we do not beat the text document representations on
Textual Cloze task, we achieve similar performance. Since
the task does not require visuals (the input text does not con-
tain any), the visual assets we retrieve could be obfuscating
and reducing the discriminative strength of the text in the
video. These results confirm the promise of our approach
in preparing richer representations and replacing standard
BERT-based sentence representations for procedural texts.

5. Human Evaluation
While the automated metrics and tasks in previous sec-

tion provide an insight into our system’s performance, con-
sumption experience is subjective and innate to users. We
hence conduct extensive human studies via MTurk to cap-
ture the consumption experience of users on various dimen-
sions like Enjoyability, Retainability, etc.

Our evaluation consists of three experiments, answer-
ing questions for: (1) consuming recipes from RecipeQA
Test Set as procedural texts; (2) consuming recipes from
RecipeQA Test Set as videos synthesized either by our sys-
tem or from Doc2PPT system. Since Doc2PPT system
was the the most competitive baseline in our quantitative
evaluation, we use it for all our experiments in the human
evaluation; (3) viewing and comparing recipes in both text
and video modalities. Each text/video and corresponding
questionnaire (HIT or Human Intelligence Task on MTurk)
is annotated by five annotators. We also add few sanity
check questions to ensure that annotators have actually gone
through the displayed content, and reject HITs when anno-
tators get any two of the three sanity questions wrong.

Here is one sample question. [Retainable; 1, 2] How
much of the recipe can you remember now without looking
at it again? (a) Cannot remember anything; (b) remember
very little; (c) remember some of it; (d) remember most.
Here, the question format indicates its usage in experiments
(1) and (2) to gauge retainability of the displayed modality.

The purpose of Expt (1) and (2) is to keep the annotators
unaware of a different form of consumption and arrive at
the qualitative scores independently. We use recipes from
RecipeQA Test Set as it already contains images for tasks
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Table 3. Results of Human Evaluation for Expts (1) and (2) on
RecipeQA test set. (↑) indicates that higher value is better. Note
R2V stands for Recipe2Video.

Variant System
Enjoyable

(↑)
Retainable

(↑)
Jarring

(↓)

Task
Performance

(↑)

Pleasant
(↑)

Intra
Coherence

(↑)

Inter
Coherence

(↑)
Text

Document 3.02 2.55 2.27 0.58 – – –

Elaborate
Baseline

R2V
2.73
3.15

2,18
2.85

1.65
1.39

0.56
0.68

2.79
2.77

2.23
3.25

1.47
2.40

Succinct
Baseline

R2V
2.77
3.11

2.21
2.84

1.73
1.64

0.53
0.68

2.36
2.81

2.35
3.28

1.60
2.44

such as visual coherence, which serve as a proxy for infor-
mativeness provided by the consumption mode. Let N de-
note the number of tasks (data points) for each experiment.
We consider (N = 15) RecipeQA texts as tasks for Expt
(1), and (N = 15 × 4 = 60) videos as tasks for Expt (2).
Note that each recipe has two video variants synthesized by
the baseline and two variants synthesized by Recipe2Video.
Each option corresponds to a Likert scale [1-4] value. Ta-
ble 3 shows the results of the two experiments. All values
are averaged across the HITs, with a moderate to substantial
inter-annotator agreement in the range [0.48 − 0.68] (com-
puted using Cohen’s κ score). Expt (3) allows for a direct
comparison between the two forms of consumption, text vs
video. We use recipes from both RecipeQA (23) and Tasty
Videos (25) amounting toN = (23+25)×4 = 192 videos,
thus leading to robust results. Since each annotator interacts
with one video, our study is between-subjects. We chose
this mode because watching and analyzing more than one
video increases cognitive load on annotators, leading to re-
duction in quality of responses.

Table 3 compares the performances of videos generated
from baselines and Recipe2Video on various human anno-
tated metrics. We find that respondents found our videos
to be more enjoyable, more retainable, and less jarring as
compared to traditional procedural texts. Videos synthe-
sized by the baseline score worse than texts on most met-
rics showing that our system produces better videos. Inter-
estingly, baseline videos score better on the [Jarring] met-
ric (The Jarring-related question corresponds to the Abrupt
Info Gain metric). This could indicate that, despite baseline
videos being less enjoyable or retainable, the information
flow is smoother to view. We find that videos synthesized
by Recipe2Video have a greater intra- and inter-coherence
as compared to baseline videos, thus confirming the strong
sequence generation and optimization part of our system.

Furthermore, gains for the succinct variant are more pro-
nounced than the elaborate one. This is expected since the
succinct variant from Recipe2Video is not a sped-up elabo-
rate video or a video with fewer frames as in the baselines,
but a completely new video with optimal assets. This ma-
jor novelty in preparing a semantically different variant is
sufficiently reflected in the human study.

As a part of Expt (3), we ask respondents to rate whether
the various modalities helped in understanding the recipe
text better. Figure 2 show the results of this analysis, where

Tasty Videos RecipeQA

Figure 2. The bar graphs show the averaged values across all re-
sponses for each (modality, variant, system) triplet. Values are also
averaged across all modalities and variants to obtain a system-level
response, shown via dashed lines.

the values are averaged across all responses. We also av-
erage the responses across all modalities and display a hor-
izontal line for each system. Overall, videos synthesized
by Recipe2Video are moderately helpful (Average 2.28 for
Tasty Videos, 2.04 for RecipeQA), and are significantly
better than the baseline (Average = 1.22 for Tasty Videos,
1.26 for RecipeQA). Higher scores on Tasty Videos than
RecipeQA could be due to shorter and crisper instructions in
Tasty Videos, leading to better retrievals and shorter gener-
ated videos. Respondents find images in the succinct variant
to be more helpful than images in the elaborate one. This
points to the strength of our ranking module.

6. Conclusion
We introduce Recipe2Video, a novel deep learning-

based system that converts procedural recipe texts into il-
lustrative videos to enhance users’ consumption experience.
Recipe2Video uses various technologies to retrieve rele-
vant multi-modal assets and rank them based on different
dimensions such as temporality, information coverage and
modality appropriateness. It then stitches them into an illus-
trative video using a Viterbi-inspired optimization scheme.
While doing so, Recipe2Video also caters to user prefer-
ences - leading to semantically different variants (elabo-
rate and succinct). Our quantitative and human evaluation
demonstrate that the video variants from Recipe2Video: (i)
are visually and textually relevant to the input recipe text;
(ii) encode crucial actions in the form of clips for self-
correction; (iii) provide a smooth information flow; (iv) are
effective in capturing different user needs. Comparison with
several baselines across two datasets shows significant gains
of our system in producing coherent output videos.
Limitations & Future Work: Many of our system mod-
ules rely on the existence of specific datasets available in
the recipe domain. There are very few equivalent datasets
available in other domains. We intend to consider datasets
like Tut-VQA dataset [11] in extending the proposed frame-
work to other domains. We also look to optimize for layouts
within the frames as incorporated in Url2Video [10] to en-
hance the video quality. For future work, we intend to an-
alyze modalities and their combinations in greater detail to
improve our modality appropriateness module [16, 8].
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